An optimal perfect matching with respect to the Clar problem in 2-connected plane bipartite graphs

Khaled Salem
The British University in Egypt
El Sherouk City, Misr-Ismalia Desert Road
Postal No. 11837, P.O. Box 43, Egypt
ksalem@bue.edu.eg

(Received June 4, 2008)

Abstract
We provide an optimality criteria for a perfect matching with respect to the Clar problem in 2-connected plane bipartite graphs.

1 Introduction
The class of graphs considered here are the 2-connected plane bipartite graphs with perfect matchings. We use $G \equiv G(V, E, F)$ to denote an arbitrary graph in this class, where V is the set of vertices, E is the set of edges and F is the set of inner faces. It will be assumed that the vertices of G are bi-colored, black and white say, such that the end vertices of each edge have different colors. A special type of 2-connected plane bipartite graphs are the so-called hexagonal systems. A hexagonal system is a 2-connected plane graph in which every inner face is a regular hexagon of side length one. Hexagonal systems with perfect matchings, i.e., Kekuléan benzenoid systems, are interesting graphs in chemical graph theory [1, 2] since they represent
the chemical compounds known as benzenoid hydrocarbons. Throughout this paper, the examples provided are drawn from these graphs.

An interesting optimization problem in 2-connected plane bipartite graphs with perfect matchings is the so-called Clar problem, a definition [3] of which follows. Let P be a set of inner faces of G. We call P a resonant set of G (or a generalized Clar formula of G) if the faces in P are pair-wise disjoint and there exists a perfect matching of G that contains a perfect matching of each face in P. Let us recall here that every perfect matching of G contains a perfect matching of an inner face of G [4, 5]. The maximum of the cardinalities of all the resonant sets is called the Clar number [6]. It was Clar [7] who noticed the significance of this number in the chemistry of benzenoid hydrocarbons. A maximum cardinality resonant set (or a Clar formula) is a resonant set whose cardinality is the Clar number. By solving the Clar problem, we mean obtaining a maximum cardinality resonant set.

The Clar problem can be solved in polynomial time using linear programming algorithms [8, 9, 10, 5]. However, no polynomial-time combinatorial algorithm is available for the Clar problem. The purpose of this paper is to contribute to the development of such an algorithm within the framework described in [11]. Here, it should be noted that polynomial-time combinatorial algorithms for the Clar problem in two special classes of hexagonal systems with perfect matchings do exist [5, 12, 13]. In the remainder of this section, the framework suggested in [11] to solve the Clar problem is reviewed and the contribution of this paper is further specified, but more definitions are needed.

Let M a perfect matching of G and P be a set of inner faces of G. We call P an M-resonant set of G if the faces in P are pair-wise disjoint and the perfect matching M contains a perfect matching of each face in P. It is noted that a set of inner faces of G is resonant if and only if it is M-resonant for some perfect matching M [11]. A maximum cardinality M-resonant set is an M-resonant set whose cardinality is the maximum of the cardinalities of all the M-resonant sets. It is noted that a maximum cardinality M-resonant set for some perfect matching M is not necessarily a maximum cardinality resonant set [11]. A perfect matching M is optimal with respect to the Clar problem if the maximum of the cardinalities of all the M-resonant sets is the Clar number.

The Clar problem can be solved in two stages [11]. We obtain a perfect matching M that is optimal with respect to the Clar problem and then obtain a maximum cardinality M-resonant set. It was shown [11] that a maximum cardinality M-resonant set can be obtained in polynomial time by a combinatorial algorithm. This paper provides optimality criteria for a perfect matching with respect to the
Clar problem. In order to present this optimality criteria, we need to introduce an optimization problem on 2-connected plane bipartite graphs with perfect matching that is closely related to the Clar problem. It is the minimum weight cut cover problem. This will be the subject of section 2 and the optimality criteria will be given in section 3. For graph theory terminology, the reader is referred to [14].

![Figure 1: Closed cut lines.](image)

2 The minimum weight cut cover problem

Let \(G^* \) be a plane dual of \(G \). Let \(C \) be a cycle of \(G^* \) and \(E_C \) be the set of edges of \(G \) intersected by \(C \). It can be easily seen that \(G - E_C \) has exactly two components. The cycle \(C \) is called a closed cut line of \(G \) if all the edges of \(E_C \) are incident with black vertices of one of the components of \(G - E_C \) and white vertices of the other one [6, 15]. Fig. 1 shows examples of closed cut lines of benzo[a]pyrene.

A closed cut line of \(G \) intersects a face of \(G \) if the vertex of \(G^* \) corresponding to the face is one of the vertices of the closed cut line. A cut cover [6] of \(G \) is a set of closed cut lines of \(G \) such that each inner face of \(G \) is intersected by a closed cut line in the set; it is perfect if each inner face is intersected by exactly one closed cut line. Fig. 2 shows both a perfect cut cover and a cut cover that is not perfect.

For every closed cut line \(C \) of \(G \), the number of matched edges of \(G \) intersected by \(C \) is independent of the perfect matching [6, 5, 9] and is called the weight of
The weight of a cut cover is the sum of the weights of its closed cut lines. A minimum weight cut cover is a cut cover whose weight is the minimum of the weights of all the cut covers.

Hansen and Zheng [6] showed that for a hexagonal system with perfect matchings, the maximum cardinality of a resonant set is at most the minimum weight of a cut cover and conjectured that equality holds. Abeledo and Atkinson [5, 9] proved the conjecture for 2-connected plane bipartite graphs with perfect matchings; that is,

Theorem 2.1 ([5, 9]). Let G be a 2-connected plane bipartite graph with perfect matchings. The maximum of the cardinalities of all the resonant sets of G is equal to the minimum of the weights of all the cut covers of G.

![Figure 2: Cut covers.](image)

3 The optimality criteria

Remark 3.1 ([5]). If a closed cut line of G, C say, intersects a face of G, then E_C contains exactly two edges of the boundary of that face. Moreover, if the boundary of that face is M-alternating, where M is a perfect matching of G, then exactly one of these two edges is matched.

Remark 3.2. Given a perfect matching of G and a cut cover C of G, the contribution of a matched edge e to the weight of C is the number of closed cut lines in C that intersect e. The sum of the contributions of all the matched edges is the weight of the cut cover C.

Lemma 3.3. Let G be a 2-connected plane bipartite graph with perfect matchings. Let C be a minimum weight cut cover of G. Let M be a perfect matching of G
that is optimal with respect to the Clar problem. For every maximum cardinality M-resonant set P of G, every matched edge not in the boundary of a face in P is not intersected by a closed cut line in C.

Proof. Let P be a maximum cardinality M-resonant set of G. Assume that a matched edge not in the boundary of a face in P is intersected by a closed cut line in C. It follows from Remarks 3.1 and 3.2 that the weight of C exceeds the cardinality of P. Since M is optimal with respect to the Clar problem, P is a maximum cardinality resonant set of G. Hence, the weight of a minimum weight cut cover of G exceeds the cardinality of a maximum cardinality resonant set of G, a contradiction to Theorem 2.1.

\[\square\]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{An application of Theorem 3.4.}
\end{figure}

Theorem 3.4. Let G be a 2-connected plane bipartite graph with perfect matchings. Let C be a minimum weight cut cover of G that is perfect. Let M be a perfect matching of G. The following statements are equivalent.

i. The perfect matching M is optimal with respect to the Clar problem.

ii. For every maximum cardinality M-resonant set P of G, every matched edge not in the boundary of a face in P is not intersected by a closed cut line in C.

iii. There exists a maximum cardinality M-resonant set P of G such that every matched edge not in the boundary of a face in P is not intersected by a closed cut line in C.

Proof. (i) implies (ii): This follows from Lemma 3.3. (ii) implies (iii): This is obvious. (iii) implies (i): Let P be a maximum M-resonant set of G such that every matched edge not in the boundary of a face in P is not intersected by a closed cut line in C. Since C is a perfect cut cover, it follows from Remarks 3.1 and 3.2 that the weight of C is equal to the cardinality of P. By Theorem 2.1, this implies that P is a maximum cardinality resonant set. Hence, the perfect matching M is optimal with respect to the Clar problem. \hfill \Box

Here it is further clarified how to use Theorem 3.4 to determine whether a given perfect matching is optimal with respect to the Clar problem. It should be emphasized that a minimum weight cut cover that is perfect, C say, should be available to apply Theorem 3.4. Given a perfect matching M, a maximum cardinality M-resonant set, P say, is constructed. If every matched edge not in the boundary of a face in P is not intersected by a closed cut line in C then the perfect matching is optimal with respect to the Clar problem, otherwise it is not. Figure 3 illustrates an application of Theorem 3.4.

![Phenanthrene: Clar number=2](image)

Figure 4: When Theorem 3.4 fails.

Remark 3.5. Theorem 3.4 fails if the condition that the minimum weight cut cover should be perfect is relaxed. Figure 4 shows a minimum weight cut cover that is not perfect, C say, a perfect matching, M say, and a maximum cardinality M-resonant set, P say. It is clear that every matched edges not in the boundary of a hexagon in P is not intersected by a closed cut line in C, yet the perfect matching M is not optimal with respect to the Clar problem.
Acknowledgment

A revised version of this paper was prepared during the author’s visit to the mathematics section of The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

References

