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Abstract

We present a simple method to calculate conformational entropy differences

between different polymer structures from a thermostated molecular dynam-

ics simulation. The mathematical concept is based on a special Monte Carlo

quadrature approach combined with density estimation. First, this approach

will be derived for a general integrant 𝑓 . Then, we will apply the entropy

estimator in order to investigate different protein resistant surfaces based on

derivates of polyethylenglycol peg. For peg, the highest entropy value is found,

which is an indicator for an optimal protein resistant function of peg. Such

a preference is also seen in thermostated molecular dynamics simulations of

larger chain lengths of peg.

1. Introduction

In this article, we will investigate entropy differences of molecular systems from a

computational statistical thermodynamics point of view. The basis for our consider-

ations is the canonical ensemble, i.e., we will analyze systems in which the number of

particles, the volume, and the temperature 𝑇 are kept constant. In a canonical ensem-

ble, different molecular states 𝑞 ∈ Ω are observed with different probability depending

on the potential energy 𝑉 (𝑞), 𝑉 : Ω→ ℝ. In this case, Ω is a high-dimensional state

space. The probability to observe a state 𝑞 is given by a probability density function,

𝑝 : Ω→ ℝ, with

𝑝(𝑞) =
exp(−𝛽𝑉 (𝑞))

∫
Ω
exp(−𝛽𝑉 (𝑞))𝑑𝑞

. (1)
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In this definition, 𝛽 = (𝑘𝑇 )−1 and 𝑘 is the Boltzmann constant. The entropy 𝑆 of a

molecular system is given by the differential entropy [1]:

𝑆 := −𝑘⟨ln ∘𝑝⟩ = −𝑘

∫

Ω

ln(𝑝(𝑞)) 𝑝(𝑞) 𝑑𝑞. (2)

An ordered system has a low entropy value, whereas, a disordered system has

a high entropy value. Monte Carlo quadrature methods are widely used for the

numerical approximation of integrals of the form

⟨ℎ⟩ =

∫

Ω

ℎ(𝑞) 𝑝(𝑞) 𝑑𝑞. (3)

These methods are useful because Ω is a high-dimensional space in general and deter-

ministic quadrature formulas suffer from the curse of dimensionality. Unfortunately,

standard Monte Carlo methods are not suitable for the computation of integrals like

(3) in statistical thermodynamics because most of the states 𝑞 ∈ Ω have a very low

probability density value 𝑝(𝑞). Additionally, the states with a significant 𝑝-value

which contribute to the integral (3) are not restricted to a certain subdomain of Ω,

they are “spread around” in Ω. Via very sophisticated molecular simulation methods

or special Markov chain Monte Carlo algorithms it is possible to compute a set of

states 𝑞1, . . . , 𝑞𝑁 ∈ Ω such that the states 𝑞𝑖 are distributed according to the prob-

ability density function 𝑝. In this situation, a quadrature problem of the form (3)

might be estimated by

⟨ℎ⟩ ≈
1

𝑁

𝑁∑

𝑖=1

ℎ(𝑞𝑖). (4)

The corresponding approach to the integral (2) would be given by

𝑆 ≈ −
𝑘

𝑁

𝑁∑

𝑖=1

ln (𝑝(𝑞𝑖)) . (5)

In (5), we have to compute the function ln(𝑝(𝑞𝑖)) for every sampling point 𝑞𝑖. This

is not possible if 𝑝 is only known except for a normalization constant (i.e. the de-

nominator in (1)). In the molecular context, this constant is not robustly available

by any Monte Carlo quadrature method known so far. Computing this constant is

equivalent to computing free energy differences [3]. Hence, we will present a different

approach to the computation of entropy differences based on a Boltzmann sampling

of the state space.
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2. Concept

The mathematical concept for the estimation of entropy differences is based on a

special Monte Carlo quadrature approach of an integrand 𝑓 : Ω→ ℝ. This approach

can be used if a sampling of states 𝑥𝑖 ∈ Ω, 𝑖 = 1, . . . , 𝑁 according to 𝑓 is available.

When speaking of “distribution of states according to a function 𝑓”, this is only

possible if 𝑓 is nonnegative. For general functions 𝑓 , the following transformation

can be used:

𝐼 =

∫

Ω

𝑓(𝑥) 𝑑𝑥 =
(∫

Ω

∣𝑓(�̄�)∣ 𝑑�̄�
)
⋅

∫

Ω

sign(𝑓(𝑥))
∣𝑓(𝑥)∣

∫
Ω
∣𝑓(�̄�)∣ 𝑑�̄�

𝑑𝑥. (6)

Equation (6) indicates that the new concept depends on some mathematical assump-

tions. In the following, 𝑓 is an absolutely integrable function and Ω is a compact

space with volume vol(Ω). The concept for the computation of integrals of non-

negative functions ∣𝑓 ∣ is based on the following idea: Although, the normalization

constant (this is the desired result) for a density function 𝑝 ∝ ∣𝑓 ∣ is unknown, we can

sample from this distribution via Markov chain Monte Carlo methods. The smaller

the normalization constant the denser the sampling will be – compared to the equal

distribution of states. The quantification of the “denseness” of the sampling can be

estimated by a ratio of two numbers. For a given state 𝑥 ∈ Ω, 𝑈1(𝑥) is the number

of states in an environment of 𝑥 determined for a given sampling of the equal distri-

bution, and 𝑈𝑓 (𝑥) is the analogue quantity for a 𝑝-distribution. This concept for the

computation of
∫
Ω
∣𝑓(�̄�)∣ 𝑑�̄� in (6) can be expressed mathematically:

vol(Ω) ∣𝑓(𝑥)∣
∫
Ω
∣𝑓(�̄�)∣ 𝑑�̄�

=

( ∫
Ω
𝑑�̄�

)
∣𝑓(𝑥)∣

∫
Ω
∣𝑓(�̄�)∣ 𝑑�̄�

=

∫
Ω
𝛿(𝑥, 𝑥)

∣𝑓(𝑥)∣
∫
Ω
∣𝑓(�̄�)∣ 𝑑�̄�

𝑑𝑥

∫
Ω
𝛿(𝑥, 𝑥)

1
∫
Ω
𝑑�̄�
𝑑𝑥

≈
𝑈𝑓(𝑥)

𝑈1(𝑥)
.

(7)

In (7), the function 𝛿(𝑥, 𝑥) is the Dirac delta function. Thus, the integrals in (7)

measure the density of states (equally distributed vs. ∣𝑓 ∣-distributed states) at a

certain representative 𝑥 ∈ Ω. The ratio of these local densities is estimated by a
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Figure 1: Sampling points (light dots) according to ∣𝑓 ∣-distribution for four different
integrands 𝑓1, . . . , 𝑓4 (from top left to bottom right). Representatives for the mean
value computation (dark crosses).

corresponding ratio 𝑈𝑓 (𝑥)/𝑈1(𝑥) for a discretized histogram. The more sampling

points are generated the more accurate is the histogram. By inserting (7) into (6),

we arrive at

𝐼 ≈ ∣𝑓(𝑥)∣ vol(Ω)
𝑈1(𝑥)

𝑈𝑓(𝑥)

1

𝑁

𝑁∑

𝑖=1

sign (𝑓(𝑥𝑖)) , (8)

where the mean value of the signum function in (6) is estimated by taking a mean of

this function over a finite set of ∣𝑓 ∣-distributed states 𝑥𝑖, 𝑖 = 1, . . . , 𝑁, in Ω, see (3) and

(4). In equation (8), the choice of the representative 𝑥 is free. In order to improve the

estimation of the integral, the mean over different representatives 𝑥𝑗 , 𝑗 = 1, . . . ,𝑀,

can be taken. Thus,

𝐼 ≈ vol(Ω)

(
1

𝑀

𝑀∑

𝑗=1

∣𝑓(𝑥𝑗)∣
𝑈1(𝑥𝑗)

𝑈𝑓 (𝑥𝑗)

) (
1

𝑁

𝑁∑

𝑖=1

sign(𝑓(𝑥𝑖))

)

. (9)

3. Numerical Tests

For an investigation of the quadrature method (9), we simulate different integrands

over a two-dimensional domain Ω = [−3, 3] × [−3, 3] with vol(Ω) = 36. Four differ-

ent integrands 𝑓1, . . . , 𝑓4 : Ω → ℝ are tested. The integrands vanish, 𝑓𝑖(𝑥, 𝑦) = 0,
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integrand exact integral method (9) standard MC
𝑓1 11 11.22 ± 0.45 11.01 ± 0.15
𝑓2 -4.29 -4.52 ± 0.45 -4.27 ± 0.15
𝑓3 55.92 57.86 ± 2.44 55.80 ± 1.18
𝑓4 -7.39 -7.79 ± 2.42 -7.51 ± 0.91

Table 1: The mean values and standard deviations evaluated for 100 Monte Carlo
computations of the integrands 𝑓1, . . . , 𝑓4.

for (𝑥, 𝑦) ∈ [−2.5, 2.5] × [−2.5, 2.5], whereas, for (𝑥, 𝑦) outside this box we define:

𝑓1(𝑥, 𝑦) = 1, 𝑓2(𝑥, 𝑦) = cos(𝑦), 𝑓3(𝑥, 𝑦) = 𝑥(𝑥 − 1), 𝑓4(𝑥, 𝑦) = 𝑥(𝑥 − 1) cos(𝑦). Using

a Markov chain Monte Carlo method, the four densities ∣𝑓𝑖∣ are sampled. A set of

𝑁 = 10000 sampling points is generated for every integrand, see Figure 1. Since

some of the densities have a disconnected support, we apply sampling methods with

jumps [4]. For the estimation of the integrals 𝐼1, . . . , 𝐼4, according to (9), we select

𝑀 = 20 representatives (crosses in Figure 1). However, four representatives are not

included in the calculation of the integrals of 𝑓3 and 𝑓4 because the corresponding

function values ∣𝑓𝑖∣, 𝑖 = 3, 4, are zero. In order to give one example: We estimate

the integral 𝐼2 of 𝑓2. The mean value of the signum function for the 10000 sampling

points is −0.5050. This is an estimation for the second factor in (6). The correct

value for this factor is −0.5176. For the representative 𝑥 = (2.75, 0) we counted 306

sampling points in an environment of 𝑥 (a 0.5 × 0.5-box). If we had sampled 10000

points according to the equal distribution in Ω, we would expect a number of 625/9

points in an 0.5× 0.5-box. Thus, according to (8), the integral 𝐼 is estimated as

𝐼2 ≈ ∣ cos(0)∣ ⋅ 36 ⋅
625

9 ⋅ 306
⋅ (−0.5050) = −4.125.

Computing the mean value for all 𝑀 = 20 representatives with this method, the

approximation is −4.23, the correct value is 𝐼2 = −4.29. We have applied (9) 100

times for each integrand with 𝑀 = 20 and 𝑁 = 10000 and compared this method

with standard Monte Carlo quadrature in the domain Ω, see Table 1. The results of

the new Monte Carlo approach is correct inside the interval of the standard deviation.

Obviously, method (9) has a lot of drawbacks, e.g., difficulties to sample exactly from

a distribution ∣𝑓 ∣ having a disconnected support. Additionally, the density-based

method has a worse standard deviation than the standard Monte Carlo quadrature for
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the above examples and there is a systematic discretization error. The discretization

of the local density estimation must be coarse enough to yield a statistically relevant

number of sampling points inside the environment 𝑈𝑓 . However, in some cases in

which standard Monte Carlo methods cannot be applied due to spasely occupied high

dimensional spaces, the new method may be advantageous if the function 𝑓 is almost

zero in the major part of its domain. For such functions 𝑓 , it may be advantageous

(or even mandatory) to generate sampling points only in the “important” parts of its

domain. The Boltzmann distribution in statistical thermodynamics is an example for

this class of functions and will be investigated in the next sections.

4. Estimation of Entropy Differences

For a Boltzmann distribution of states, the differential entropy (2) can be expressed

in terms of thermodynamic state functions, the inner energy 𝑈 and the free energy

𝐴. The entropy difference between two systems is given by

Δ𝑆 =
Δ𝑈 −Δ𝐴

𝑇
, (10)

where 𝑇 is the given temperature (in Kelvin) of the system. The probability for the

occurrence of a certain state 𝑞 ∈ Ω is given by the Boltzmann distribution w.r.t. the

canonical ensemble. Via Markov chain Monte Carlo simulation we can sample from

this distribution. If the system has a low entropy value (if it is very orderly) the

sampled conformations will probably look very similar. If the entropy value is high,

the Boltzmann distribution will be less focussed and the sampled conformations will

appear very dissimilar. The denseness of the sampling is a measure for the entropy

of the system. The denser the sampling, the lower the entropy value. In this section

we will formulate this intuition more precisely. The first part of equation (10) is

the computation of the inner energy difference Δ𝑈 . The inner energy of a system is

defined as the mean energy value with regard to the distribution of states. In our case,

it is the mean potential energy function 𝑉1 : Ω1 → ℝ and 𝑉2 : Ω2 → ℝ respectively,

i.e.,

Δ𝑈 =

∫

Ω2

𝑉2(𝑞)
exp(−𝛽𝑉2(𝑞))∫

Ω2

exp(−𝛽𝑉2(𝑞)) 𝑑𝑞
𝑑𝑞 −

∫

Ω1

𝑉1(𝑞)
exp(−𝛽𝑉1(𝑞))∫

Ω1

exp(−𝛽𝑉1(𝑞)) 𝑑𝑞
𝑑𝑞

= ⟨𝑉2⟩ − ⟨𝑉1⟩.

(11)
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The value of Δ𝑈 can be estimated by taking the mean potential energy value over a

sampling of position states 𝑞𝑖 according to the Boltzmann distribution. Again, this

is a Monte Carlo approach with ℎ = 𝑉 , see (3) and (4). The next step in (10) is the

computation of the free energy difference Δ𝐴. We now apply the new quadrature

method (8) for its estimation. The free energy 𝐴 is defined as logarithm of the

partition function, 𝐴 := −𝛽−1 ln(
∫
Ω
exp(−𝛽𝑉 (𝑞)) 𝑑𝑞). The integrand of the partition

function is the Boltzmann expression 𝑓(𝑞) = exp(−𝛽𝑉 (𝑞)). This function is positive,

i.e., the mean value computation of the signum function in (8) can be neglected.

Δ𝐴 = −𝛽−1 ln

(∫
Ω2

exp(−𝛽𝑉2(𝑞)) 𝑑𝑞
∫
Ω1

exp(−𝛽𝑉1(𝑞)) 𝑑𝑞

)

≈ −𝛽−1 ln

(
exp(−𝛽𝑉2(𝑞2)) vol(Ω2)

𝑈12(𝑞2)
𝑈𝑉 2(𝑞2)

exp(−𝛽𝑉1(𝑞1)) vol(Ω1)
𝑈11(𝑞1)
𝑈𝑉 1(𝑞1)

)

≈ −𝛽−1 ln

(
𝑈𝑉 1(𝑞1)

𝑈𝑉 2(𝑞2)

)

+ 𝑉2(𝑞2)− 𝑉1(𝑞1).

(12)

For the last step of equation (12), it is important that the two position spaces Ω1 and

Ω2 have a comparable structure. More precisely, the definition of an environment

𝑈11 in Ω1 and of 𝑈12 in Ω2 has to be comparable, i.e., the product of the volume

vol(Ω𝑖) of a position space (𝑖 = 1, 2) multiplied with the expected number of equally

distributed states that can be found inside the environments 𝑈1𝑖 should be equal for

Ω1 and Ω2. Together with the estimation of Δ𝑈 in (11) and the definition of Δ𝑆 in

(10), we arrive at

Δ𝑆 ≈
[⟨𝑉2⟩ − 𝑉2(𝑞2)]− [⟨𝑉1⟩ − 𝑉1(𝑞1)]

𝑇
+ 𝑘 ln

(
𝑈𝑉 1(𝑞1)

𝑈𝑉 2(𝑞2)

)

. (13)

In practise, the potential energy functions 𝑉1 and 𝑉2 can be modelled except for an

unknown additional constant 𝑐𝑖, 𝑖 = 1, 2. Fortunately, these constants cancel out in

(13). This is not true for Δ𝐴 in (12) or Δ𝑈 in (11). Free energy differences or in-

ner energy differences cannot be calculated with the available modelling of potential

energies if 𝑐1 and 𝑐2 are different and unknown constants. Note, that the Boltzmann

distribution of states, however, does not depend on additional constants of the po-

tential energy function. Entropy is a measure for the disorder of this distribution.

In equation (13), the choice of the representatives is free. If one selects two repre-

sentatives 𝑞1 and 𝑞2 having a mean potential energy value, i.e., 𝑉1(𝑞1) = ⟨𝑉1⟩ and

-325-



𝑉2(𝑞2) = ⟨𝑉2⟩ respectively, equation (13) is simplified to

Δ𝑆 ≈ 𝑘 ln

(
𝑈𝑉 1(𝑞1)

𝑈𝑉 2(𝑞2)

)

. (14)

Thermodynamical entropy is a mystical quantity for many people. One reason may be

that seemingly there are different definitions for the term “entropy”. But the common

insight that we gain from entropy is that a system does not like to be orderly. Equation

(14) clearly expresses this relation between entropy and the density of sampling points.

Equation (14) is valid if the representatives have a mean potential energy value and

the estimation of local densities are comparable for Ω1 and Ω2. The choice of the

representatives 𝑞1 and 𝑞2 in (12) is free. In equation (9), this fact has been used for

an estimation of the integral 𝐼 by taking a mean over different representatives. In the

case of Δ𝑆, the corresponding formula is

Δ𝑆 ≈
⟨𝑉2⟩ − ⟨𝑉1⟩

𝑇
+ 𝑘 ln

⎛

⎜
⎜
⎜
⎜
⎜
⎝

𝑀1

𝑀2∑

𝑗=1

exp(−𝛽𝑉2(𝑞
(2)
𝑗 ))

𝑈𝑉 2(𝑞
(2)
𝑗 )

𝑀2

𝑀1∑

𝑗=1

exp(−𝛽𝑉1(𝑞
(1)
𝑗 ))

𝑈𝑉 1(𝑞
(1)
𝑗 )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (15)

A further simplification can be done analogously to equation (14): For a special choice

of the representatives, i.e., representatives 𝑞
(1)
𝑗 , 𝑗 = 1, . . . ,𝑀1, and 𝑞

(2)
𝑗 , 𝑗 = 1, . . . ,𝑀2,

with a mean potential energy value 𝑉1(𝑞
(1)
𝑗 ) = ⟨𝑉1⟩ and 𝑉2(𝑞

(2)
𝑗 ) = ⟨𝑉2⟩ respectively

the estimation (15) can be simplified to

Δ𝑆 ≈ 𝑘 ln

(
𝑀1

∑𝑀2

𝑗=1[𝑈𝑉 2(𝑞
(2)
𝑗 )]

−1

𝑀2

∑𝑀1

𝑗=1[𝑈𝑉 1(𝑞
(1)
𝑗 )]

−1

)

. (16)

5. Entropy differences in practise

Due to the simplifications that have been done so far, we can only compare surface

polymers which are structurally very similar. We want to explain these simplifications

mathematically in order to get hints for the correct definition of environments 𝑈𝑉 1

and 𝑈𝑉 2 in equation (16). These environments must include a statistically relevant

number of sampling points. In this context, a projection 𝜋 : Ω → ℝ
𝑑 from the state

space Ω to a low-dimensional space ℝ
𝑑 is necessary. But how should this projection

look like? A major simplification has been done in equation (22), where we assumed
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that the definitions of environments in Ω1 and Ω2 are comparable. This can be

achieved by projecting the full-dimensional conformation space Ω to the cartesian

coordinates ℝ
𝑑 of a subset of (essential) atoms. In order to get a comparable definition

for 𝑈𝑉 1 and 𝑈𝑉 2, we take the same number of atoms in case of Ω1 and Ω2. A second

question is, how to measure distances in ℝ
𝑑? Since rotation and translation are not

essential for the structure and potential energy of the molecules, we can, e.g., compute

the root mean square distance RMSD between the representative and the sampling

points (RMSD only restricted to the selected set of atoms). The last question is,

how to select essential atoms? In equation (7), we replace the computation of the

ratio of densities at a certain representative 𝑥 by the computation of this ratio for

a histogram, i.e., (theoretically) for a decomposition of Ω into bins 𝐵1, . . . , 𝐵𝐿. The

correct computation of entropy (2) for such a decomposition of Ω would be

𝑆 = −𝑘

𝐿∑

𝑖=1

∫

𝐵𝑖

ln(𝑝(𝑞)) 𝑝(𝑞) 𝑑𝑞 =

𝐿∑

𝑖=1

𝑆𝑖, (17)

where 𝑆𝑖 = −𝑘
∫
𝐵𝑖

ln(𝑝(𝑞)) 𝑝(𝑞) 𝑑𝑞. A histogram-based (quantized) evaluation of en-

tropy reads

𝑆 ≈ −𝑘
𝐿∑

𝑖=1

𝑤𝑖 ln(𝑤𝑖), (18)

where 𝑤𝑖 =
∫
𝐵𝑖

𝑝(𝑞) 𝑑𝑞 is the statistical weight of bin 𝐵𝑖. Note, that a quantized

entropy (18) is always nonnegative, whereas a differential entropy (17) can have a

negative value. By the quantization we neglected that each bin 𝐵𝑖 has its own entropy

value 𝑆𝑖:

𝑆𝑖 = −𝑘

∫

𝐵𝑖

ln

(
𝑝(𝑞)

∫
𝐵𝑖

𝑝(𝑞) 𝑑𝑞

)
𝑝(𝑞)

∫
𝐵𝑖

𝑝(𝑞) 𝑑𝑞
𝑑𝑞

= −
𝑘

𝑤𝑖

∫

𝐵𝑖

𝑝(𝑞) [ln(𝑝(𝑞))− ln(𝑤𝑖)] 𝑑𝑞

= −
𝑘

𝑤𝑖

(∫

𝐵𝑖

𝑝(𝑞) ln(𝑝(𝑞)) 𝑑𝑞 − 𝑤𝑖 ln(𝑤𝑖)

)

=
1

𝑤𝑖

𝑆𝑖 + 𝑘 ln(𝑤𝑖).

(19)

Thus, the difference between the correct (17) and the histogram-based view (18) is

given by:

𝑆 −
(
− 𝑘

𝐿∑

𝑖=1

𝑤𝑖 ln(𝑤𝑖)
)
=

𝐿∑

𝑖=1

𝑤𝑖 𝑆𝑖. (20)
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We want to compute the entropy difference between two molecular systems, i.e., the

right hand side of (20) should be identical for the two systems. We can organize the

decomposition of Ω in such a way that the entropy 𝑆𝑖 is comparable for all subsets

𝐵𝑖. For the computation of entropy differences this means that the entropy value

𝑆𝑖 for the RMSD-environments of the representatives in (19) should be identical for

the two molecular systems. The selected atoms are quasi-fixed because we only take

a small RMSD-environment of the representative 𝑞 into account. In this case, we

assume a Gaussian normal distribution for neglected atoms. The selected atoms are

also quasi-fixed, if the projection 𝜋 preserves all structural relevant information of the

molecule (it only cancels out quasi-redundant degrees of freedom). The quality of the

projection method can be investigated. Analogously to the RMSD computation, we

can also eliminate rotational and translational degrees of freedom of the molecules for

a parameter estimation of the assumed normal distribution of the neglected degrees

of freedom (by applying an alignment algorithm). The entropy value of a multivariate

normal distribution with covariance matrix Σ in an 𝑛-dimensional space is given by

𝑆𝑖 = 𝑘 ln
(√
(2𝜋𝑒)𝑛∣Σ∣

)
, (21)

where ∣Σ∣ is the determinant of Σ. If this quantity 𝑆𝑖 is almost identical for the two

molecular systems, the systems are comparable via entropy estimation (16).

6. Numerical results

Now, we want to present a possible application of an entropy estimator. In statistical

thermodynamics, entropy can be related to other state functions like inner energy 𝑈

or free energy 𝐴. From (10) we gain

Δ𝐴 = Δ𝑈 − 𝑇Δ𝑆. (22)

The free energy difference Δ𝐴 = 𝐴2−𝐴1 between two systems in equation (22) deter-

mines the preferred direction of the reversible transition 1↔ 2. If Δ𝐴 > 0, system 1

is preferred, whereas system 2 is prefered if Δ𝐴 < 0. Consider the situation in Figure

2, a protein binds to polymer molecules which are immobilized on a surface [8]. Sys-

tem 1 is the “unbounded state”, system 2 the “bounded state”. Thus, Δ𝐴 is named
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Figure 2: Surface polymers and protein in an unbounded state (system 1) and in a
bounded state (system 2). The binding process reduces the entropy of the surface
polymers.
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Figure 3: Left: Differential entropy estimation for polyethylenglycol (“peg”) and its
derivates “hyd” and “met” with a chain length of six subunits (short). Right: Plot
for longer glycol chains with a chain length of nine subunits calculated again at a
temperature of 310K (long).

binding affinity in the following. We want to compare the binding affinities for differ-

ent polymer structures. For the sake of convenience, we will assume that the inner

energy differences Δ𝑈 of the binding processes are comparable for all polymer struc-

tures because the head groups (where the protein binds to) of the different polymers

are identical. Thus, the binding affinity varies due to an entropic effect. The binding

process induces an ordering of the surface polymers – entropy decreases. A decrease

of entropy Δ𝑆 = 𝑆2 − 𝑆1 < 0 promotes system 1. The stronger the ordering effect

the higher Δ𝐴. If Δ𝐴 ≫ 0, the protein does not prefer the binding to the surface,

i.e., the surface is protein resistant. Entropy differences between different immobi-

lized polymer structures can be used to find out which one may be suitable to build

up a protein resistant surface. In vacuum the arrangement of the polymer chains is
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governed by the free energy of the polymer system. Their entropy as well as intra-

and intermolecular hydrogen bonds will determine the arrangement of the polymer.

In water the structural formation depends on the free energy of the polymer-aqueous

system. Both subsystems, i.e. polymer chains and the surrounding water contribute

with an energetic and entropic part to the total free energy. In our test cases we can

assume that the inner energy differences Δ𝑈𝑤𝑎𝑡𝑒𝑟 and the entropy differences Δ𝑆𝑤𝑎𝑡𝑒𝑟

of the solvent are comparable for all three polymer systems because each one consists

of nearly the same number of water molecules and the corresponding volume 𝑉𝑤𝑎𝑡𝑒𝑟

stays constant. Especially this means that translational entropy changes of the sol-

vent can be neglected [7].

The aim is the determination of a surface polymer with maximal entropy value 𝑆1

among all possible similar surface polymers. For this purpose, we need a set of sam-

pling data according to Boltzmann distribution. A theoretically well founded and

practically well tested [5] method for the theoretical investigation of MD-simulations

is the program package GROMACS. It was used with the GROMOS96 force field

and the simple point charge water model [6] with rectangular periodic boxes with

a 0.7nm solute-wall minimum distance. In this subsection we are performing some

thermostated MD-simulations with this program package. The two panels in Figure

3 show the estimated entropy differences according to formula (16) (without Boltz-

mann constant 𝑘) between the polymer polyethylenglycol peg and its methylated

polymer met, and between the methylated met and hydroxylated polymer hyd. The

representative points were obtained by fixing an energy interval around the mean

potential energy value. The number of states in a certain RMSD-environment of the

representatives depends on the Å-size of this environment. The finally used param-

eters are summarized in Table 2. The selected atoms were defined by the common

peg-substructure of the molecules.

[kJ/mol] difference to mean energy [Å] RMSD difference to representative
1 0.22 0.17
2 0.22 0.22
3 0.25 0.22

Table 2: Parameters that were used for formula (16).
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The first results in Figure 3 refers to the three polymer structures with a length

of six subunits, which are shown in the left panel. The comparison of differential

entropy among these polymer structures reveals that peg has the highest flexibility.

The second result investigates the differential entropy of the same polymer structures

but with a longer chain length of nine subunits. The differential entropy is again

higher when going from polymer met via polymer hyd to structure peg. Again, this

qualitative picture shows the marginal increase of flexibility of hyd versus met to be

much less significant than comparing peg with met or peg with hyd. The experimental

observation is, that for short chain lengths peg is a good protein resistant substance,

whereas hyd forms a more resistant surface for longer chain lengths. Moreover in

further simulations it can be seen that the differential entropy fairly depends on

different temperatures, which has to be tested in experiments. Protein resistant

surfaces are just an example for the application of an entropy estimator. In general

molecular dynamics (MD) does not sample a sufficiently large part of conformational

space. For a better estimation of conformational entropy a meshless Hybrid Monte

Carlo (HMC) algorithm and a decomposition approach like ZIBgridfree [9, 10] will be

used in the future. Nevertheless, the new method according to formula (16) allows

to evaluate a comparative index of mobility i.e. flexibility in terms of differential

entropy.
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