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Abstract

Variable first and second Zagreb indices are defined by λM1(G) =
∑

vi∈V d2λ
i

and λM2(G) =
∑

vivj∈E dλ
i ·dλ

j , where di is the degree of the vertex vi and λ is any
real number. In this note, we obtain λM2(G) ≥ λM1(G) for all unicyclic graphs
and all λ ∈ [0, 1] .

1 Introduction.

For a molecular graph G = (V, E), the first Zagreb index M1(G) and the second Zagreb

index M2(G) are defined in [1-3] as

M1(G) =
∑
vi∈V

d2
i and M2(G) =

∑
vivj∈E

di · dj ,

where di denotes the degree of the vertex vi of G . Recently, it has been conjectured that

for each simple graph G = (V,E) with n = |V | vertices and m = |E| edges, it holds

M1(G)/n ≤ M2(G)/m. This conjecture has been disproved in general graphs and it has
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been proved for chemical graphs and trees in [5, 6]. These indices have been generalized

to variable first and second Zagreb indices [4] defined as

λM1(G) =
∑
vi∈V

d2λ
i and λM2(G) =

∑
vivj∈E

dλ
i · dλ

j .

The generalization of the above claim to the variable Zagreb indices have been analyzed

in [7] and [8]. Namely, it has been analyzed for which λ it holds

λM1(G)/n ≤ λM1(G)/m . (1)

The following results have been obtained in [7, 8, 9] .

(i) (1) is true for all graphs G and all λ ∈ [0, 1/2] ,

(ii) (1) is true for all chemical graphs and all λ ∈ [0, 1] ,

(iii) (1) is true for all trees and all λ ∈ [0, 1] .

(iv) (1) is not true for bicyclic graphs and λ = 1 .

Also, it has been proved that for every λ ∈ R\[0, 1] and every complete unbalanced

bipartite graphs G, it holds that λM1(G)/n > λM2(G)/m . In this paper, we will show

that λM1(G)/n ≤ λM2(G)/m holds for all unicyclic graphs and all λ ∈ [0, 1] .

2 Main result

Denoted by h(G) = λM2(G) − λM1(G). Now we are ready to give the following result

which is useful in Theorem 2.3.

Lemma 2.1. Let G be a connected graph of order n , possessing two adjacent vertices vi

and vj of degrees di ≥ 2 and dj ≥ 2 , respectively. Also let a vertex vk of degree one be

attached to a vertex vl of degree dl . Let the graph G∗ be obtained from G by adding edges

vivk and vkvj in G − vivj − vkvl . If λ ∈ [0, 1], then h(G) ≥ h(G∗) .
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Proof: Now we have

λM1(G
∗) − λM1(G) = 22λ + (dl − 1)2λ − d2λ

l − 1 (2)

and λM2(G
∗) − λM2(G) = 2λ(dλ

i + dλ
j ) − dλ

i · dλ
j − dλ

l − (dλ
l − (dl − 1)λ)

×
∑

vlr
:vlvlr

∈E

lr �=k

dlr
λ , (3)

where dlr is the degree of vertex vlr . From (2) and (3) we obtain

h(G) − h(G∗) = λM2(G) − λM2(G
∗) − λM1(G) + λM1(G

∗)

= 22λ + (dl − 1)2λ − d2λ
l − 1 − 2λ(dλ

i + dλ
j ) + dλ

i · dλ
j + dλ

l

+ (dλ
l − (dl − 1)λ)

∑
vlr

:vlvlr
∈E

lr �=k

dlr
λ

= (dλ
i − 2λ)(dλ

j − 2λ) + dλ
l + (dl − 1)2λ − d2λ

l − 1

+ (dλ
l − (dl − 1)λ)

∑
vlr

:vlvlr
∈E

lr �=k

dlr
λ . (4)

Since di, dj ≥ 2, we have that (dλ
i − 2λ)(dλ

j − 2λ) ≥ 0 . Therefore, it is sufficient to prove

that

dλ
l + (dl − 1)2λ − d2λ

l − 1 + (dλ
l − (dl − 1)λ)

∑
vlr

:vlvlr
∈E

lr �=k

dlr
λ ≥ 0 .

Since G is connected, ∑
vlr

:vlvlr
∈E

lr �=k

dlr
λ ≥ 2λ + dl − 2 . (5)

Hence, it is sufficient to prove that

(dλ
l − (dl − 1)λ)

( ∑
vlr

:vlvlr
∈E

lr �=k

dlr
λ + 1

)
+ (dl − 1)λ + (dl − 1)2λ − d2λ

l − 1

≥ (dλ
l − (dl − 1)λ)(dl + 2λ − 1) + (dl − 1)λ + (dl − 1)2λ − d2λ

l − 1 ≥ 0 . (6)

Consider the function

ϕ(x, λ) = (xλ − (x − 1)λ)(2λ + x − xλ − (x − 1)λ − 1) + (x − 1)λ − 1

= (xλ − (x − 1)λ)(2λ + x − xλ − (x − 1)λ − 2) + xλ − 1 for all x ≥ 2 . (7)
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Figure 1.

Using the mean value theorem, we get xλ − (x − 1)λ ≥ λxλ−1 . The following inequalities

are clear.

xλ ≤ x and (x − 1)λ ≤ x − 1 .

If we use above inequalities in (7), then we get

ϕ(x, λ) ≥ λxλ−1(2λ − x − 1) + xλ − 1 = ψ(x, λ), (say) .

Now we have

∂

∂x
ψ(x, λ) = λ(1 − λ)xλ−2(x + 1 − 2λ) ≥ 0 , for x ≥ 2 , λ ∈ [0, 1] .

Thus ψ(x, λ) is an increasing function for x ≥ 2 . The graph in Figure 1 shows that ψ(4, λ)

is nonnegative for all λ ∈ [0, 1] and hence ϕ(x, λ) ≥ 0 for all x ≥ 4. One can easily see

that ϕ(3, λ) = (3λ − 1)(1 + 2λ − 3λ) is a decreasing function in [0, 1] . Since ϕ(3, 0) = 1

and ϕ(3, 1) = 0 , we have ϕ(3, λ) ≥ 0 . Also we have ϕ(2, λ) = 0 .

Thus ϕ(x, λ) ≥ 0 for all x ≥ 2 and λ ∈ [0, 1] , that is, (6) is true and hence the lemma.

Corollary 2.2. Let C
′
n be a unicyclic graph of order n with cycle of length n − 1 . If

λ ∈ (0, 1] , then h(C
′
n) > h(Cn) .
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Proof: Let vk be a vertex of degree one is attached a vertex vl of degree three in C
′
n .

From (5), we get

∑
vlr

:vlvlr
∈E

lr �=k

dlr
λ = 2λ + 2λ > 2λ + 1 as λ ∈ (0, 1] .

Thus inequality in (5) is strict and hence h(C
′
n) > h(Cn) .

Theorem 2.3. Let G be a unicyclic graph of order n. Then, λM2 ≥ λM1 for all

λ ∈ [0, 1] . Moreover, if λ ∈ (0, 1] , then λM2 = λM1 holds if and only if G is isomorphic

to Cn , where Cn is a cycle with n vertices.

Proof: Let C be cycle in unicyclic graph G. Also let two adjacent vertices vi and vj be

in V (C) , where V (C) is the set of vertices in cycle C . The transformation G ⇒ G∗ ,

described in Lemma 2.1, either decreases the h-value or leaves it unchanged. If G∗
� Cn ,

then G∗ possess a vertex vk of degree one. Again we assume that two adjacent vertices vi

and vj are in cycle of G∗ . So one can apply the same transformation to G∗ . Repeating

the transformation with above construction sufficiently many times we ultimately arrive

at Cn . Thus

h(G) ≥ h(G∗) ≥ h(G∗∗) ≥ · · · ≥ h(Cn) = 0 . (8)

where Cn is a cycle with n vertices. Thus λM2(G) ≥ λM1(G) for all λ ∈ [0, 1] .

When G is isomorphic to Cn, h(G) = 0, that is, λM2(G) = λM1(G) . If λ ∈ (0, 1] and

G � Cn , then

h(G) ≥ h(G∗) ≥ h(G∗∗) ≥ · · · ≥ h(C
′
n) > h(Cn) = 0 , by Corollary 2.2,

where C
′
n is a unicyclic graph of order n with cycle of length n− 1 . Thus h(G) > 0 , that

is, λM2(G) > λM1(G) . Hence λM2(G) = λM1(G) holds if and only if G is isomorphic

to Cn .
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