Variable Zagreb Indices of \boldsymbol{K}_{r+1}-free Graphs

Damir Vukičević
Department of Mathematics, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia

(Received January 8, 2008)

Abstract

Recently, in the paper [1], it has been established that for every K_{r+1}-free graph G with $n=x r$ vertices, it holds $M_{1}(G) \leq M_{1}\left(T_{r+1}(n)\right)$ and $M_{2}(G) \leq M_{2}\left(T_{r+1}(n)\right)$, where $T_{r+1}(n)$ is Turan's graph, M_{1} is the first Zagreb index and M_{2} is the second Zagreb index. In Turán's theorem [2], it is stated that $m(G) \leq m\left(T_{r+1}(n)\right)$, where m is the number of edges of graph. This can be reformulated as ${ }^{1 / 2} M_{1}(G) \leq{ }^{1 / 2} M_{1}\left(T_{r+1}(n)\right)$, where ${ }^{1 / 2} M_{1}$ is the first variable Zagreb index for $\lambda=1 / 2$. In this paper, we analyze generalizations of these results, i.e. we study for which λ it holds ${ }^{\lambda} M_{1}(G) \leq^{\lambda} M_{1}\left(T_{r+1}(n)\right)$ and for which λ it holds ${ }^{\lambda} M_{2}(G) \leq{ }^{\lambda} M_{2}\left(T_{r+1}(n)\right)$.

1. Introduction

The first and second Zagreb indices are among the oldest and the most famous topological indices (see [3-6] and references within) and they are defined as:

$$
M_{1}=\sum_{i \in V} d_{i}^{2} \text { and } M_{2}=\sum_{(i, j) \in E} d_{i} d_{j}
$$

where V is the set of vertices, E is set of edges and d_{i} is degree of vertex i.
These indices have been generalized to variable first and second Zagreb indices [7] defined as

$$
M_{1}=\sum_{i \in V} d_{i}^{2 \lambda} \text { and } M_{2}=\sum_{(i, j) \in E}\left(d_{i} d_{j}\right)^{\lambda}
$$

Some recent studies of mathematical properties of variable Zagreb indices can be found in [810].

Turán's graph $T_{r+1}(n)$ is r-partite complete graph in which the sizes of any two classes of the partition can differ for at most 1 . We say that Turán's graph is completely balanced if all classes have the same size. In this case n is multiple of r, i.e. there is an integer x such that $n=r x$. Turán's theorem reads as:

Theorem A. If G is K_{r+1}-free graph with n vertices, then $m(G) \leq \frac{1}{2}\left(1-\frac{1}{r}\right) n^{2}$ and the equality holds if and only if G is completely balanced Turán's graph.

This theorem can be obviously reformulated as:
Theorem B. If G is K_{r+1}-free graph with n vertices, then $\sum_{v \in V(G)} d_{G}(v) \leq\left(1-\frac{1}{r}\right) n^{2}$ and the equality holds if and only if G is completely balanced Turán's graph.

In paper [1] it has been established that for every graph G with $n=x r$ vertices, it holds $M_{1}(G) \leq M_{1}\left(T_{r+1}(n)\right)$ and $M_{2}(G) \leq M_{2}\left(T_{r+1}(n)\right)$.

Obviously, completely balanced Turán's graph in both cases appears to be an extremal graph. In this paper, we propose the following questions:

1) For which λ it holds that ${ }^{\lambda} M_{1}(G) \leq^{\lambda} M_{1}\left(T_{r+1}(n)\right)$?
2) For which λ it holds that ${ }^{\lambda} M_{2}(G) \leq^{\lambda} M_{2}\left(T_{r+1}(n)\right)$?

Obviously, Theorem B gives affirmative answer to the first question for $\lambda=1 / 2$ and the paper [1] for $\lambda=1$. Also, paper [1] gives an affirmative answer for the second question in the case $\lambda=1$. Here we prove:

Theorem 1. Let $r \geq 2$. If G is K_{r+1}-free graph with $n=x r$ vertices, then ${ }^{\lambda} M_{1}(G) \leq{ }^{\lambda} M_{1}\left(T_{r+1}(n)\right)$ for all $\lambda \in[0,3 / 2]$. Moreover, this statement can not be extended to any $\lambda \in R \backslash[0,3 / 2]$ (for $\lambda<0$, it is assumed that G has no isolated points). More precisely, for each $\lambda \in R \backslash[0,3 / 2]$, there are $r \geq 2$ and G such that ${ }^{\lambda} M_{1}(G)>{ }^{\lambda} M_{1}\left(T_{r+1}(n)\right)$.

Theorem 2. Let $r \geq 2$. If G is K_{r+1}-free graph with $n=x r$ vertices, then ${ }^{\lambda} M_{2}(G) \leq{ }^{\lambda} M_{2}\left(T_{r+1}(n)\right)$ for all $\lambda \in[-1 / 2,1]$. Moreover, this statement can not be extended to any $\lambda \in\langle-\infty,-1 / 2\rangle \cup[5.4496,+\infty\rangle$ (for $\lambda<0$, it is assumed that G has no isolated points). More precisely, for each $\lambda \in\langle-\infty,-1 / 2\rangle \cup[5.4496,+\infty\rangle$, there are $r \geq 2$ and G such that ${ }^{\lambda} M_{2}(G)>{ }^{\lambda} M_{2}\left(T_{r+1}(n)\right)$.

It also holds:
Theorem 3. If G is K_{3}-free graph with $n=2 x$ vertices, then ${ }^{\lambda} M_{2}(G) \leq^{\lambda} M_{2}\left(T_{3}(n)\right)$ for all $\lambda \in[-1 / 2,+\infty]$. Moreover, this statement can not be extended to any $\lambda \in\langle-\infty,-1 / 2\rangle$ (it is assumed that G has no isolated points).

Theorem 4. Let $r \geq 2$. If G is r-partite graph with $n=x r$ vertices, then ${ }^{\lambda} M_{2}(G) \leq{ }^{\lambda} M_{2}\left(T_{r+1}(n)\right)$ for all $\lambda \in[-1 / 2,3]$.

2. Proof of the Theorem 1

In the proof of the auxiliary Lemma, we shall use Taylor's theorem:
Theorem C Let function $y=f(x)$ be continuous on $[a, a+h]$ and be continuously derivable $n-1$ times on $[a, a+h]$ and has n-th derivation on $\langle a, a+h\rangle$, then it holds:

$$
f(a+h)=f(a)+\frac{h}{1!} f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots+\frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a)+\frac{h^{n}}{n!} f^{(n)}(a+\phi h),
$$

Where ϕ is some number in the interval $\langle 0,1\rangle$.
Remark In the previous Theorem h can be positive or negative number.
Now, let us prove an auxiliary Lemma:
Lemma 1. For each $\mu>3$, there is a rational number $x \in\langle-0.1,0.1\rangle$ such that

$$
\left(\frac{1}{2}+x\right) \cdot\left(\frac{1}{2}-x\right)^{\mu}+\left(\frac{1}{2}-x\right) \cdot\left(\frac{1}{2}+x\right)^{\mu}>\left(\frac{1}{2}\right)^{\mu} .
$$

Proof: Suppose to the contrary that:

$$
\left(\frac{1}{2}+x\right) \cdot\left(\frac{1}{2}-x\right)^{\mu}+\left(\frac{1}{2}-x\right) \cdot\left(\frac{1}{2}+x\right)^{\mu} \leq\left(\frac{1}{2}\right)^{\mu} \text { for all } x \in\langle-0.1,0.1\rangle .
$$

Last inequality can be rewritten as:

$$
\begin{equation*}
\left(\frac{1}{4}-x^{2}\right)\left(\left(\frac{1}{2}+x\right)^{\mu-1}+\left(\frac{1}{2}-x\right)^{\mu-1}\right) \leq\left(\frac{1}{2}\right)^{\mu} \tag{1}
\end{equation*}
$$

Applying Taylor's theorem to the function $f(x)=\left(\frac{1}{2}+x\right)^{\mu-1}$, we get:

$$
\begin{align*}
& \left(\frac{1}{2}+x\right)^{\mu-1}=\left(\frac{1}{2}\right)^{\mu}+\frac{x}{1}(\mu-1)\left(\frac{1}{2}\right)^{\mu-2}+\frac{x^{2}}{2}(\mu-1)(\mu-2)\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3} \tag{2}\\
& \left(\frac{1}{2}-x\right)^{\mu-1}=\left(\frac{1}{2}\right)^{\mu}-\frac{x}{1}(\mu-1)\left(\frac{1}{2}\right)^{\mu-2}+\frac{x^{2}}{2}(\mu-1)(\mu-2)\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3} \tag{3}
\end{align*}
$$

Where $\phi_{1}, \phi_{2} \in\langle 0,1\rangle$. Putting (2) and (3) in (1), we get:

$$
\left(\frac{1}{4}-x^{2}\right)\left[2\left(\frac{1}{2}\right)^{\mu-1}+\frac{x^{2}}{2}(\mu-1)(\mu-2)\left(\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3}+\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3}\right)\right] \leq\left(\frac{1}{2}\right)^{\mu}
$$

Dividing both hand-sides of the last inequality by $\left(\frac{1}{2}\right)^{\mu}$, we get:

$$
\left(1-4 x^{2}\right)\left[1+\frac{\frac{x^{2}}{2}(\mu-1)(\mu-2)}{2\left(\frac{1}{2}\right)^{\mu-1}}\left(\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3}+\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3}\right] \leq 1\right.
$$

The last inequality can be reformulated as:

$$
\begin{aligned}
& -4+\frac{\frac{1}{2}(\mu-1)(\mu-2)}{2\left(\frac{1}{2}\right)^{\mu-1}}\left(\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3}+\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3}\right) \leq \\
& \leq 4 \frac{\frac{x^{2}}{2}(\mu-1)(\mu-2)}{2\left(\frac{1}{2}\right)^{\mu-1}}\left(\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3}+\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3}\right)
\end{aligned}
$$

Since, the last inequality holds for all $x \in\langle-0.1,0.1\rangle$, it holds when x on both hand sides tends to 0 , i.e.

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left[-4+\frac{\frac{1}{2}(\mu-1)(\mu-2)}{2\left(\frac{1}{2}\right)^{\mu-1}}\left(\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3}+\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3}\right)\right] \leq \\
& \leq \lim _{x \rightarrow 0}\left[4 \frac{\frac{x^{2}}{2}(\mu-1)(\mu-2)}{2\left(\frac{1}{2}\right)^{\mu-1}}\left(\left(\frac{1}{2}+\phi_{1} x\right)^{\mu-3}+\left(\frac{1}{2}-\phi_{2} x\right)^{\mu-3}\right)\right] .
\end{aligned}
$$

This is equivalent to:

$$
\begin{aligned}
& -4+\frac{\frac{1}{2}(\mu-1)(\mu-2)}{2\left(\frac{1}{2}\right)^{\mu-1}}\left(2\left(\frac{1}{2}\right)^{\mu-3}\right) \leq 0 \\
& -4+\frac{1}{2}(\mu-1)(\mu-2)\left(\frac{1}{2}\right)^{-2} \leq 0 \\
& \frac{1}{2}(\mu-1)(\mu-2) \leq 1
\end{aligned}
$$

Solving the last inequality, we get $\mu \in[0,3]$, which is contradiction.
Now, let us prove the theorem. First, we prove that claim holds for $\lambda \in\{0,1 / 2,1,3 / 2\}$. Note that ${ }^{0} M_{1}(G)=n$ for every graph with n vertices, hence the claim holds and for $\lambda=1 / 2$ and $\lambda=1$, the claim is proved in [2] and [1]. Let us prove it for $\lambda=3 / 2$. Denote by N_{u} the set of neighbors of vertex u and denote by $d_{v}^{(u)}$ degree of vertex $v \in N_{u}$ in graph $G\left[N_{u}\right]$ induced by the set of vertices in N_{u}. We have:

$$
\begin{align*}
& \sum_{u \in V} d_{u}^{3}=\sum_{u \in V} \sum_{v \in N_{u}} d_{v}^{2} \leq \sum_{u \in V} \sum_{v \in N_{u}}\left(n-d_{u}+d_{v}^{(u)}\right)^{2}= \\
& =\sum_{u \in V} \sum_{v \in N_{u}}\left(n-d_{u}\right)^{2}+2 \sum_{u \in V} \sum_{v \in N_{u}}\left(n-d_{u}\right) d_{v}^{(u)}+\sum_{u \in V} \sum_{v \in N_{u}}\left(d_{v}^{(u)}\right)^{2} \tag{4}\\
& =\sum_{u \in V}\left(n-d_{u}\right)^{2} \cdot d_{u}+2 \sum_{u \in V}\left(n-d_{u}\right)\left(\sum_{v \in N_{u}} d_{v}^{(u)}\right)+\sum_{u \in V}\left(\sum_{v \in N_{u}}\left(d_{v}^{(u)}\right)^{2}\right) .
\end{align*}
$$

Note that $G\left[N_{u}\right]$ is K_{r}-free graph, hence

$$
\begin{align*}
& \sum_{v \in N_{u}} d_{v}^{(u)}={ }^{1 / 2} M_{1}\left(G\left[N_{u}\right]\right) \leq\left(1-\frac{1}{r-1}\right) d_{u}{ }^{2} \tag{5}\\
& \sum_{v \in N_{u}}\left(d_{v}^{(u)}\right)^{2}={ }^{1} M_{1}\left(G\left[N_{u}\right]\right) \leq\left(1-\frac{1}{r-1}\right)^{2} d_{u}{ }^{3} . \tag{6}
\end{align*}
$$

Putting (5) and (6) in (4), we get:

$$
\sum_{u \in V} d_{u}{ }^{3} \leq \sum_{u \in V}\left(n-d_{u}\right)^{2} \cdot d_{u}+2 \sum_{u \in V}\left(n-d_{u}\right)\left(1-\frac{1}{r-1}\right) d_{u}{ }^{2}+\sum_{u \in V}\left(1-\frac{1}{r-1}\right)^{2} d_{u}{ }^{3} .
$$

Putting all summands that contain $\sum_{u \in V} d_{u}{ }^{3}$ on the left hand-side of the inequality and all other summands on the right-hand side of the inequality, we get:

$$
\left(2 \cdot \frac{r-2}{r-1}-\left(\frac{r-2}{r-1}\right)^{2}\right) \sum_{u \in V} d_{u}^{3} \leq n^{2} \sum_{u \in V} d_{u}+\left(-2 n+2 n \frac{r-2}{r-1}\right) \sum_{u \in V} d_{u}{ }^{2} .
$$

Since $\sum_{u \in V} d_{u} \leq\left(1-\frac{1}{r}\right) n^{2}$ and $\sum_{u \in V} d_{u}{ }^{2} \leq\left(1-\frac{1}{r}\right)^{2} n^{3}$, it follows that:

$$
\begin{aligned}
& \left(2 \cdot \frac{r-2}{r-1}-\left(\frac{r-2}{r-1}\right)^{2}\right) \sum_{u \in V} d_{u}{ }^{3} \leq n^{2} \cdot\left(1-\frac{1}{r}\right) n^{2}+\left(-2 n+2 n \frac{r-2}{r-1}\right)\left(1-\frac{1}{r}\right)^{2} n^{3} \\
& \sum_{u \in V} d_{u}{ }^{3} \leq \frac{n^{2} \cdot\left(1-\frac{1}{r}\right) n^{2}+\left(-2 n+2 n \frac{r-2}{r-1}\right)\left(1-\frac{1}{r}\right)^{2} n^{3}}{2 \cdot \frac{r-2}{r-1}-\left(\frac{r-2}{r-1}\right)^{2}} \\
& \sum_{u \in V} d_{u}{ }^{3} \leq\left(1-\frac{1}{r}\right)^{3} n^{4} \\
& { }^{3 / 2} M_{1}(G) \leq \leq^{3 / 2} M_{1}\left(T_{r+1}(n)\right) .
\end{aligned}
$$

Now, assume that $\lambda \in\langle 0,3 / 2\rangle \backslash\{1 / 2,1\}$. Let $x_{1}=\lfloor 2 \lambda\rfloor$ and $x_{2}=\lceil 2 \lambda\rceil$.

We have:

$$
\begin{equation*}
{ }^{\lambda} M_{1}(G)=\sum_{v \in V(G)} d_{v}^{2 \lambda}=\sum_{v \in V(G)} \sum_{i=1}^{d_{v}^{\lambda_{1}}} d_{v}^{2 \lambda-x_{1}} . \tag{7}
\end{equation*}
$$

Note that $x_{1} \in\{0,1,2\}$, hence $\sum_{v \in V(G)} d_{v}^{x_{1}} \leq\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}$. Therefore

$$
y=\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}-\sum_{v \in V(G)} d_{v}^{x_{1}}
$$

is non-negative integer. Hence, (7) can be rewritten as:

$$
{ }^{\lambda} M_{1}(G)=\sum_{v \in V(G)} \sum_{i=1}^{d^{n}-1} d_{v}^{2 \lambda-x_{1}}+\sum_{j=1}^{v} 0^{2 \lambda-x_{1}},
$$

where the last summand vanishes if $y=0$. Since, $0<2 \lambda-x_{1}<1$, the function $f(x)=x^{2 \lambda}$ is concave function and therefore:

$$
{ }^{\lambda} M_{1}(G) \leq\left[\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}\right] \cdot\left[\frac{\sum_{v \in V(G)} \sum_{i=1}^{d_{2}^{n}} d_{v}}{\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}}\right]^{2 \lambda-x_{1}}
$$

Or equivalently,

$$
{ }^{\lambda} M_{1}(G) \leq\left[\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}\right] \cdot\left[\frac{\sum_{v \in V(G)} d_{v}^{x_{2}}}{\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}}\right]^{2 \lambda-x_{1}}
$$

Since, $x_{2} \in\{1,2,3\}$, it follows that $\sum_{v \in V(G)} d_{v}^{x_{2}} \leq\left(1-\frac{1}{r}\right)^{x_{2}} \cdot n^{x_{2}+1}$, therefore:

$$
{ }^{\lambda} M_{1}(G) \leq\left[\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}\right] \cdot\left[\frac{\left(1-\frac{1}{r}\right)^{x_{2}} \cdot n^{x_{2}+1}}{\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}}\right]^{2 \lambda-x_{1}} .
$$

Note that $x_{2}=x_{1}+1$, hence:

$$
{ }^{\lambda} M_{1}(G) \leq\left[\left(1-\frac{1}{r}\right)^{x_{1}} \cdot n^{x_{1}+1}\right] \cdot\left[\left(1-\frac{1}{r}\right) \cdot n\right]^{2 \lambda-x_{1}}=\left(1-\frac{1}{r}\right)^{2 \lambda} \cdot n^{2 \lambda+1}={ }^{\lambda} M_{1}\left(T_{r+1}(n)\right) .
$$

This proves the claim for all $\lambda \in[0,3 / 2]$. Now, suppose that $\lambda<0$. The counter-example can be easily constructed even if we restrict our-selves to the connected graphs:

$$
{ }^{\lambda} M_{1}\left(T_{3}(6)\right)=6 \cdot 3^{2 \lambda}<6 \cdot 2^{2 \lambda}={ }^{\lambda} M_{1}\left(C_{6}\right) .
$$

Suppose that $\lambda>3 / 2$. From Lemma 1, it follows that there is a rational number $x \in\langle-0.1,0.1\rangle$ such that:

$$
\left(\frac{1}{2}+x\right) \cdot\left(\frac{1}{2}-x\right)^{2 \lambda}+\left(\frac{1}{2}-x\right) \cdot\left(\frac{1}{2}+x\right)^{2 \lambda}>\left(\frac{1}{2}\right)^{2 \lambda} .
$$

Note that the last relation also holds for $-x$, because of the symmetry. Hence, we may assume that x is positive. Therefore x can be written as $x=\frac{p}{q}$, where p and q are positive
integers. From $x \in\langle 0,0.1\rangle$, it follows that $q-2 p>0$. Let us observe graphs $K_{q+2 p, q-2 p}$ and $K_{q, q}=T_{3}(2 q)$. They are both K_{3}-free graphs with the same number of vertices, but

$$
\begin{aligned}
& { }^{\lambda} M_{1}\left(K_{q+2 p, q-2 p}\right)=(q+2 p)(q-2 p)^{2 \lambda}+(q-2 p)(q+2 p)^{2 \lambda} \\
& =(2 q)^{1+2 \lambda}\left[\left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right)^{2 \lambda}+\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)^{2 \lambda}\right]> \\
& >(2 q)^{1+2 \lambda}\left(\frac{1}{2}\right)^{2 \lambda}=2 q \cdot q^{\lambda}={ }^{\lambda} M_{1}\left(K_{q, q}\right) .
\end{aligned}
$$

This completes the proof of the Theorem 1.

3. Proof of the Theorem 2

First, suppose that $\lambda \in[-1 / 2,1]$, then:

$$
\begin{aligned}
& { }^{\lambda} M_{2}(G)=\sum_{u v \in E(G)}\left(d_{u} d_{v}\right)^{\lambda} \leq \frac{1}{2} \sum_{u v \in E(G)}\left(d_{u}{ }^{2 \lambda}+d_{v}^{2 \lambda}\right) \leq \\
& \leq \frac{1}{2} \sum_{v \in V(G)} d_{v}^{2 \lambda+1}=\frac{1}{2} \cdot \cdot^{(2 \lambda+1) / 2} M_{1}(G) \leq\{\text { from Theorem } 1\} \leq \frac{1}{2} \cdot{ }^{(2 \lambda+1) / 2} M_{1}\left(T_{r}(n)\right)= \\
& =\frac{1}{2} \sum_{v \in V\left(T_{r}(n)\right)} d_{v}{ }^{2 \lambda+1}=\frac{1}{2} \sum_{u v \in E\left(T_{r}(n)\right)}\left(d_{u}{ }^{2 \lambda}+d_{v}{ }^{2 \lambda}\right)=\sum_{u v \in E\left(T_{r}(n)\right)}\left(d_{u} d_{v}\right)^{\lambda}={ }^{\lambda} M_{2}\left(T_{r}(n)\right) .
\end{aligned}
$$

Let us prove that the claim can not be extended to $\lambda<-\frac{1}{2}$. Note that $C_{2 p}$ and $K_{p, p}$ are K_{3} free graphs with $2 n$ vertices. Hence it is sufficient to show that

$$
\lim _{p \rightarrow \infty} \frac{{ }^{2} M_{\lambda}\left(K_{p, p}\right)}{{ }^{2} M_{\lambda}\left(C_{p}\right)}=0
$$

We have:

$$
\lim _{p \rightarrow \infty} \frac{{ }^{2} M_{\lambda}\left(K_{p, p}\right)}{{ }^{2} M_{\lambda}\left(C_{p}\right)}=\lim _{p \rightarrow \infty} \frac{p^{2} \cdot p^{2 \lambda}}{p \cdot 4^{\lambda}}=\lim _{p \rightarrow \infty}\left(4^{-\lambda} p^{1+2 \lambda}\right)=0 .
$$

Now, suppose that $\lambda>5.4496$. It is sufficient to prove that

$$
\begin{aligned}
& { }^{\lambda} M_{2}\left(K_{1,1,4}\right)>{ }^{\lambda} M_{2}\left(K_{2,2,2}\right) \\
& 2 \cdot 4 \cdot 1 \cdot((1+1)(1+4))^{\lambda}+1 \cdot 1 \cdot((1+4)(1+4))^{\lambda}>3 \cdot 2 \cdot 2 \cdot((2+2) \cdot(2+2))^{\lambda} \\
& 8 \cdot\left(\frac{5}{8}\right)^{\lambda}+\left(\frac{25}{16}\right)^{\lambda}-12>0
\end{aligned}
$$

Putting $\lambda=5.4496$, one gets $0.000218502>0$, which is true, hence, it is sufficient to prove that function

$$
f(\lambda)=8 \cdot\left(\frac{5}{8}\right)^{\lambda}+\left(\frac{25}{16}\right)^{\lambda}-12
$$

is increasing when $\lambda \in[5.4496,+\infty\rangle$, i.e. that $f^{\prime}(\lambda)>0$ when $\lambda \in[5.4496,+\infty\rangle$. We have:

$$
\begin{aligned}
& f^{\prime}(\lambda)=-8 \cdot \ln \left(\frac{8}{5}\right) \cdot\left(\frac{8}{5}\right)^{\lambda}+\left(\frac{25}{16}\right)^{\lambda} \cdot \ln \left(\frac{25}{16}\right) \geq-8 \cdot \ln \left(\frac{8}{5}\right) \cdot\left(\frac{8}{5}\right)^{5} \cdot\left(\frac{8}{5}\right)^{\lambda-5}+\left(\frac{25}{16}\right)^{5}\left(\frac{8}{5}\right)^{\lambda-5} \cdot \ln \left(\frac{25}{16}\right)= \\
& =\left[-8 \cdot \ln \left(\frac{8}{5}\right) \cdot\left(\frac{8}{5}\right)^{5}+\left(\frac{25}{16}\right)^{5} \cdot \ln \left(\frac{25}{16}\right)\right] \cdot\left(\frac{8}{5}\right)^{\lambda-5}>3 \cdot\left(\frac{8}{5}\right)^{\lambda-5}>0
\end{aligned}
$$

This proves the claim of the Theorem.

4. Proof of the Theorem 3

From the proof of Theorem 2, it follows that it is sufficient to prove that

$$
{ }^{\lambda} M_{2}(G) \leq^{\lambda} M_{2}\left(T_{3}(n)\right) \text { for all } \lambda \in[1,+\infty] .
$$

Let $u v$ be any edge of G. Since $u v$ is not part of any triangle, it follows that $N_{u} \cap N_{v}=\varnothing$, hence $d_{u}+d_{v} \leq n$. Therefore contribution of an edge $u v$ can be at most $\left[d_{u}\left(n-d_{u}\right)\right]^{\lambda}$. Simple analytical method shows that this expressions is maximized for $d_{u}=\frac{n}{2}$. Form Turán's Theorem, it follows that G has at most $n^{2} / 4$ edges. Hence,

$$
{ }^{\lambda} M_{2}(G) \leq \frac{n^{2}}{4} \cdot\left[\frac{n}{2}\left(n-\frac{n}{2}\right)\right]^{\lambda}=\frac{n^{2}}{4} \cdot\left[\frac{n^{2}}{4}\right]^{\lambda}={ }^{\lambda} M_{2}\left(T_{3}(n)\right) .
$$

This proves the Theorem.

5. Proof of the Theorem 4

From Theorem 2, it follows that it is sufficient to prove that

$$
{ }^{\lambda} M_{2}(G) \leq{ }^{\lambda} M_{2}\left(T_{r+1}(n)\right) \text { for all } \lambda \in[1,3] .
$$

Denote cardinalities of classes of vertices in G by n_{1}, \ldots, n_{r}. It holds:

$$
\begin{aligned}
& { }^{\lambda} M_{2}(G) \leq^{\lambda} M_{2}\left(K_{n_{1}, \ldots, n_{r}}\right)=\sum_{1 \leq i<j \leq r} n_{i} n_{j}\left[\left(n-n_{i}\right)\left(n-n_{j}\right)\right]^{\lambda}= \\
& =\sum_{1 \leq i<j \leq r}\left[n_{i}\left(n-n_{i}\right)^{\lambda}\right]\left[n_{j}\left(n-n_{j}\right)^{\lambda}\right] \\
& =\frac{1}{2}\left[\sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{\lambda}\right]^{2}-\frac{1}{2} \sum_{i=1}^{r}\left[n_{i}\left(n-n_{i}\right)^{\lambda}\right]^{2} \\
& =\frac{1}{2}\left[\sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{\lambda}\right]^{2}-\frac{r}{2} \frac{\sum_{i=1}^{r}\left[n_{i}\left(n-n_{i}\right)^{\lambda}\right]^{2}}{r}
\end{aligned}
$$

Using the inequality between quadratic and aritmetic mean, it follows that:

$$
{ }^{\lambda} M_{2}(G) \leq \frac{1}{2}\left[\sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{\lambda}\right]^{2}-\frac{r}{2}\left(\frac{\sum_{i=1}^{r}\left[n_{i}\left(n-n_{i}\right)^{\lambda}\right]}{r}\right)^{2}=\frac{1}{2}\left(1-\frac{1}{r}\right)\left[\sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{\lambda}\right]^{2} .
$$

From Theorem 1, it follows that:

$$
{ }^{\lambda} M_{2}(G) \leq \frac{1}{2}\left(1-\frac{1}{r}\right)\left[n \cdot\left[\left(1-\frac{1}{r}\right) n\right]^{\lambda}\right]^{2}=\frac{1}{2}\left(1-\frac{1}{r}\right) n^{2} \cdot\left[\left(1-\frac{1}{r}\right) n\right]^{2 \lambda}={ }^{\lambda} M_{2}\left(T_{r+1}(n)\right) .
$$

This proves the Theorem.

6. Acknowledgment

Partial support of Ministry of Science, Education and Sport of the Republic of Croatia (grants no. 037-0000000-2779 and 177--0000000-0884) is gratefully acknowledged.

7. References

1. B. Zhou, MATCH Commun. Math. Comput. Chem. 57 (2007) 591-596.
2. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, MacMillan, London, 1976.
3. I. Gutman, K. C. Das, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
4. S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, Croat. Chem. Acta 76 (2003) 113124.
5. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
6. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton (1992).
7. A. Miličević, S. Nikolić, Croat. Chem. Acta 77 (2004) 97-101.
8. D. Vukičević, MATCH Commun. Math. Comput. Chem. 57 (2007) 633-641.
9. D. Vukičević, A. Graovac, MATCH Commun. Math. Comput. Chem. 60 (2008) 37-44.
10. B. Zhou, D. Vukičević, MATCH Commun. Math. Comput. Chem. 62 (2009) 189-196.
