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Abstract

The first Zagreb index M1(G) and the second Zagreb index M2(G) of
a (molecule) graph G are defined as M1(G) =

∑
u∈V (G)

(d(u))2 and M2(G) =∑
uv∈E(G)

d(u)d(v), where d(u) denotes the degree of a vertex u in G. The Au-

toGraphiX system [1] [4] [5] conjectured M1/n ≤ M2/m (where n = |V (G)|
and m = |E(G)|) for simple connected graphs. Hansen and Vukičević [11]
proved it is true for chemical graphs and it does not hold for all general
graphs. Vukičević and Graovac [22] proved that it is also true for trees.
Liu [15] proved that it is true for unicyclic graphs. In this paper, we show
that M1/n ≤ M2/m holds for connected bicyclic graphs except one class and
characterize the extremal graph. Additionally, we construct the counterex-
amples of connected bicyclic graphs from the the class we exclude.
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1 Introduction

For a molecular graph G, the first Zagreb index M1(G) and the second Zagreb
index M2(G) are defined in [10] as

M1(G) =
∑

u∈V (G)

(d(u))2, M2(G) =
∑

uv∈E(G)

d(u)d(v),

where d(u) denotes the degree of the vertex u of G. The research background of
Zagreb index together with its generalization appears in chemistry or mathematical
chemistry. The readers are referred to literatures [2] [8] [9] [13] [14] [19] [21] and
the references therein.

A natural issue is to compare the values of the Zagreb indices on the same
graph. Observe that, for general graphs, the order of magnitude of M1 is O(n3)
(n vertices and degrees in O(n), squared) while the order of magnitude of M2 is
O(n4) (m = O(n2) edges and degrees in O(n), squared). This suggests comparing
M1/n with M2/m instead of M1 and M2.

Use of the AutoGraphiX system [1] [4] [5] led to the following conjecture:

Conjecture 1.1 For all simple connected graphs G:

M1(G)/n ≤ M2(G)/m

and the bound is tight for complete graphs.

Hansen and Vukičević [11] proved it is true for chemical graphs and it does not
hold for all general graphs. Vukičević and Graovac [22] proved that it is also true
for trees. Liu [15] proved that it is true for unicyclic graphs. In this paper, we
show that it holds for connected bicyclic graphs except one class and characterize
the extremal graph. Additionally, we construct the counterexamples of connected
bicyclic graphs from the the class we exclude.

First we introduce some graph notations used in this paper. We only consider
finite, undirected and simple graphs. If xy ∈ E(G), we say that y is a neighbor of
x and denote by NG(x) the set of neighbors of x. Denote NG[x] = NG(x) ∪ {x}.
dG(x) = |NG(x)| is called the degree of x. A pendant vertex is a vertex with degree
one. A hook is the unique neighbor of a pendant vertex. We denote the set of
hooks of G by H(G).

A closed trail whose origin and internal vertices are distinct is a cycle. A cycle
of length k is called a k-cycle, denoted by Ck. A bipartite graph is one whose vertex
set can be partitioned into two subsets X and Y , so that each edge has one end
in X and one end in Y ; such a partition (X,Y ) is called bipartition of the graph.
A complete bipartite graph is a simple bipartite graph with bipartition (X, Y ) in
which each vertex of X is joined to each vertex of Y ; if |X| = m and |Y | = n, such
a graph is denoted by Km,n.

Suppose that V ′ is a nonempty subset of V (G). The subgraph of G whose
vertex is V ′ and whose edge set is the set of those edges of G that have both ends
in V ′ is called the subgraph of G induced by V ′ and is denoted by G[V ′].
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We denote the number of vertices of degree i in G by ni and the number of
edges that connect vertices of degree i and j by mij, where we do not distinguish
mij and mji.

2 Comparing the Zagreb indices for connected bicyclic graphs with-
out pendant vertices

If G is a connected bicyclic graph without pendant vertices, then G belongs
to one of the three cases in Fig. 1. It is clear that G is a chemical graph in any
case. Although Hansen and Vukičević [11] proved M1(G)/n ≤ M2(G)/m is true
for chemical graphs, to complete the proof of our main theorem, we give a simple
proof.
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Figure 1

We compute and compare the Zagreb indices in three cases:
Case (a) It is easy to have n2 = n − 1, n4 = 1, m22 = n + 1 − 4 = n − 3

and m24 = 4. Therefore, we have M1(G) = 4(n − 1) + 16 = 4n + 12 and M2(G) =
4(n − 3) + 32 = 4n + 20. Since n ≥ 5, we have M1(G)/n < M2(G)/m.

Case (b) It is easy to have n2 = n − 2 and n3 = 2. Therefore, we have
M1(G) = 4(n − 2) + 18 = 4n + 10.

Subcase 1 If m33 = 1, we have m22 = n − 4 and m23 = 4. Then M2(G) =
4(n − 4) + 24 + 9 = 4n + 17.

Subcase 2 Otherwise m33 = 0. We have m22 = n+1− 6 = n− 5 and m23 = 6.
Then M2(G) = 4(n − 5) + 36 = 4n + 16.

Since n ≥ 6, we have M1(G)/n < M2(G)/m in both subcases.

Case (c) Similar to case (b), we have M1(G) = 4n + 10, M2(G) = 4n + 17 if
m33 = 1 and M2(G) = 4n + 16 if m33 = 0.

If m33 = 1, since n ≥ 4, we have M1(G)/n < M2(G)/m.
If m33 = 0, since n ≥ 5, we have M1(G)/n ≤ M2(G)/m, with the equality holds

if and only if n = 5, i.e., G = K2,3.
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In summary, we have the following theorem:

Theorem 2.1 If G is a connected bicyclic graph without pendant vertices, then

M1(G)/n ≤ M2(G)/m,

with the equality holds if and only if G = K2,3.

3 Comparing the Zagreb indices for connected bicyclic graphs

Let G be a connected bicyclic graph with pendant vertices. For any vertex
u ∈ H(G), NG(u) = {v1, v2, . . . , vk} (k ≥ 2). Denote A = {G : dG(v1) = 2, dG(vi) =
1, i = 2, 3, . . . , k}

Lemma 3.1 If G /∈ A is a connected bicyclic graph with pendant vertices, then
there exists a subgraph F such that G−F is a connected bicyclic graph and G−F /∈
A.

Proof. If there exists a vertex u ∈ H(G) such that u is adjacent to at least two
pendant vertices, let v be a pendant vertex adjacent to u. We are easy to see that
G − v is a connected bicyclic graph and G − v /∈ A.

Now we may assume that each vertex in H(G) is adjacent to unique pendant
vertex.

If there exists a pendant vertex w such that G−w /∈ A, let F = w. Then G−F
is a connected bicyclic graph and G − F /∈ A.

Otherwise for each pendant vertex x, we have G− x ∈ A. Then G contains the
structure in Fig. 2, in which d(ui) = 2, i = 0, 2, 3, . . . , t, d(u1) = 3, d(ut+1) ≥ 3
(t ≥ 2) and d(vj) = 1, j = 0, 1. �

� �� � � �� � � � � ��
��

�
v0 u0 u1 u2 u3 ut−1

�� � ut ut+1

v1

ws

w1	



Figure 2

Let N(ut+1) = {ut, w1, w2, . . . , ws} (s ≥ 2), then we have d(wi) ≥ 2, i =
1, 2, . . . , s. Otherwise if there exists w1 such that d(w1) = 1, then w1 is the unique
pendant vertex adjacent to ut+1. If s ≥ 3, then G − w1 /∈ A, a contradiction. If
s = 2, since G is a connected bicyclic graph, all the neighbors of ws except ut+1

can’t be pendant vertices. Then G − w1 /∈ A, a contradiction.
Let F = G[{v0, v1, u0, u1, u2, . . . , ut−1}] (t ≥ 2). Then G − F is a connected

bicyclic graph and G − F /∈ A. �

Remark: From the proof of lemma 3.1, we are easy to see that F is either a
pendant vertex or a subgraph with at least four vertices.
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Theorem 3.2 If G /∈ A is a connected bicyclic graph with n vertices and m edges,
then

M1(G)/n ≤ M2(G)/m,

with the equality holds if and only if G = K2,3.

Proof. If G is a connected bicyclic graph without pendant vertices, by theorem
2.1, we have M1(G)/n ≤ M2(G)/m, with the equality holds if and only if G = K2,3.
So we may assume that G is a connected bicyclic graph with pendant vertices in
the following proof.

Since G is a connected bicyclic graph, we have m = n + 1. We prove by
induction on n. If n = 5, then G = G1 or G2 (see Fig.3) and we are easy to have
M1(G1)/n = 32

5
< M2(G1)/m = 42

6
and M1(G2)/n = 34

5
< M2(G2)/m = 44

6
. Thus

the result is true. �
�
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Figure 3

Suppose that it holds for all connected bicyclic graphs except A with vertices
less than n (having pendant vertices).

By Lemma 3.1, we have that there exists a subgraph F such that G − F is a
connected bicyclic graph and G − F /∈ A. We choose F such that |F | is as small
as possible. By the proof of Lemma 3.1, we have that F is either a pendant vertex
or a subgraph with at least four vertices. Thus we divide our proof into two cases:

Case 1. F is a pendant vertex.

Let v = F and u be its unique neighbor and NG(u) = {v, v1, v2, . . . , vk} (k ≥ 1).
Let G′ = G− v. Then G′ is a connected bicyclic graph with n− 1 vertices and

G′ /∈ A. By the induction hypothesis, we have

M1(G
′)

n − 1
≤ M2(G

′)
n

,

which implies M1(G
′) < M2(G

′).
Furthermore, we have

M1(G) = M1(G
′) + 2k + 2,

M2(G) = M2(G
′) +

k∑
i=1

dG(vi) + k + 1.

Since G is a connected bicyclic graph and G /∈ A, we have
k∑

i=1

dG(vi) ≥ k + 2.

So we divide our proof into two cases:
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Case 1.1
k∑

i=1

dG(vi) ≥ k + 3.

Then
k∑

i=1

dG(vi) + k + 1 ≥ 2k + 4. So we have

nM2(G) = n(M2(G
′) +

k∑
i=1

dG(vi) + k + 1)

≥ nM2(G
′) + n(2k + 4)

= (n − 1)M2(G
′) + M2(G

′) + 2kn + 2n + 2n

> nM1(G
′) + M1(G

′) + 2kn + 2n + (2k + 2)

= (n + 1)M1(G
′) + (2k + 2)(n + 1)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

Case 1.2
k∑

i=1

dG(vi) = k + 2.

Subcase 1 dG(vk) = 3 and dG(vi) = 1, i = 1, 2, . . . , k − 1.

(a) k ≥ 2.

Claim 1. M2(G
′) − M1(G

′) > k − 1.

Proof. Let N(vk) = {u,w1, w2}. Since G is a connected bicyclic graph, there
exists dG(w2) ≥ 2.

If dG(w2) ≥ 3 or dG(w1) ≥ 2, let G̃ = G′ −
k−1⋃
i=1

{vi}. Then G̃ is a connected

bicyclic graph and G̃ /∈ A. By the induction hypothesis, we have

M1(G̃)

n − k
≤ M2(G̃)

n − k + 1
,

which implies M1(G̃) < M2(G̃).
Furthermore, we have

M1(G
′) = M1(G̃) + k2 − 1 + k − 1,

M2(G
′) = M2(G̃) + 3(k − 1) + k(k − 1),

M2(G
′) − M1(G

′) > k − 1.

Otherwise dG(w1) = 1 and dG(w2) = 2. Let N(w2) = {vk, w3}. Since G is a
connected bicyclic graph, we have dG(w3) ≥ 2.
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If dG(w3) ≥ 3, let G1 = G′ −{w1, u}∪
k−1⋃
i=1

{vi}. Then G1 is a connected bicyclic

graph and G1 /∈ A. By the induction hypothesis, we have

M1(G1)

n − k − 2
≤ M2(G1)

n − k − 1
,

which implies M1(G1) < M2(G1).
Furthermore, we have

M1(G
′) = M1(G1) + k2 + k + 8,

M2(G
′) = M2(G1) + k2 + 2k + 7,

M2(G
′) − M1(G

′) > k − 1.

Otherwise dG(w3) = 2. We continue to consider the neighbor of w3 until we
find a path w2w3 · · ·ws such that dG(ws) ≥ 3 (s ≥ 4). Let G2 = G′ − {u,w1} ∪
k⋃

i=1

{vi} ∪
s−3⋃
j=2

{wj} (G2 = G′ − {u, w1} ∪
k⋃

i=1

{vi} if s = 4). Then G2 is a connected

bicyclic graph and G2 /∈ A. By the induction hypothesis, we have

M1(G2)

n − k − s + 1
≤ M2(G2)

n − k − s + 2
,

which implies M1(G2) < M2(G2).
Furthermore, we have

M1(G
′) = M1(G2) + k2 + k + 4s − 4,

M2(G
′) = M2(G2) + k2 + 2k + 4s − 5,

M2(G
′) − M1(G

′) > k − 1.

This completes the proof of claim 1. �

By claim 1, we have

nM2(G) = n(M2(G
′) +

k∑
i=1

dG(vi) + k + 1)

= nM2(G
′) + n(2k + 3)

= (n − 1)M2(G
′) + M2(G

′) + 2kn + 2n + n

> nM1(G
′) + M1(G

′) + k − 1 + 2kn + 2n + (k + 3)

= (n + 1)M1(G
′) + (2k + 2)(n + 1)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

(b) k = 1.
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Then from above, we have

M1(G) = M1(G
′) + 4, M2(G) = M2(G

′) + 5.

nM2(G) = n(M2(G
′) + 5)

= nM2(G
′) + 5n

= (n − 1)M2(G
′) + M2(G

′) + 5n

> nM1(G
′) + M1(G

′) + 5n

> (n + 1)M1(G
′) + 4(n + 1)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

Subcase 2 dG(vk) = dG(vk−1) = 2 and dG(vi) = 1, i = 1, 2, . . . , k − 2.

(a) k ≥ 3.

Claim 2. M2(G
′) − M1(G

′) > k − 2.

Proof. Let N(vk) = {u, w} and N(vk−1) = {u,w′}. Since G is a connected
bicyclic graph, without loss of generality, we may assume dG(w) ≥ 2.

If d(w′) ≥ 2, let G = G′ −
k−2⋃
i=1

{vi}. Then G is a connected bicyclic graph and

G /∈ A. By the induction hypothesis, we have

M1(G)

n − k + 1
≤ M2(G)

n − k + 2
,

which implies M1(G) < M2(G).
Furthermore, we have

M1(G
′) = M1(G) + k2 − 4 + k − 2,

M2(G
′) = M2(G) + 4(k − 2) + k(k − 2),

M2(G
′) − M1(G

′) > k − 2.

Otherwise dG(w′) = 1.

If dG(w) ≥ 3, let G3 = G′ − {w′} ∪
k−1⋃
i=1

{vi}. Then G3 is a connected bicyclic

graph and G3 /∈ A. By the induction hypothesis, we have

M1(G3)

n − k − 1
≤ M2(G3)

n − k
,

which implies M1(G3) < M2(G3).
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Furthermore, we have

M1(G
′) = M1(G3) + k2 + k + 2,

M2(G
′) = M2(G3) + k2 + 2k,

M2(G
′) − M1(G

′) > k − 2.

Otherwise dG(w) = 2. We continue to consider the neighbor of w until we find
a path w1(= w)w2 · · ·wp such that dG(wp) ≥ 3 (p ≥ 2). Let G4 = G′ − {u,w′} ∪
k⋃

i=1

{vi}∪
p−3⋃
j=1

{wj} (G4 = G′ −{u,w′}∪
k−1⋃
i=1

{vi} if p = 2, G4 = G′ −{u,w′}∪
k⋃

i=1

{vi}

if p = 3). Then G4 is a connected bicyclic graph and G4 /∈ A. By the induction
hypothesis, we have

M1(G4)

n − k − p
≤ M2(G4)

n − k − p + 1
,

which implies M1(G4) < M2(G4).
Furthermore, we have

M1(G
′) = M1(G4) + k2 + k + 4p − 2,

M2(G
′) = M2(G4) + k2 + 2k + 4p − 4,

M2(G
′) − M1(G

′) > k − 2.

This completes the proof of claim 2. �

By claim 2, we have

nM2(G) = n(M2(G
′) +

k∑
i=1

dG(vi) + k + 1)

= nM2(G
′) + n(2k + 3)

= (n − 1)M2(G
′) + M2(G

′) + 2kn + 2n + n

> nM1(G
′) + M1(G

′) + k − 2 + 2kn + 2n + (k + 4)

= (n + 1)M1(G
′) + (2k + 2)(n + 1)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

(b) k = 2.

Then from above, we have

M1(G) = M1(G
′) + 6, M2(G) = M2(G

′) + 7.
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nM2(G) = n(M2(G
′) + 7)

= nM2(G
′) + 7n

= (n − 1)M2(G
′) + M2(G

′) + 7n

> nM1(G
′) + M1(G

′) + 7n

> (n + 1)M1(G
′) + 6(n + 1)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

Case 2. F is a subgraph with at least four vertices.

Note that in this case, since we choose F such that |F | is as small as possible,
we have the following results:

(1) Each vertex in H(G) is adjacent to unique pendant vertex;
(2) For each pendant vertex x, G − x ∈ A.

By the proof of lemma 3.1, let F = G[{v0, v1, u0, u1, u2, . . . , ut−1}], in which
d(ui) = 2, i = 0, 2, 3, . . . , t, d(u1) = 3, d(ut+1) ≥ 3 (t ≥ 2) and d(vj) = 1, j = 0, 1.

Let Ĝ = G − F . By lemma 3.1, we have that Ĝ is a connected bicyclic graph
and Ĝ /∈ A. By induction hypothesis, we have

M1(Ĝ)

n − t − 2
≤ M2(Ĝ)

n − t − 1
,

which implies M1(Ĝ) < M2(Ĝ).

Furthermore, we have

M1(G) = M1(Ĝ) + 4t + 10,

M2(G) = M2(Ĝ) + dG(ut+1) + 4t + 9.

Case 2.1 dG(ut+1) ≥ 5.

Then we have

nM2(G) = n(M2(Ĝ) + dG(ut+1) + 4t + 9)

≥ nM2(Ĝ) + n(4t + 14)

= (n − t − 2)M2(Ĝ) + (t + 2)M2(Ĝ) + 4tn + 14n

> (n − t − 1)M1(Ĝ) + (t + 2)M1(Ĝ) + 4tn + 14n

= (n + 1)M1(Ĝ) + 4tn + 14n

> (n + 1)M1(Ĝ) + (n + 1)(4t + 10)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.
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Case 2.2 dG(ut+1) = 4.

Let N(ut+1) = {ut, w1, w2, w3}. By the proof of lemma 3.1, we have d(wi) ≥ 2,
i = 1, 2, 3.

Let G∗ = Ĝ − ut. Then G∗ is a connected bicyclic graph and G∗ /∈ A. By the
induction hypothesis, we have

M1(G
∗)

n − t − 3
≤ M2(G

∗)
n − t − 2

,

which implies M1(G
∗) < M2(G

∗).

Furthermore, we have

M1(Ĝ) = M1(G
∗) + 16 − 9 + 1,

M2(Ĝ) = M2(G
∗) +

3∑
i=1

dG(wi) + 4,

M2(Ĝ) − M1(Ĝ) = M2(G
∗) +

3∑
i=1

dG(wi) + 4 − [M1(G
∗) + 16 − 9 + 1]

≥ M2(G
∗) − M1(G

∗) + 10 − 8

> 2.

So we have

nM2(G) = n(M2(Ĝ) + 4t + 13)

= (n − t − 2)M2(Ĝ) + (t + 2)M2(Ĝ) + 4tn + 13n

> (n − t − 1)M1(Ĝ) + (t + 2)M1(Ĝ) + 2(t + 2) + 4tn + 13n

= (n + 1)M1(Ĝ) + 4tn + 13n + 2t + 4

> (n + 1)M1(Ĝ) + (n + 1)(4t + 10)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

Case 2.3 dG(ut+1) = 3.

Claim 3. M2(Ĝ) ≥ M1(Ĝ) + 2.

Let N(ut+1) = {ut, w1, w2}. By the proof of lemma 3.1, we have d(wi) ≥ 2,
i = 1, 2. Since G is a connected bicyclic graph, there exists z ∈ N(w2) such that
dG(z) ≥ 2.

If dG(w1) ≥ 3, let G0 = Ĝ − ut. Then G0 is a connected bicyclic graph and
G0 /∈ A. By the induction hypothesis, we have
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M1(G
0)

n − t − 3
≤ M2(G

0)

n − t − 2
,

which implies M1(G
0) < M2(G

0).
Furthermore, we have

M1(Ĝ) = M1(G
0) + 9 − 4 + 1,

M2(Ĝ) = M2(G
0) +

2∑
i=1

dG(wi) + 3,

M2(Ĝ) − M1(Ĝ) = M2(G
0) +

2∑
i=1

dG(wi) + 3 − [M1(G
0) + 9 − 4 + 1]

≥ M2(G
0) − M1(G

0) + 8 − 6

> 2.

Otherwise dG(w1) = 2. Let N(w1) = {ut+1, y}. Then we have dG(y) ≥ 2.
Otherwise if dG(y) = 1, then G − y /∈ A, a contradiction.

If dG(w2) ≥ 3, let G1 = Ĝ − ut. Then G1 is a connected bicyclic graph and
G1 /∈ A. By the induction hypothesis, we have

M1(G
1)

n − t − 3
≤ M2(G

1)

n − t − 2
,

which implies M1(G
1) < M2(G

1).

Furthermore, we have

M1(Ĝ) = M1(G
1) + 9 − 4 + 1,

M2(Ĝ) = M2(G
1) +

2∑
i=1

dG(wi) + 3,

M2(Ĝ) − M1(Ĝ) = M2(G
1) +

2∑
i=1

dG(wi) + 3 − [M1(G
1) + 9 − 4 + 1]

≥ M2(G
1) − M1(G

1) + 8 − 6

> 2.

Otherwise dG(w2) = 2 and N(w2) = {ut+1, z}, dG(z) ≥ 2. let G2 = Ĝ − ut.
Then G2 is a connected bicyclic graph and G2 /∈ A. By the induction hypothesis,
we have

M1(G
2)

n − t − 3
≤ M2(G

2)

n − t − 2
,
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which implies M1(G
2) < M2(G

2). Since M1(G
2) and M2(G

2) are integers, we have
M1(G

2) + 1 ≤ M2(G
2).

Furthermore, we have

M1(Ĝ) = M1(G
2) + 9 − 4 + 1,

M2(Ĝ) = M2(G
2) +

2∑
i=1

dG(wi) + 3,

M2(Ĝ) − M1(Ĝ) = M2(G
2) +

2∑
i=1

dG(wi) + 3 − [M1(G
2) + 9 − 4 + 1]

= M2(G
2) − M1(G

2) + 7 − 6

≥ 2.

This completes the proof of claim 3. �

By claim 3, we have

nM2(G) = n(M2(Ĝ) + 4t + 12)

= (n − t − 2)M2(Ĝ) + (t + 2)M2(Ĝ) + 4tn + 12n

≥ (n − t − 1)M1(Ĝ) + (t + 2)M1(Ĝ) + 2(t + 2) + 4tn + 12n

= (n + 1)M1(Ĝ) + 4tn + 12n + 2t + 4

> (n + 1)M1(Ĝ) + (n + 1)(4t + 10)

= (n + 1)M1(G),

which implies M1(G)/n < M2(G)/m.

This completes the proof of the theorem. �

4 The counterexamples of connected bicyclic

graphs for M1(G)/n ≤ M2(G)/m

In section 3, we exclude one class of connected bicyclic graphs for there exist
the counterexamples (see Fig.3).�

�
�

��
�

�
��

�
�

���
�

�
�

� ���
�

�
�

�
��

���
�

�
n − 7

G∗

Figure 3
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We may assume n(G∗) ≥ 18. Now we compute the Zagreb indices of G∗. We
have n1 = n− 7, n2 = 3, n3 = 3, nn−6 = 1, m23 = 5, m33 = 2, m1(n−6) = n− 7 and
m2(n−6) = 1. Therefore, we have M1(G) = n−7+12+27+(n−6)2 = n2−11n+68
and M2(G) = 30 + 18 + (n − 6)(n − 7) + 2(n − 6) = n2 − 11n + 78. Since n ≥ 18,
we have M1(G)/n > M2(G)/m.

Acknowledgement. The authors would like to thank anonymous referees for their
valuable comments.
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