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Abstract: This paper presents some new upper bounds for the first Zagreb index.

1 Introduction

In this paper, we only consider connected simple graphs and in the remainder of the text

by term graph we should imply connected simple graph. Let G = (V,E) be a graph with

|V | = n and |E| = m. Sometimes we refer to G as an (n,m) graph. The symbol uv

is used to denote an edge, whose endpoints are the vertices u and v. Let N(u) be the

first neighbor vertex set of u, then d(u) = |N(u)| is called the degree of u. Specially,

Δ = Δ(G) and δ = δ(G) are called the maximum and minimum degree of vertices of G,

respectively. As usual, Kn, K1,n−1 and Cn denote a complete graph, a star and a cycle of

order n, respectively.

Let A(G) be the adjacency matrix of G and D(G) = diag(d(v1), d(v2), ..., d(vn)) the

diagonal matrix of vertex degrees of G. The Laplacian matrix of G is L(G) = D(G)−A(G)

and the signless Laplacian matrix of G is Q(G) = D(G) + A(G). If B is a real symmetric
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matrix, it is well known that the eigenvalues of B are real numbers. Thus, we can use

ρ(B) to denote the greatest eigenvalue of B.

The Zagreb indices were first introduced by Gutman and Trinajstić [1], they are impor-

tant molecular descriptors and have been closely correlated with many chemical properties

[2]. Thus, they attract more and more attention from chemists and mathematicians [3−12].

The first Zagreb index M1 = M1(G) is defined as:

M1(G) =
∑
v∈V

d(v)2.

In this paper, we obtain some new sharp upper bounds for M1.

2 Some new upper bounds for M1

Up to now, some upper bounds for M1 in term of m, n, Δ and δ have been obtained:

Theorem A [3]: Let G be a connected (n,m) graph. Then

M1 ≤ m(m + 1), (1)

with equality attained, for example, by K1,n−1 and K3.

Theorem B [4]: Let G be a connected (n,m) graph. Then

M1 ≤ n(2m − n + 1), (2)

with equality holding if and only if G ∼= Kn or G ∼= K1,n−1.

Theorem C [5]: Let G be a connected (n,m) graph. Then

M1 ≤ m

(
2m

n − 1
+ n − 2

)
, (3)

with equality holding if and only if G ∼= Kn or G ∼= K1,n−1.

Theorem D [6]: Let G be a connected (n,m) graph. Then

M1 ≤ m

(
2m

n − 1
+

n − 2

n − 1
Δ + (Δ − δ)(1 − Δ

n − 1
)

)
, (4)

with equality holding if and only if G is a star graph or a regular graph.

Remark 1. It is easy to see that m( 2m
n−1

+ n−2
n−1

Δ + (Δ − δ)(1 − Δ
n−1

)) ≤ m( 2m
n−1

+ n − 2)

(for details see [6], p. 64). Thus, the bound (4) is always better than (3).

Remark 2. If G is a connected (n,m) graph, then m ≤ n(n−1)
2

. This implies that
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m( 2m
n−1

+ n− 2) = mn + 2m( m
n−1

− 1) ≤ mn + n(n− 1)( m
n−1

− 1) = n(2m− n + 1). Thus,

the bound (3) is usually finer than (2).

Remark 3. If m = n− 1, then the bound (2) is equal to (1). If m ≥ n, let us prove that

m(m+1) ≥ n(2m−n+1). We only need to prove that m2−2mn+m+n(n−1) ≥ 0. Let

f(x) = x2−2xn+x+n(n−1), where x ≥ n. When x ≥ n, since f ′(x) = 2x−2n+1 > 0,

then f(x) ≥ f(n) = 0. Thus, the bound (2) is usually lower than (1).

For the symmetric matrix, it is well known that

Lemma 2.1 [13] Suppose B = Bn×n is a symmetric nonnegative irreducible matrix with

row sums s1, s2, ..., sn, then

min
1≤i≤n

si ≤ ρ(B) ≤ max
1≤i≤n

si.

Moreover, one of the equalities holds if and only if the row sums of B are all equal.

Lemma 2.2 [14] (Rayleigh-Ritz Theorem) Suppose B = Bn×n is a symmetric matrix,

then

ρ(B) ≥ xT Bx

xT x
,

where x(�= 0) is a n-tuple column-vector. Moreover, if the equality holds, then x is an

eigenvector corresponding to ρ(B).

Lemma 2.3 [6] Let G be a connected graph and Duv = {d(u)+d(v) : uv ∈ E(G)}. Then

all Duv are equal if and only if G is a regular graph or a bipartite semiregular graph.

Let K(G) denote the adjacency matrix of the line graph of G, C = C(G) denote the

incidence matrix of G, it is readily to check that Q(G) = A(G) + D(G) = CCT and

CT C = K(G) + 2I (see [15],p23).

Theorem 2.1 Let G be a connected (n,m) graph. Then

M1 ≤ mρ(Q(G)), (5)

the equality holds if and only if G is a regular graph or a bipartite semiregular graph.

Proof. In the proof of this theorem, let F = CT C = K(G)+2I. Recall that Q(G) = CCT

and CT C share common non-zero eigenvalues, then ρ(Q(G)) = ρ(F ). Let x = (1, 1, ..., 1)T ,

namely, x is a m-tuple column-vector with every entry is 1. Lemma 2.2 implies that
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ρ(Q(G)) = ρ(F ) ≥ xT Fx

xT x
=

∑
uv∈E(d(u) + d(v))

m
=

∑
v∈V d(v)2

m
=

M1

m
,

thus the required inequality (5) follows.

If the equality holds, by Lemma 2.2, x = (1, 1, ..., 1)T is an eigenvector corresponding

to ρ(F ). Thus, d(u)+d(v) = ρ(F ) holds for all uv ∈ E(G). By Lemma 2.3, it follows that

G is a regular graph or a bipartite semiregular graph. Conversely, if G is a regular graph

or a bipartite semiregular graph, then d(u) + d(v) = k holds for any uv ∈ E by Lemma

2.3. Combining with Lemma 2.1, it follows that ρ(F ) = k. Thus, M1 =
∑

v∈V d(v)2 =∑
uv∈E(d(u) + d(v)) = mk = mρ(Q(G)), i.e., the equality holds.

In [17], Anderson and Morley proved that

Lemma 2.4 [17] ρ(Q) ≤ max{d(u) + d(v) : uv ∈ E}.

Note that if G is a triangle-free (n,m) graph, then d(u)+d(v) = |N(u)∪N(v)| ≤ n holds

for every uv ∈ E. Thus, Theorem 2.1 and Lemma 2.4 imply that

Corollary 2.1 [4] If G is a connected triangle-free (n,m) graph, then M1 ≤ mn.

Remark 4. By combining the results in [6,16], we have ρ(Q(G)) ≤ max{d(v) + m(v) :

v ∈ V } ≤ 2m
n−1

+ n−2
n−1

Δ + (Δ − δ)
(
1 − Δ

n−1

)
, where m(v) =

∑
u∈N(v)

d(u)/d(v). Thus, by

Theorem 2.1 it follows that

M1 ≤ mρ(Q(G)) ≤ m

[
2m

n − 1
+

n − 2

n − 1
Δ + (Δ − δ)

(
1 − Δ

n − 1

)]
.

Remarks 1-3 imply that the bound (5) is always finer than bounds (1)-(4).

Lemma 2.5 [18] Let G be a connected (n,m) graph. Then ρ(Q(G)) ≤ max{Δ + δ − 1 +

2m−δ(n−1)
Δ

, δ + 1 + 2m−δ(n−1)
2

}.

By Theorem 2.1 and Lemma 2.5, it follows that

Theorem 2.2 Let G be a connected (n,m) graph. Then

M1 ≤ max

{
m

(
Δ + δ − 1 +

2m − δ(n − 1)

Δ

)
, m

(
δ + 1 +

2m − δ(n − 1)

2

)}
(6)

equality can be obtained, for example, by a star or a regular graph of order n ≥ 3.
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Corollary 2.2 Let G be a connected (n,m) graph. If Δ ≥ 2m−δ(n−1)
2

, then

M1 ≤ m(Δ + δ + 1).

Remark 5. Let f(x) = x + δ − 1 + 2m−δ(n−1)
x

, where 2 ≤ x ≤ n − 1. Since f ′(x) =

1− 2m−δ(n−1)
x2 , thus f(x) = x+δ−1+ 2m−δ(n−1)

x
≤ max{n−2+ 2m

n−1
, δ+1+ 2m−δ(n−1)

2
} because

2 ≤ x ≤ n−1. When n ≥ 3, since max{m(n−2+ 2m
n−1

),m(δ+1+ 2m−δ(n−1)
2

)} ≤ m(m+1),

thus the bound (6) is better than (1) when n ≥ 3.

Let G
∗(m,n, 2m−(n−1)

2
, 1) be the classes of graphs with Δ ≥ 2m−(n−1)

2
, m ≥ n and δ = 1.

Next let us show that the bound (6) is better than bounds (2)-(4) in G
∗(m,n, 2m−(n−1)

2
, 1).

By Remarks 1-2, We only need to prove that the bound (6) is better than (4) in

G
∗(m,n, 2m−(n−1)

2
, 1). When Δ = n − 1, since δ = 1, it is clear that bound (6) is equal

to (4). Thus, we only need to show that 2m
n−1

+ n−2
n−1

Δ + (Δ − 1)(1 − Δ
n−1

) ≥ Δ + 2m−(n−1)
Δ

when n+1
2

≤ Δ ≤ n − 2. Next we shall prove that 2Δ − Δ2

n−1
+ 2m

n−1
− 1 ≥ Δ + 2 when

n+1
2

≤ Δ ≤ n − 2. Equivalently, we shall show that (Δ − 3)(n − 1) + 2m − Δ2 ≥ 0 when

n+1
2

≤ Δ ≤ n − 2. Once this is proved, we are done.

Let f(x) = (x− 3)(n− 1) + 2m− x2, where n+1
2

≤ x ≤ n− 2. When n+1
2

≤ x ≤ n− 2,

since f ′(x) = n− 1− 2x, then f ′(x) < 0. Thus, f(x) ≥ f(n− 2) = 2m + 1− 2n > 0. This

implies that (Δ − 3)(n − 1) + 2m − Δ2 > 0 holds when n+1
2

≤ Δ ≤ n − 2.

By combining the above arguments, we can conclude that

Remark 6. The bound (6) is better than bounds (2)-(4) in G
∗(m,n, 2m−(n−1)

2
, 1).

In the following, we shall give another new bound for M1 in term of m, n, Δ and δ.

The next famous inequality is needed:

Lemma 2.6 (Pólya-Szegő inequality) Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2

(k = 1, 2, ..., n). Then(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
≤ 1

4

(√
M1M2

m1m2

+

√
m1m2

M1M2

)2 ( n∑
k=1

akbk

)2

where the equality holds if and only if a1 = a2 = · · · = an, b1 = b2 = · · · = bn.

Theorem 2.3 Let G be a connected (n,m) graph. Then

M1 ≤
(Δ + δ)2

nΔδ
m2, (7)

equality holds if and only if G is regular.
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Proof. Let ai = d(vi) and bi = 1 for 1 ≤ i ≤ n, it is easy to see that 0 < δ ≤ ai ≤ Δ,

and 0 < 1 ≤ bi ≤ 1. By Lemma 2.6 it follows that

M1 ≤
1

4n

(√
Δ

δ
+

√
δ

Δ

)2

(2m)2 =
(Δ + δ)2

nΔδ
m2 .

Thus, inequality (7) follows.

If G is regular, it is easy to see that the equality holds. On converse, if the equality

holds, by Lemma 2.6 it follows that d(v1) = d(v2) = · · · = d(vn), then G is regular.

Corollary 2.3 Let G be a connected (n,m) graph. (1) If δ = 1, then M1 ≤ nm2

n−1
. The

equality holds if and only if G ∼= K2. (2) If δ ≥ 2, then M1 ≤ (n+1)2

2n(n−1)
m2. The equality

holds if and only if G ∼= C3.

Proof. Let f(x) = x + 1
x
. Obviously, f(x) is an increasing function for x ≥ 1.

(1) If δ = 1, note that (Δ+δ)2

Δδ
= Δ

δ
+ δ

Δ
+ 2 and 1 ≤ Δ

δ
= Δ ≤ n − 1, by Theorem 2.3

M1 ≤ nm2

n−1
. If G ∼= K2, it is readily to check that M1 = nm2

n−1
. On converse, if M1 = nm2

n−1
,

then n − 1 = Δ
δ

= 1 follows from Theorem 2.3, thus G ∼= K2.

(2) If δ ≥ 2, note that 1 ≤ Δ
δ
≤ n−1

2
, then Δ

δ
+ δ

Δ
+ 2 ≤ (n+1)2

2(n−1)
. If G ∼= C3, it is readily

to check that M1 = (n+1)2

2n(n−1)
m2. On converse, if M1 = (n+1)2

2n(n−1)
m2, then n−1

2
= Δ

δ
= 1 follows

from Theorem 2.3, thus G ∼= C3.

As shown in the next example, sometimes the bound (7) is better than (1), ..., (6).

Thus, (7) is significative as a new bound.

Example 2.1 Let H be the graph as shown in Fig. 1. The values of M1 and of the

bounds (1)-(7) for the graph H are also given in Fig. 1. Then for H, the bound (7) is

better than (1), ..., (6), respectively.
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Fig. 1.
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3 The application of the bound (6)

In this section, with the help of the bound (6), we shall determine the first three (resp.

four) largest M1 in the classes of connected unicyclic graphs (resp. trees).
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Fig. 2. The all connected unicyclic graphs with δ = 1 and Δ ≥ n − 2.
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Fig. 3. The all connected unicyclic graphs with δ = 1 and Δ = n − 3.

Let U(n) denote the classes of connected unicyclic graphs of order n. Let U1, U2, U3,

U4 be the unicyclic graphs as shown in Fig. 2.

Theorem 3.1 Let G ∈ U(n), if n ≥ 9 and G ∈ U(n) \ {U1, U2, U3, U4}, then M1(U1) >

M1(U2) > M1(U3) = M1(U4) > M1(G).

Proof. It is easy to see that M1(U1) = n2 −n + 6, M1(U2) = n2 − 3n + 14 and M1(U3) =

M1(U4) = n2 − 3n + 12. Next we shall prove that M1(G) < n2 − 3n + 12.

If δ ≥ 2, then G is a cycle. Thus, M1(G) = 4n < n2 − 3n + 12 follows.

If δ = 1 and Δ ≤ n − 4, by the bound (6) it follows that
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M1(G) ≤ max

{
n

(
n − 4 +

n + 1

n − 4

)
, n

(
2 +

n + 1

2

)}
< n2 − 3n + 12 .

If δ = 1 and Δ = n − 3, note that there are only twelve connected unicyclic graphs

with δ = 1 and Δ = n − 3 (see Fig. 3), it is easily to check that M1(G) < n2 − 3n + 12

also follows.

Since U1, U2, U3 and U4 are the all connected unicyclic graphs with δ = 1 and Δ ≥ n−2,

then the conclusion follows by combining the above discussion.
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Fig. 4. The all trees with n − 3 ≤ Δ ≤ n − 2.
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Fig. 5. The all trees with Δ = n − 4.

Let T(n) denote the classes of trees of order n. Let T2, T3, T4 and T5 be the trees as

shown in Fig. 4.

Theorem 3.2 Suppose that T1
∼= K1,n−1 and that T ∈ T(n). If n ≥ 9 and T ∈ T(n) \

{T1, T2, T3, T4, T5}, then M1(T1) > M1(T2) > M1(T3) > M1(T4) = M1(T5) > M1(T ).

Proof. It is easy to see that M1(T1) = n2−n, M1(T2) = n2−3n+6, M1(T3) = n2−5n+16

and M1(T4) = M1(T5) = n2 − 5n + 14. Next we shall prove that M1(T ) < n2 − 5n + 14.

If Δ ≤ n − 5, by the bound (6) it follows that

M1(T ) ≤ max

{
(n − 1)

(
n − 5 +

n − 1

n − 5

)
, (n − 1)

(
2 +

n − 1

2

)}
< n2 − 5n + 14 .
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If Δ = n − 4, note that there are only seven trees with Δ = n − 4 (see Fig. 5), it can

be easily checked that M1(T ) < n2 − 5n + 14 also follows.

Since T1, T2, T3, T4 and T5 are the all trees with Δ ≥ n−3, then the conclusion follows

by combining the above discussion.
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