On the Spectral Properties of Line Distance Matrices

Zhifu You and Bolian Liu *
School of Mathematics, South China Normal University, Guangzhou, 510631, P.R. China

(Received January 4, 2009)

Abstract

In [1], the authors showed that a line distance matrix of size $n>1$, associated with biological sequences, has one positive and $n-1$ negative eigenvalues. The energy $E(G)$ of a graph G is defined as the sum of the absolute values of the eigenvalues of G in [2]. Similarly, we obtain bounds on the energy of line distance matrix. The spread of the spectrum of line distance matrix is considered.

1 Introduction

Let $t=\left(t_{1}, t_{2}, \cdots, t_{n}\right), t_{1}<t_{2}<\cdots<t_{n}, t_{i} \in R$, be a given position vector. A line distance matrix, associated with t is defined as [1]

$$
D=\left(d_{i j}\right)_{n \times n}, \text { where } d_{i j}=\left|t_{i}-t_{j}\right|
$$

[^0]A DNA sequence consists of four nucleotides A, T, G, C. The distances between of A (or distances between T, G, or C) are represented in a vector t. Then a line distance matrix is associated with the vector t. Similarly, the line distance matrices associated with nucleotides T, G and C can be obtained. Then the given DNA sequence can be partly represented by the four line distance matrices. In [1], the authors reported:

Theorem A [1] Let $D \in \mathbb{R}^{n \times n}$ be a line distance matrix, associated with a vector t and let $D^{(i)}:=D(1: i, 1: i), i=1,2, \cdots, n$, be its principal submatrices. Let

$$
\lambda_{i}^{(i)} \leq \lambda_{i-1}^{(i)} \leq \cdots \leq \lambda_{2}^{(i)} \leq \lambda_{1}^{(i)}
$$

be the eigenvalues of the matrix $D^{(i)}$. Then $\lambda_{1}^{(i)}>0, \lambda_{2}^{(i)}<0$ for $i>1$ and $\lambda_{1}^{(1)}=0$.
Let G be a simple graph with n vertices. The adjacency matrix $A(G)$ of G is a square matrix of order n , where (i, j)-entry is equal to 1 if the vertices v_{i} and v_{j} are adjacent, and is equal to 0 otherwise. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of G are said to be the eigenvalues of the graph. The energy of G is defined as [2]

$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Some more recent results on energy and energy-like quantities have been obtained [3, 4, 5, 6].

Analogy to the graph energy, the line distance energy of $D^{(i)}$ is defined as

$$
E\left(D^{(i)}\right)=\sum_{j=1}^{i}\left|\lambda_{j}^{(i)}\right| .
$$

For an $n \times n$ complex matrix M, the spread, denoted by $s(M)$, is defined as the diameter of its spectrum, $s(M):=\max _{i, j}\left|\lambda_{i}-\lambda_{j}\right|$, where λ_{i}, λ_{j} are the two arbitrary eigenvalues and the maximum is taken over all pairs of eigenvalues of M. Then the spread of the line distance matrix $D^{(i)}$ is $s\left(D^{(i)}\right)=\lambda_{1}^{(i)}-\lambda_{i}^{(i)}$.

In the paper [1], G. Jaklic̆ et al. studied the eigenvalues of line distance matrices and reported that their spectrum consists of only one positive and $n-1$ negative eigenvalues. Recently, literature on the spread of arbitrary matrix and graphs has received much attention $[7,8,9]$.

In this paper, we obtain some bounds and properties of $E\left(D^{(i)}\right)$ and $s\left(D^{(i)}\right)$. We find that some properties of $s\left(D^{(i)}\right)$ are similar to the spread of graphs.

2 Bounds of $E\left(D^{(i)}\right)$

By using the similar ideas of Krattenthaler [10], the authors obtained:
Lemma 2.1. [10] Let $D^{(i)}, i=1,2, \cdots, n$, be the principal submatrices of D and $\operatorname{det} D^{(i)}$ the determinant of $D^{(i)}$. Then $\operatorname{det} D^{(i)}=(-1)^{i+1} 2^{i-2}\left(t_{i}-t_{1}\right) \prod_{j=1}^{i-1}\left(t_{j+1}-t_{j}\right)$.
Lemma 2.2. Let $\lambda_{1}^{(i)}$ be the largest eigenvalues of $D^{(i)}$. Then

$$
\begin{equation*}
\lambda_{1}^{(i)} \geq(i-1)^{\frac{i-1}{\tau}}\left[2^{i-2}\left(t_{i}-t_{1}\right) \prod_{j=1}^{i-1}\left(t_{j+1}-t_{j}\right)\right]^{\frac{1}{T}} . \tag{1}
\end{equation*}
$$

Proof. Note that trace $D^{(i)}=\sum_{j=1}^{i} \lambda_{j}^{(i)}=0$. Then $\lambda_{1}^{(i)}=-\lambda_{2}^{(i)}-\cdots-\lambda_{i}^{(i)}$.
By Theorem A, $\lambda_{1}^{(i)}>0$ and $0<-\lambda_{2}^{(i)} \leq \cdots \leq-\lambda_{i}^{(i)}$.
Using the arithmetic-geometric mean inequality,

$$
\begin{aligned}
\lambda_{1}^{(i)} & =-\lambda_{2}^{(i)}-\cdots-\lambda_{i}^{(i)} \\
& \geq(i-1)\left[\left(-\lambda_{2}^{(i)}\right) \cdots\left(-\lambda_{i}^{(i)}\right)\right]^{\frac{1}{i-1}} \\
& =(i-1)\left[(-1)^{(i-1)} \lambda_{2}^{(i)} \cdots \lambda_{i}^{(i)}\right]^{\frac{1}{i-1}} \\
& =(i-1)\left[(-1)^{(i-1)} \frac{\operatorname{det} D^{(i)}}{\lambda_{1}^{(i)}}\right]^{\frac{1}{i-1}} \\
& =(i-1)\left[\frac{\left|\operatorname{det} D^{(i)}\right|}{\lambda_{1}^{(i)}}\right]^{\frac{1}{i-1}} .
\end{aligned}
$$

Then $\left.\left.\left(\lambda_{1}^{(i)}\right)^{\frac{i}{i-1}} \geq(i-1) \right\rvert\, \operatorname{det} D^{(i)}\right)^{\frac{1}{i-1}}$.
By Lemma 2.1, the result follows.
Theorem 2.3. Let $t=\left(t_{1}, t_{2}, \cdots, t_{n}\right), t_{1}<t_{2}<\cdots<t_{n}, t_{i} \in R$, be a given position vector. Then $E\left(D^{(i)}\right)=2 \lambda_{1}^{(i)} \geq 2(i-1)^{\frac{i-1}{i}}\left[2^{i-2}\left(t_{i}-t_{1}\right) \prod_{j=1}^{i-1}\left(t_{j+1}-t_{j}\right)\right]^{\frac{1}{i}}$.
Proof. By Lemma 2.2 and equality (1),

$$
\begin{aligned}
E\left(D^{(i)}\right) & =\sum_{j=1}^{i}\left|\lambda_{j}^{(i)}\right|=\lambda_{1}^{(i)}-\lambda_{2}^{(i)}-\cdots-\lambda_{i}^{(i)}=2 \lambda_{1}^{(i)} \\
& \geq 2(i-1)^{\frac{i-1}{i}}\left[2^{i-2}\left(t_{i}-t_{1}\right) \prod_{j=1}^{i-1}\left(t_{j+1}-t_{j}\right)\right]^{\frac{1}{2}} .
\end{aligned}
$$

Cauchy's interlacing theorem [11], as the technique is used in [1], implies

$$
\lambda_{i-1}^{(i-1)} \leq \lambda_{i-1}^{(i)} \leq \cdots \leq \lambda_{2}^{(i-1)} \leq \lambda_{2}^{(i)} \leq \lambda_{1}^{(i-1)} \leq \lambda_{1}^{(i)}
$$

Corollary 2.4. Let $D^{(i)}$ and $D^{(j)}$ be two principal submatrices of D.

Then $E\left(D^{(i)}\right) \leq E\left(D^{(j)}\right)$ for $i \leq j$. Specially, D has the largest energy among the principal submatrices of D.
Proof. By Cauchy's interlacing theorem, $\lambda_{1}^{(i)} \leq \lambda_{1}^{(i+1)} \leq \cdots \leq \lambda_{1}^{(j)}$, for $i \leq j$.
Note that $E\left(D^{(i)}\right)=2 \lambda_{1}^{(i)}$. Then $E\left(D^{(i)}\right) \leq E\left(D^{(i+1)}\right) \leq \cdots \leq E\left(D^{(j)}\right)$.
The $(k, k)-$ entry of $\left[D^{(i)}\right]^{2}$ is equal to $\sum_{j=1}^{i} d_{k j} d_{j k}=\sum_{j=1}^{i}\left(d_{k j}\right)^{2}=\sum_{j=1}^{i}\left|t_{k}-t_{j}\right|^{2}$.
Then $\operatorname{trac}\left[D^{(i)}\right]^{2}=\sum_{k=1}^{i} \sum_{j=1}^{i}\left|t_{k}-t_{j}\right|^{2}=2 \sum_{1 \leq k<j \leq i}\left|t_{k}-t_{j}\right|^{2}:=M_{i}$.
Lemma 2.5. Let $\lambda_{1}^{(i)}$ be the largest eigenvalues of $D^{(i)}$. Then $\lambda_{1}^{(i)} \leq \sqrt{\frac{i-1}{i} M_{i}}$.
Proof. Note that $M_{i}=\operatorname{trac}\left[D^{(i)}\right]^{2}=\sum_{j=1}^{i}\left(\lambda_{j}^{(i)}\right)^{2}$.
Observe that x^{2} is a strictly convex function. Then
$\sum_{j=2}^{i} \frac{1}{i-1}\left(\lambda_{j}^{(i)}\right)^{2} \geq\left[\sum_{j=2}^{i} \frac{1}{i-1} \lambda_{j}^{(i)}\right]^{2}$
i.e.,
$\sum_{j=2}^{i}\left(\lambda_{j}^{(i)}\right)^{2} \geq \frac{1}{i-1}\left[\sum_{j=2}^{i} \lambda_{j}^{(i)}\right]^{2}$.
By equality (2), $M_{i}-\left(\lambda_{1}^{(i)}\right)^{2} \geq \frac{1}{i-1}\left[\sum_{j=2}^{i} \lambda_{j}^{(i)}\right]^{2}$

$$
=\frac{1}{i-1}\left(-\lambda_{1}^{(i)}\right)^{2}
$$

Thus $M_{i} \geq \frac{i}{i-1}\left(\lambda_{1}^{(i)}\right)^{2}$, i.e., $\lambda_{1}^{(i)} \leq \sqrt{\frac{i-1}{i} M_{i}}$.
By Theorem 2.3 and Lemma 2.5, we have
Theorem 2.6. Let $D^{(i)}$ be a principal submatrix of D. Then $E\left(D^{(i)}\right) \leq 2 \sqrt{\frac{i-1}{i} M_{i}}$.
Theorem 2.7. Let $D^{(i)}$ be a principal submatrix of D. Then $E\left(D^{(i)}\right) \geq \sqrt{M_{i}+i(i-1)\left(\operatorname{det} D^{(i)}\right)^{\frac{2}{i}}}$.
Proof. By the definition of $E\left(D^{(i)}\right)$, then

$$
\begin{align*}
{\left[E\left(D^{(i)}\right)\right]^{2}=\left(\sum_{j=1}^{i}\left|\lambda_{j}^{(i)}\right|\right)^{2}=} & \sum_{j=1}^{i}\left(\lambda_{j}^{(i)}\right)^{2}+2 \sum_{1 \leq k<l \leq i}\left|\lambda_{k}^{(i)} \| \lambda_{l}^{(i)}\right| \\
& =M_{i}+2 \sum_{1 \leq k<l \leq i}\left|\lambda_{k}^{(i)} \| \lambda_{l}^{(i)}\right| \\
& =M_{i}+\sum_{k \neq l}\left|\lambda_{k}^{(i)} \| \lambda_{l}^{(i)}\right| . \tag{3}
\end{align*}
$$

By the arithmetic-geometric mean inequality,

$$
\begin{aligned}
\sum_{k \neq l}\left|\lambda_{k}^{(i)}\right|\left|\lambda_{l}^{(i)}\right| & \geq i(i-1)\left(\prod_{k \neq l}\left|\lambda_{k}^{(i)}\right|\left|\lambda_{l}^{(i)}\right|\right)^{\frac{1}{2(i-1)}} \\
& =i(i-1)\left(\prod_{j=1}^{i}\left|\lambda_{j}^{(i)}\right|^{2(i-1)}\right)^{\frac{1}{2(i-1)}}=i(i-1) \prod_{j=1}^{i}\left|\lambda_{j}^{(i)}\right|^{\frac{2}{i}}=i(i-1)\left(\operatorname{det} D^{(i)}\right)^{\frac{2}{i}}
\end{aligned}
$$

By (3), then $\left[E\left(D^{(i)}\right)\right]^{2} \geq M_{i}+i(i-1)\left(\operatorname{det} D^{(i)}\right)^{\frac{2}{i}}$, i.e.,
$E\left(D^{(i)}\right) \geq \sqrt{M_{i}+i(i-1)\left(\operatorname{det} D^{(i)}\right)^{\frac{2}{i}}}$.

$3 \quad$ The spread of $D^{(i)}$

In [9], D.A. Gregory et al. proved:
Theorem B. If H is a induced subgraph of G, then $s(G) \geq s(H)$.
Similarly, we have
Theorem 3.1. Let $D^{(i)}$ and $D^{(j)}$ be two principal submatrices of $D=D^{(n)}$.
Then $s\left(D^{(i)}\right) \leq s\left(D^{(j)}\right)$ for $i \leq j$ and D has the largest spread among principal submatrices.
Proof. By Theorem A, note that $\lambda_{1}^{(i)}>0$ and $\lambda_{2}^{(i)}<0$ for any $i \geq 2$.
Cauchy's interlacing theorem implies
$\lambda_{i}^{(i)} \leq \lambda_{i-1}^{(i-1)} \leq \lambda_{i-1}^{(i)} \leq \cdots \leq \lambda_{2}^{(i-1)} \leq \lambda_{2}^{(i)} \leq \lambda_{1}^{(i-1)} \leq \lambda_{1}^{(i)}$.
Then $s\left(D^{(j)}\right)=\lambda_{1}^{(j)}-\lambda_{i}^{(j)} \geq \lambda_{1}^{(j-1)}-\lambda_{i}^{(j-1)} \geq \cdots \geq \lambda_{1}^{(i)}-\lambda_{i}^{(i)}=s\left(D^{(i)}\right)$.
Theorem 3.2. Let $D^{(i)}$ be a principal submatrix of $D=D^{(n)}$. Then $s\left(D^{(i)}\right) \leq \sqrt{2 M_{i}}$.
Proof. Note that $M_{i}-\left(\lambda_{1}^{(i)}\right)^{2}-\left(\lambda_{i}^{(i)}\right)^{2}=\sum_{j=2}^{i-1}\left(\lambda_{j}^{(i)}\right)^{2}$

$$
\begin{align*}
& \geq \frac{1}{i-2}\left(\sum_{j=2}^{i-1} \lambda_{j}^{(i)}\right)^{2} \\
& =\frac{1}{i-2}\left(\lambda_{1}^{(i)}+\lambda_{i}^{(i)}\right)^{2} . \tag{4}
\end{align*}
$$

By (4),
$(i-1)\left(\lambda_{i}^{i}\right)^{2}+2 \lambda_{1}^{(i)} \lambda_{i}^{(i)}+(i-1)\left(\lambda_{1}^{(i)}\right)^{2}-(i-2) M_{i} \leq 0$. The quadratic in $\lambda_{i}^{(i)}$ has one positive and one negative root, and it follows that $-\lambda_{i}^{(i)} \leq \frac{\lambda_{1}^{(i)}}{i-1}+\sqrt{\frac{i-2}{i-1} M_{i}-\frac{i^{2}-2 i}{(i-1)^{2}}\left(\lambda_{1}^{(i)}\right)^{2}}$.

Then $s\left(D^{(i)}\right)=\lambda_{1}^{(i)}-\lambda_{i}^{(i)} \leq \lambda_{1}^{(i)}+\frac{-\lambda_{1}^{(i)}}{i-1}+\sqrt{\frac{i-2}{i-1} M_{i}-\frac{i^{2}-2 i}{(i-1)^{2}}\left(\lambda_{1}^{(i)}\right)^{2}}$

$$
=\frac{i}{i-1} \lambda_{1}^{(i)}+\sqrt{\frac{i-2}{i-1} M_{i}-\frac{i^{2}-2 i}{(i-1)^{2}}\left(\lambda_{1}^{(i)}\right)^{2}} .
$$

Let $f(x)=\frac{i}{i-1} x+\sqrt{\frac{i-2}{i-1} M_{i}-\frac{i^{2}-2 i}{(i-1)^{2}} x^{2}}\left(\lambda_{1}^{(i)}=x>0\right)$.
Considering the first derivative,
$f^{\prime}(x)=\frac{i}{i-1}-\frac{i}{i-1} \sqrt{\frac{i-2}{i-1}} \frac{x}{\sqrt{M_{i}-\frac{i}{i-1} x^{2}}}=\frac{i}{i-1}-\frac{i}{i-1} \sqrt{\frac{i-2}{i-1}} \frac{1}{\sqrt{\frac{M_{i}}{x^{2}}-\frac{i}{i-1}}}$.
Let $f^{\prime}(x)=0$. Then $x=\sqrt{\frac{1}{2} M_{i}}$. By Lemma 2.5, $\lambda_{1}^{(i)} \leq \sqrt{\frac{i-1}{i} M_{i}}$.
In the interval $\left[\sqrt{\frac{1}{2} M_{i}}, \sqrt{\frac{i-1}{i} M_{i}}\right), f^{\prime}(x) \leq 0$ and $f(x)$ is a decreasing function on x.
Then $s\left(D^{(i)}\right) \leq f\left(\lambda_{1}^{(i)}\right) \leq f\left(\sqrt{\frac{1}{2} M_{i}}\right)=\sqrt{2 M_{i}}$.

Acknowledgement

The authors are very grateful to the referees for their valuable comments and suggestions, which have improved the presentation of the paper.

References

[1] G. Jaklič, T. Pisanski, M. Randić, On description of biological sequences by spectral properties of line distance matrices, MATCH Commun. Math. Comput. Chem. 58 (2007) 301-307.
[2] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz. 103 (1978) 1-22.
[3] G. Indulal, A. Vijayakumar, A note on energy of some graphs, MATCH Commun. Math. Comput. Chem. 59 (2008) 269-274.
[4] H. Liu, M. Lu, Sharp bounds on the spectral radius and the energy of graphs, MATCH Соттии. Math. Comput. Chem. 59 (2008) 279-290.
[5] V. Consonni, R. Todeschini, New spectral index for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.
[6] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 461-472.
[7] L. Mirsky, The spread of a matrix, Mathematika. 3 (1956) 127-130.
[8] C.R. Johnson, R. Kumar, H. Wolkowicz, Lower bounds for the spread of a matrix, Linear Algebra Appl. 71 (1985) 161-173.
[9] D.A. Gregory, D. Hershkowitz, S.J. Kirland, The spread of the spectrum of a graph Linear Algebra Appl. 332-334 (2001) 23-35.
[10] C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42 (1999) (The Andrews Festschrift).
[11] L.N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[^0]: *Corresponding author who is supported by NNSF of China (No.10771080) and SRFDP of China (No.20070574006). E-mail address: liubl@scnu.edu.cn.

