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Abstract

In [1], the authors showed that a line distance matrix of size n > 1, associated with

biological sequences, has one positive and n− 1 negative eigenvalues. The energy E(G)

of a graph G is defined as the sum of the absolute values of the eigenvalues of G in [2].

Similarly, we obtain bounds on the energy of line distance matrix. The spread of the

spectrum of line distance matrix is considered.

1 Introduction

Let t = (t1, t2, · · · , tn), t1 < t2 < · · · < tn, ti ∈ R, be a given position vector. A line

distance matrix, associated with t is defined as [1]

D = (dij)n×n, where dij = |ti − tj|.
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A DNA sequence consists of four nucleotides A, T, G, C. The distances between of

A (or distances between T, G, or C) are represented in a vector t. Then a line distance

matrix is associated with the vector t. Similarly, the line distance matrices associated

with nucleotides T, G and C can be obtained. Then the given DNA sequence can be

partly represented by the four line distance matrices. In [1], the authors reported:

Theorem A [1] Let D ∈ Rn×n be a line distance matrix, associated with a vector t and let

D(i) := D(1 : i, 1 : i), i = 1, 2, · · · ,n, be its principal submatrices. Let

λ(i)
i ≤ λ(i)

i−1 ≤ · · · ≤ λ(i)
2 ≤ λ(i)

1

be the eigenvalues of the matrix D(i). Then λ(i)
1 > 0, λ(i)

2 < 0 for i > 1 and λ(1)
1 = 0.

Let G be a simple graph with n vertices. The adjacency matrix A(G) of G is a square

matrix of order n, where (i, j)-entry is equal to 1 if the vertices vi and vj are adjacent, and

is equal to 0 otherwise. The eigenvalues λ1, λ2, . . ., λn of G are said to be the eigenvalues

of the graph. The energy of G is defined as [2]

E = E(G) =
n∑

i=1

|λi|.

Some more recent results on energy and energy-like quantities have been obtained

[3, 4, 5, 6].

Analogy to the graph energy, the line distance energy of D(i) is defined as

E(D(i)) =
i∑

j=1

|λ(i)
j |.

For an n × n complex matrix M, the spread, denoted by s(M), is defined as the

diameter of its spectrum, s(M) := maxi, j|λi − λ j|, where λi, λ j are the two arbitrary

eigenvalues and the maximum is taken over all pairs of eigenvalues of M. Then the

spread of the line distance matrix D(i) is s(D(i)) = λ(i)
1 − λ(i)

i .

In the paper [1], G. Jaklic̆ et al. studied the eigenvalues of line distance matrices and

reported that their spectrum consists of only one positive and n−1 negative eigenvalues.

Recently, literature on the spread of arbitrary matrix and graphs has received much

attention [7, 8, 9].

In this paper, we obtain some bounds and properties of E(D(i)) and s(D(i)). We find

that some properties of s(D(i)) are similar to the spread of graphs.
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2 Bounds of E(D(i))
By using the similar ideas of Krattenthaler [10], the authors obtained:

Lemma 2.1. [10] Let D(i), i = 1, 2, · · · ,n, be the principal submatrices of D and detD(i) the

determinant of D(i). Then detD(i) = (−1)i+12i−2(ti − t1)
i−1∏
j=1

(tj+1 − tj).

Lemma 2.2. Let λ(i)
1 be the largest eigenvalues of D(i). Then

λ(i)
1 ≥ (i − 1)

i−1
i

[
2i−2(ti − t1)

i−1∏
j=1

(tj+1 − tj)
] 1

i .

Proof. Note that traceD(i) =
∑i

j=1 λ
(i)
j = 0. Then λ(i)

1 = −λ(i)
2 − · · · − λ(i)

i . (1)

By Theorem A, λ(i)
1 > 0 and 0 < −λ(i)

2 ≤ · · · ≤ −λ(i)
i .

Using the arithmetic-geometric mean inequality,

λ(i)
1 = −λ(i)

2 − · · · − λ(i)
i

≥ (i − 1)
[
(−λ(i)

2 ) · · · (−λ(i)
i )
] 1

i−1

= (i − 1)
[
(−1)(i−1)λ(i)

2 · · ·λ(i)
i

] 1
i−1

= (i − 1)
[
(−1)(i−1) detD(i)

λ(i)
1

] 1
i−1

= (i − 1)
[ |detD(i)|
λ(i)

1

] 1
i−1
.

Then (λ(i)
1 )

i
i−1 ≥ (i − 1)|detD(i)| 1

i−1 .

By Lemma 2.1, the result follows.

Theorem 2.3. Let t = (t1, t2, · · · , tn), t1 < t2 < · · · < tn, ti ∈ R, be a given position vector.

Then E(D(i)) = 2λ(i)
1 ≥ 2(i − 1)

i−1
i

[
2i−2(ti − t1)

i−1∏
j=1

(tj+1 − tj)
] 1

i .

Proof. By Lemma 2.2 and equality (1),

E(D(i)) =
∑i

j=1 |λ(i)
j | = λ(i)

1 − λ(i)
2 − · · · − λ(i)

i = 2λ(i)
1

≥ 2(i − 1)
i−1

i

[
2i−2(ti − t1)

i−1∏
j=1

(tj+1 − tj)
] 1

i .

Cauchy’s interlacing theorem [11], as the technique is used in [1], implies

λ(i−1)
i−1 ≤ λ(i)

i−1 ≤ · · · ≤ λ(i−1)
2 ≤ λ(i)

2 ≤ λ(i−1)
1 ≤ λ(i)

1 .

Corollary 2.4. Let D(i) and D( j) be two principal submatrices of D.
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Then E(D(i)) ≤ E(D( j)) for i ≤ j. Specially, D has the largest energy among the principal

submatrices of D.

Proof. By Cauchy’s interlacing theorem, λ(i)
1 ≤ λ(i+1)

1 ≤ · · · ≤ λ( j)
1 , for i ≤ j.

Note that E(D(i)) = 2λ(i)
1 . Then E(D(i)) ≤ E(D(i+1)) ≤ · · · ≤ E(D( j)).

The (k, k)−entry of [D(i)]2 is equal to
i∑

j=1

dkjdjk =

i∑
j=1

(dkj)2 =

i∑
j=1

|tk − tj|2.

Then trac[D(i)]2 =

i∑
k=1

i∑
j=1

|tk − tj|2 = 2
∑

1≤k< j≤i

|tk − tj|2 :=Mi.

Lemma 2.5. Let λ(i)
1 be the largest eigenvalues of D(i). Then λ(i)

1 ≤
√

i−1
i Mi.

Proof. Note that Mi = trac[D(i)]2 =

i∑
j=1

(λ(i)
j )2. (2)

Observe that x2 is a strictly convex function. Then
i∑

j=2

1
i − 1

(λ(i)
j )2 ≥

[ i∑
j=2

1
i − 1
λ(i)

j

]2
i.e.,

i∑
j=2

(λ(i)
j )2 ≥ 1

i − 1

[ i∑
j=2

λ(i)
j

]2
.

By equality (2), Mi − (λ(i)
1 )2 ≥ 1

i − 1

[ i∑
j=2

λ(i)
j

]2
=

1
i − 1

(−λ(i)
1 )2.

Thus Mi ≥ i
i − 1

(λ(i)
1 )2, i.e., λ(i)

1 ≤
√

i−1
i Mi.

By Theorem 2.3 and Lemma 2.5, we have

Theorem 2.6. Let D(i) be a principal submatrix of D. Then E(D(i)) ≤ 2
√

i−1
i Mi .

Theorem 2.7. Let D(i) be a principal submatrix of D. Then E(D(i)) ≥
√

Mi + i(i − 1)(detD(i)) 2
i .

Proof. By the definition of E(D(i)), then[
E(D(i))

]2
=
( i∑

j=1

|λ(i)
j |
)2
=

i∑
j=1

(
λ(i)

j

)2
+ 2

∑
1≤k<l≤i

|λ(i)
k ||λ(i)

l |

=Mi + 2
∑

1≤k<l≤i

|λ(i)
k ||λ(i)

l |

=Mi +
∑
k�l

|λ(i)
k ||λ(i)

l |. (3)

By the arithmetic-geometric mean inequality,
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∑
k�l

|λ(i)
k ||λ(i)

l | ≥ i(i − 1)
(∏

k�l

|λ(i)
k ||λ(i)

l |
) 1

i(i−1)

= i(i − 1)
( i∏

j=1

|λ(i)
j |2(i−1)

) 1
i(i−1)

= i(i − 1)
i∏

j=1

|λ(i)
j |

2
i = i(i − 1)(detD(i))

2
i .

By (3), then
[
E(D(i))

]2 ≥Mi + i(i − 1)(detD(i))
2
i , i.e.,

E(D(i)) ≥
√

Mi + i(i − 1)(detD(i)) 2
i .

3 The spread of D(i)

In [9], D.A. Gregory et al. proved:

Theorem B. If H is a induced subgraph of G, then s(G) ≥ s(H).

Similarly, we have

Theorem 3.1. Let D(i) and D( j) be two principal submatrices of D = D(n).

Then s(D(i)) ≤ s(D( j)) for i ≤ j and D has the largest spread among principal submatrices.

Proof. By Theorem A, note that λ(i)
1 > 0 and λ(i)

2 < 0 for any i ≥ 2.

Cauchy’s interlacing theorem implies

λ(i)
i ≤ λ(i−1)

i−1 ≤ λ(i)
i−1 ≤ · · · ≤ λ(i−1)

2 ≤ λ(i)
2 ≤ λ(i−1)

1 ≤ λ(i)
1 .

Then s(D( j)) = λ( j)
1 − λ( j)

i ≥ λ( j−1)
1 − λ( j−1)

i ≥ · · · ≥ λ(i)
1 − λ(i)

i = s(D(i)).

Theorem 3.2. Let D(i) be a principal submatrix of D = D(n). Then s(D(i)) ≤ √2Mi.

Proof. Note that Mi − (λ(i)
1 )2 − (λ(i)

i )2 =
∑i−1

j=2(λ(i)
j )2

≥ 1
i − 2

(
i−1∑
j=2

λ(i)
j )2

=
1

i − 2
(λ(i)

1 + λ
(i)
i )2. (4)

By (4),

(i−1)(λi
i)

2+2λ(i)
1 λ

(i)
i + (i−1)(λ(i)

1 )2− (i−2)Mi ≤ 0. The quadratic in λ(i)
i has one positive

and one negative root, and it follows that −λ(i)
i ≤

λ(i)
1

i − 1
+

√
i − 2
i − 1

Mi − i2 − 2i
(i − 1)2 (λ(i)

1 )2.

Then s(D(i)) = λ(i)
1 − λ(i)

i ≤ λ(i)
1 +
−λ(i)

1

i − 1
+

√
i − 2
i − 1

Mi − i2 − 2i
(i − 1)2 (λ(i)

1 )2

=
i

i − 1
λ(i)

1 +

√
i − 2
i − 1

Mi − i2 − 2i
(i − 1)2 (λ(i)

1 )2.

- 677 -



Let f (x) =
i

i − 1
x +

√
i − 2
i − 1

Mi − i2 − 2i
(i − 1)2 x2 (λ(i)

1 = x > 0).

Considering the first derivative,

f ′(x) =
i

i − 1
− i

i − 1

√
i − 2
i − 1

x√
Mi − i

i−1x2
=

i
i − 1

− i
i − 1

√
i − 2
i − 1

1√
Mi
x2 − i

i−1

.

Let f ′(x) = 0. Then x =
√

1
2Mi. By Lemma 2.5, λ(i)

1 ≤
√

i−1
i Mi.

In the interval [
√

1
2Mi,

√
i−1

i Mi), f ′(x) ≤ 0 and f (x) is a decreasing function on x.

Then s(D(i)) ≤ f (λ(i)
1 ) ≤ f

(√
1
2Mi

)
=
√

2Mi.
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42 (1999) (The Andrews Festschrift).

[11] L.N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

- 679 -


