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Abstract. For any graph G, let σ(G) and Z(G) be the number of independent

sets (i.e., the Merrifield-Simmons index) and the number of matchings (i.e., the Hosoya

index) of G, respectively. It is well-known that two graph invariants σ(G) and Z(G) are

important ones in structural chemistry. In this paper, we first definite the “Six-membered

ring spiro chains” that can be considered as the graph representations of a subclass of

unbranched multispiro molecules, in which every ring is six-membered ring. Next, we

determine the six-membered spiro chains having extremal values of Merrifield-Simmons

index and Hosoya index.

1. Introduction and notations

Spiro compounds are an important subclass of Cycloalkynes in Organic Chemistry.

In Spiro compounds, a ‘spiro union’ is a linkage between two rings that consists of a

single atom common to both rings and ‘a free spiro union’ is a linkage that consists of

the only direct union between the rings. The common atom is designated as the ‘spiro

atom’. According to the number of spiro atoms present, compounds are distinguished as

monospiro, dispiro, trispiro, etc., ring systems. Figure 1 illustrates three linear polyspiro

alicyclic hydrocarbons.

In this paper, we consider a subclass of unbranched multispiro molecules, in which
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Figure 1:

every ring is six-membered ring, and the graph representations of them are called “six-

membered ring spiro chains”.

Definition 1: Two six-membered rings are have only one common vertex, this linkage

is called spiro union, the common vertex is designated as spiro vertex.

Definition 2: A six-membered ring spiro chains is a graph consisting of n six-

membered rings H1, H2, . . . , Hn with the properties that (i) For any 1 ≤ k < j ≤ n − 1,

Hk and Hj are linked by spiro union if and only if j=k+1; (ii) The spiro vertex should be

the vertex with degree four in the six-membered ring sprio chains.

We denote by Gn the set of the six-membered ring spiro chains with n six-membered

rings. Any element Gn of Gn can be obtained from an appropriately chosen graph Gn−1 ∈
Gn−1(n ≥ 2) by spiro union a six-membered ring to the terminal of Gn−1. There are three

non-isomorphic adding ways Gn−1 → [Gn−1]k=Gn, where k=1,2,3 (see Figure 2). we call

these three spiro union ways respectively: way-1, way-2, way-3.
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Figure 2:

In particular, if every six-membered ring in the six-membered ring spiro chains is
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added by the way-1, then denote by Rn; if every six-membered ring in the six-membered

ring spiro chains is added by the way-2, then denote by Sn; if every six-membered ring in

the six-membered ring spiro chains is added by the way-3, then denote by Ln. It is easy

to see that G1 = {L1 = S1 = R1}, G2 = {L2 = S2 = R2}, G3 = {L3, S3, R3}. Figure 3

illustrates Rn, Sn and Ln, respectively.
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Let G = (V, E) be a graph with the vertex set V (G) and the edge set E(G). Let e and

v be an edge and a vertex in G, respectively. We will denote by G− e the graph obtained

form G by removing edge e, and by G− v the graph obtained from G by removing vertex

v ( and all its incident edges ). Let S be a subset of V (G). We denote by G−S the graph

obtained from G by removing all the vertices of S. Two vertices of a graph G are said to

be independent if they are not adjacent. A subset I of V (G) is called an independent set

of G if any two vertices of I are independent in G. Two edges of a graph G are said to

be independent if they are not incident. A subset M of E(G) is called a matching of G

if any two edges of M are independent in G. Undefined concepts and notations of graph

theory are referred to [1].

For any graph G, we denote by σ(G) and Z(G) the numbers of independent sets and

the numbers of matchings of G, respectively. It is well-known that two graph invariants

σ(G) and Z(G) are important ones in structural chemistry [2, 3].

In the chemical graph theory, σ(G) is called the Merrifield-Simmons index that was

introduced by Merrifield and Simmons [2] in 1989. Details of chemical applications can

be found in [3,4,5].

In the chemical graph theory, Z(G) is called the Hosoya index that was introduced

by Hosoya in 1971. This index was connected with various physico-chemical properties of

alkanes, for example, boiling point, entropy and heat of vaporization. About the Hosoya

index, there is an example showing the high correlation between the Hosoya index and

the boiling points of acyclic alkanes in [6]. Details of chemical applications can be found

in [4,7,8].

There have been numerous other new results on the Merrifield Simmons and Hosoya
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indices referred to [9-15].

2. Main results

In this paper, we show that the Rn and Sn attain the extremal graphs with extremal

the Merrifield-Simmons index and the Hosoya index, respectively.

Theorem 2.1 For any n ≥ 1 and any Gn ∈ Gn, we have

(1) σ(Rn) ≤ σ(Gn), the equality hold if and only if Gn = Rn.

(2) σ(Gn) ≤ σ(Sn), the equality hold if and only if Gn = Sn.

Theorem 2.2 For any n ≥ 1 and any Gn ∈ Gn, we have

(3) Z(Sn) ≤ Z(Gn), the equality hold if and only if Gn = Sn.

(4) Z(Gn) ≤ Z(Rn), the equality hold if and only if Gn = Rn.

3. Proof of theorem 2.1

To complete the proof, we first list some useful results . Let G be a graph, u ∈ V (G),

denote by NG[u] the set {u}⋃{v|uv ∈ E(G)}.
Lemma 3.1[16] σ(G) = σ(G − u) + σ(G − NG[u]).

Let Pn be a path of n vertices (n ≥ 1), then σ(Pn+2) = σ(Pn+1)+σ(Pn), and σ(P1) = 2,

σ(P2) = 3.

Lemma 3.2[16] Let G be a graph consisting of two components G1 and G2, i.e.,

G = G1 + G2. Then σ(G) = σ(G1) · σ(G2).

Now let Gi ∈ Gi(i ≥ 2), then Gi is the union of a six-membered ring spiro chains A

with i − 1 six-membered rings and a six-membered ring Hi in which A and Hi have only

one common vertex. Let this common vertex be u (or s = u,) and vi, xi, yi, x
′
i, v

′
i, u be six

vertices of Hi (see Figure 4). In fact, Hi is the i-th six-membered ring in Gi(i ≥ 2).
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Next, we will show some lemmas below.

Lemma 3.3 Denote Gi(i ≥ 2) and A as above, shown in Figure 4. We have

(1) σ(Gi − vi) = 8σ(A − s) + 5σ(A − NA[s])

(2) σ(Gi − xi) = 10σ(A − s) + 3σ(A − NA[s])

(3) σ(Gi − yi) = 9σ(A − s) + 4σ(A − NA[s]).
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Proof: By Lemma 3.1 and Lemma 3.2, we can compute

(1) σ(Gi − vi) = σ(Gi − vi − u) + σ(Gi − vi − NGi
[u]))

= σ(A − s) · σ(p4) + σ(A − NA[s]) · σ(p3)

= 8σ(A − s) + 5σ(A − NA[s]).

(2) σ(Gi − xi) = σ(Gi − xi − u) + σ(Gi − xi − NGi
[u])

=σ(A − s) · σ(p1) · σ(p3) + σ(A − NA[s]) · σ(p2)

=10σ(A − s) + 3σ(A − NA[s]).

(3) σ(Gi − yi) = σ(Gi − yi − u) + σ(Gi − yi − NGi
[u])

=σ(A − s) · σ(p2) · σ(p2) + σ(A − NA[s]) · σ(p1) · σ(p1)

=9σ(A − s) + 4σ(A − NA[s]).

So the proof is completed. �
Lemma 3.4 Denote Gi(i ≥ 2) and A as above, shown in Figure 4. We have that

σ(Gi − vi) < σ(Gi − yi) < σ(Gi − xi).

Proof: By Lemma 3.3 and Lemma 3.1, we have

σ(Gi − yi) − σ(Gi − vi) = σ(A − s) − σ(A − NA[s]) > 0

σ(Gi − xi) − σ(Gi − yi) = σ(A − s) − σ(A − NA[s]) > 0

Hence, we obtain that σ(Gi − vi) < σ(Gi − yi) < σ(Gi − xi). �
Let A ∈ Gi−1, B ∈ Gn−i, and Hi be a six-membered ring. Gi is the union of the

six-membered ring spiro chain with i− 1 six-membered rings A and a six-membered ring

Hi in which A and Hi have only one common vertex. Let this common vertex be u (or

s, s = u) and vi, xi, yi, x
′
i, v

′
i, u be six vertices of Hi. Denote by Gn(i, k) ∈ Gn(n ≥ 3)

obtained from Gi and B in which spiro union B to Hi by way-k (k=1,2,3), furthermore,

when k=1,2,3, t = vi, xi, yi, respectively(see Figure 5). In fact, Hi is the i-th six-membered

ring in Gn(n ≥ 3).
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Figure 5: Gn = Gn(i, k)

Now we consider to compare σ(Gn(i, 1)), σ(Gn(i, 2)), σ(Gn(i, 3)).
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Lemma 3.5 Let Gn = Gn(i, k) ∈ Gn(n ≥ 3), denote Gn(i, k), A and B as above,

shown in Figure 5. We have that σ(Gn(i, 1)) < σ(Gn(i, 3)) < σ(Gn(i, 2)).

Proof: By computing, we have

σ(Gn(i, 1)) = σ(Gn(i, 1) − t1) + σ(Gn(i, 1) − NGn [t1])

=σ(Gn(i, 1) − t1 − t2) + σ(Gn(i, 1) − t1 − NGn [t2]) + σ(Gn(i, 1) − NGn [t1])

=σ(Gi) · σ(B − NB[t]) + σ(Gi − vi) · σ(B − t1 − NB[t2]) + σ(Gi − vi) · σ(B − NB[t1])

=σ(Gi) · σ(B − NB[t]) + σ(Gi − vi)[σ(B − t1 − NB[t2]) + σ(B − NB[t1])]

σ(Gn(i, 2)) = σ(Gn(i, 2) − t1) + σ(Gn(i, 2) − NGn [t1])

=σ(Gn(i, 2) − t1 − t2) + σ(Gn(i, 2) − t1 − NGn [t2]) + σ(Gn(i, 2) − NGn [t1])

=σ(Gi) · σ(B − NB[t]) + σ(Gi − xi) · σ(B − t1 − NB[t2]) + σ(Gi − xi) · σ(B − NB[t1])

=σ(Gi) · σ(B − NB[t]) + σ(Gi − xi)[σ(B − t1 − NB[t2]) + σ(B − NB[t1])]

σ(Gn(i, 3)) = σ(Gn(i, 3) − t1) + σ(Gn(i, 3) − NGn [t1])

=σ(Gn(i, 3) − t1 − t2) + σ(Gn(i, 3) − t1 − NGn [t2]) + σ(Gn(i, 3) − NGn [t1])

=σ(Gi) · σ(B − NB[t]) + σ(Gi − yi) · σ(B − t1 − NB[t2]) + σ(Gi − yi) · σ(B − NB[t1])

=σ(Gi) · σ(B − NB[t]) + σ(Gi − yi)[σ(B − t1 − NB[t2]) + σ(B − NB[t1])]

By Lemma 3.4, we get that σ(Gn(i, 3))−σ(Gn(i, 1)) > 0 and σ(Gn(i, 2))−σ(Gn(i, 3)) >

0. Hence, we obtain that σ(Gn(i, 1)) < σ(Gn(i, 3)) < σ(Gn(i, 2)).�
Following ref.[17], we denote by [G]k the six-membered ring spiro chain obtained from

G by way-k attaching to it a new six-membered ring H, where k ∈ {1, 2, 3}. Obvi-

ously, every Gn(n ≥ 2) can be written as [· · · [[[L2]k2 ]k3 ] · · · ]kn−1 , where ki ∈ {1, 2, 3}(i =

2, 3, · · · , n− 1), we set Gn = 3k2k3 · · · kn−1 for short. For every i, if ki = 3 then Gn = Ln,

ki = 1 then Gn = Zn, and ki = 2 then G = Sn.

Proof of theorem 2.1

(1) Let Gn ∈ Gn be the six-membered ring spiro chain with the smallest number of

independent. We show that Gn = Rn. Since G1 = R1, G2 = R2, we may assume that

n ≥ 3. Let Gn = 3k2k3 · · · kn−1 and Rn=31 · · · 1︸ ︷︷ ︸
n−1

.

Suppose that Gn �= Rn, let ki be the first element of k2, k3, · · · , kn−1, such that ki �= 1.

We discuss the following two cases.

Case 1: If ki = 2, i.e., Gn=31 · · · 1︸ ︷︷ ︸
i−1

2ki+1 · · · kn−1, let G
′
n=31 · · · 1︸ ︷︷ ︸

i−1

1ki+1 · · · kn−1, by

lemma 3.5, σ(G
′
n) < σ(Gn). This produces a contradiction, so that Gn=31 · · · 1︸ ︷︷ ︸

n−1

, i.e.,

Gn = Rn.

Case 2: If ki = 3, by a similar way of proof in case 1 we obtain it.

(2) By a similar method of proof in part (1), we have the second part of theorem 2.1.

The proof of theorem 2.1 is completed.�
4. Proof of theorem 2.2

We note that the method of the proof of theorem 2.1 is also applicable to prove
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Theorem 2.2. It is interesting that the frames of the proofs are just same as that in

theorem 2.1. First, we list some useful results.

Lemma 4.1[16] Let G be a graph. Suppose uv ∈ E(G). Then Z(G) = Z(G− uv) +

Z(G − u − v)

Let Pn be a path of n vertices (n ≥ 1), then Z(Pn+2) = Z(Pn+1) + Z(Pn), and

Z(P1) = 1, Z(P2) = 2.

Lemma 4.2[16] Let G be a graph consisting of two components G1 and G2, i.e.,

G = G1 + G2. Then Z(G) = Z(G1) · Z(G2)

Next, we show some lemmas below.

Lemma 4.3 Denote Gi(i ≥ 2) and A as above, shown in Figure 4. We have

(1) Z(Gi − vi) = 8Z(A − s) + 5[Z(A − s − s2) + Z(A − s − s1)]

(2) Z(Gi − xi) = 8Z(A − s) + 3[Z(A − s − s2) + Z(A − s − s1)]

(3) Z(Gi − yi) = 8Z(A − s) + 4[Z(A − s − s2) + Z(A − s − s1)].

Proof: By Lemma 4.1 and Lemma 4.2, we can compute

(1) Z(Gi − vi) = Z(Gi − vi − us1) + Z(Gi − vi − u − s1)

=Z(Gi − vi − us1 − us2) + Z(Gi − vi − us1 − u − s2) + Z(Gi − vi − u − s1)

=Z(A − s) · Z(p5) + Z(A − s − s2) · Z(p4) + Z(A − s − s1) · Z(p4)

=8Z(A − s) + 5[Z(A − s − s2) + Z(A − s − s1)]

(2) Z(Gi − xi) = Z(Gi − xi − us1) + Z(Gi − xi − u − s1)

=Z(Gi − xi − us1 − us2) + Z(Gi − xi − us1 − u − s2) + Z(Gi − xi − u − s1)

=Z(A − s) · Z(p5) + Z(A − s − s2) · Z(p3) · Z(p1) + Z(A − s − s1) · Z(p1) · Z(p3)

=8Z(A − s) + 3[Z(A − s − s2) + Z(A − s − s1)]

(3) Z(Gi − yi) = Z(Gi − yi − us1) + Z(Gi − yi − u − s1)

=Z(Gi − yi − us1 − us2) + Z(Gi − yi − us1 − u − s2) + Z(Gi − yi − u − s1)

=Z(A − s) · Z(p5) + Z(A − s − s2) · Z(p2) · Z(p2) + Z(A − s − s1) · Z(p2) · Z(p2)

=8Z(A − s) + 4[Z(A − s − s2) + Z(A − s − s1)]

The lemma is completed.�
By Lemma 4.3 and lemma 4.1, we have that

Lemma 4.4 Denote Gi(i ≥ 2) and A as above, shown in Figure 4. Then Z(Gi−xi) <

Z(Gi − yi) < Z(Gi − vi).

Lemma 4.5 Let Gn = Gn(i, k) ∈ Gn(n ≥ 3), denote Gn(i, k), A and B as above,

shown in Figure 5. Then Z(Gn(i, 2)) < Z(Gn(i, 3)) < Z(Gn(i, 1)).

Proof: We can compute,

Z(Gn(i, 1)) = Z(Gn(i, 1) − vit1) + Z(Gn(i, 1) − vi − t1)

= Z(Gn(i, 1)− vit1 − vit2) + Z(Gn(i, 1)− vit1 − vi − t2) + Z(Gn(i, 1)− vi − t1)

= Z(Gi) · Z(B − t) + Z(Gi − vi) · Z(B − t − t2) + Z(G − vi) · Z(B − t − t1)

= Z(Gi) · Z(B − t) + Z(Gi − vi)[Z(B − t − t2) + Z(B − t − t1)]

Z(Gn(i, 2)) = Z(Gn(i, 2) − xit1) + Z(Gn(i, 2) − xi − t1)
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= Z(Gn(i, 2)−xit1 −xit2)+Z(Gn(i, 2)−xit1 −xi − t2)+Z(Gn(i, 2)−xi − t1)

= Z(Gi) · Z(B − t) + Z(Gi − xi) · Z(B − t − t2) + Z(G − xi) · Z(B − t − t1)

= Z(Gi) · Z(B − t) + Z(Gi − xi)[Z(B − t − t2) + Z(B − t − t1)]

Z(Gn(i, 3)) = Z(Gn(i, 3) − yit1) + Z(Gn(i, 3) − yi − t1)

= Z(Gn(i, 3)− yit1 − yit2) + Z(Gn(i, 3)− yit1 − yi − t2) + Z(Gn(i, 3)− yi − t1)

= Z(Gi) · Z(B − t) + Z(Gi − yi) · Z(B − t − t2) + Z(G − yi) · Z(B − t − t1)

= Z(Gi) · Z(B − t) + Z(Gi − yi)[Z(B − t − t2) + Z(B − t − t1)]

By lemma 4.4, we get Z(Gn(i, 3))−Z(Gn(i, 2)) > 0 and Z(Gn(i, 1))−Z(Gn(i, 3)) > 0.

Hence, Z(Gn(i, 2)) < Z(Gn(i, 3)) < Z(Gn(i, 1)).

This completes the proof of lemma 4.5. �
By similar means of proof of theorem 2.1, we can prove theorem 2.2.
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