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Abstract The Hosoya index of a graph is defined as the total number of the match-
ings, including the empty edge set, of the graph. The Merrifield-Simmons index of a
graph is defined as the total number of the independent vertex sets, including the empty
vertex set, of the graph. Let U(n,A) be the set of connected unicyclic graphs of order
n with maximum degree A. We consider the Hosoya indices and the Merrifield-Simmons
indices of graphs from U (n, A). In this paper, we characterize the graphs in U (n, A) with
the maximal Hosoya index and the minimal Merrifield-Simmons index, respectively, and
determine the corresponding indices.

1 Introduction

The Hosoya index and the Merrifield-Simmons index of a graph G are two well-known
topological indices in combinatorial chemistry. The former, denoted by z(G), is defined
as the total number of the matchings (independent edge subsets), including the empty
edge set, of the graph, and the latter, denoted by i(G), is defined as the total number of

the independent vertex sets, including the empty vertex set, of the graph.
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The Hosoya index was introduced by Hosoya [1] in 1971. Since its first introduction
the Hosoya index has received much attention (see [2, 3, 4, 5]). Moreover, it plays an
important role in studying the relation between molecular structure and physical and
chemical properties of certain hydrocarbon compounds. The Merrifield-Simmons index,
introduced by Merrifield and Simmons [6] in 1989, is the other topological index whose
mathematical properties can be found in some detail [7, 8, 9, 10]. In [6] it was shown that
i(@) is correlated with boiling points.

It is significant to determine the extremal (maximal or minimal) graphs with respect
to these two indices. By now, many nice results can be found in [2, 3,4, 5, 6, 7, 8, 9, 10, 11]
concerning the extremal graphs with respect to these two indices. For examples, trees,
unicyclic graphs, and so on, are of major interest. Especially, Wagner [3] characterizes the
extremal trees with maximal Hosoya index and minimal Merrifield-Simmons index. Deng
et al. [4] determine all the extremal unicyclic graphs with respect to these two indices.
All graphs considered in this paper are finite and simple. Let G be a graph with vertex set
V(@) and edge set E(G). For a vertex v € V(G), we denote by N¢(v) the neighbors of v
in G, and Ng[v] = {v} UNg(v). dg(v) = |Ng(v)| is called the degree of v in G or written
as d(v) for short. For other undefined notations and terminology from graph theory, the
readers are referred to [12].

Let U(n, A) be the set of connected unicyclic graphs of order n with maximum degree
A. In Section 2, we list some basic lemmas which will be used in the proofs. In Section 3,
we characterize the graphs in U(n, A) with the maximal Hosoya index and the minimal

Merrifield-Simmons index, respectively, and determine their corresponding indices.

2 Some lemmas

We first list three lemmas, which can be found in [6, 8], as basic but necessary

preliminaries.
Lemma 2.1. Let G be a graph, and v € V(G), uwv € E(G). Then we have

(1) 2(G)=2(G-v)+ ¥ 2(G—A{w,v}), 2(G) = 2(G —uv) + 2(G — {u,v});

wENgG(v)
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(2) i(G) = i(G —v) +i(G — Ng[v]).

Lemma 2.2. If Gy, Go,---, Gy are the components of a graph G, we have
t

(1) #(G) = T1 i(Gu);

2) 2(G) = 11 2(Gn).

Lemma 2.3. Let F,, be the ny, Fibonacci number, that is, Fy = 0, Fy = F5 = 1, and
F, = F,1+ F,_5 forn > 3. For a path P, with n vertices (of length n — 1), we have
2(P,) = Fo11 and i(P,) = Fyo.

A tree is called a d — pode (see [3]) if it contains only one vertex v of degree d > 2. v
is called the center. Denote by R(cy, ¢, -+, ¢q) the d-pode where Zdj cp =n—1, ¢ is the
length of the i—th "ray” going out from the center. That is to say,k:Rg(cl, Coyr ey Cq) —U =
Ldj P,,. For convenience, if the number of ¢, is [, we write it as cﬁj in the following. For
g;zlnnple, R(2,2,3,3,5) will be written as R(22,32,5') for short.

For some positive integers ky < ky < --- < ky, we denote by Cy(k, k2, - ki) a
graph obtained by attaching [y, ls,- -, 1, paths of length ki, ko, - -, ky,, respectively, to
one vertex of Cy. For convenience, we let Cj, = Cy(0') and P,_; = Ci((—1)'). And let
C,E,l)(k’f., k2, -+ klm) be a graph obtained from identifying a vertex of Cy with a pendant
vertex of P, of the graph R(k, k2, - - -, Klm 1Y) where [ > 1 and the value of [ is independent
of those of ki, ko, -+, k. For examples, the graphs C5(2%, 32, 4%) and CéQ)(21,32,41) are

shown in Fig. 1.

C5(22,3%,4%) P (21,32, 4
Fig. 1 The graphs C5(22,32,4') and C{?(2!,32,41)
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Lemma 2.4. ([3]) Let G # K, be a connected graph, v € V(G). G(k,n — 1 — k) is the
graph resulting from attaching at v two paths of length k and n — 1 — k, respectively. Let
n=4m+ j where j € {1,2,3,4} and m > 0. Then
2(G(1,n—2)) < 2(GB,n—4)) <--- < z(G2m+ 2l —1,n—2m —2l)) <
2(G2m,n—1—2m)) <--- < 2(G(2,n —3)) < 2(G(0,n — 1)),
and
i(G(l,n—2)) >i(GB,n—4)) > >i(G2m+2l—1,n—2m —2l)) >
(G2m,n—1-2m)) >--->i(G(2,n—3)) >i(G(0,n —1)).
Where | = |51, and G(0,n — 1) can be also viewed as a graph obtained by attaching at
v € V(G) a path of length n — 1.

By repeating Lemma 2.4, the following remark is easily obtained.

Remark 2.1. ([3]) When a tree T of size t attached to a graph G is replaced by a path
Piyy as shown in Fig. 2, the Hosoya index increases, and the Merrifield-Simmons index

decreases.

Fig. 2 The graphs in Remark 2.1

Lemma 2.5. ([2, 10]) Let P = uguqusg - - - ugugyr be a path or a cycle (if ug = ugy1) in
a graph G, where the degrees of ui,us, - u; in G are 2, t > 1. Gy denotes the graph
that results from identifying u,(0 < r < t) with the vertex vy of a simple path vivy - - vy,

Go = Gy —upttpi1 + U101 (see Fig. 3). Then we have z2(G1) < 2(Gz) and i(G1) > i(G2).
By the definition of the Fibonacci number, the following lemma can be obtained.
Lemma 2.6. (/4/) F,L = FkFy,,,kJr] + Fk'len—k fOT 1 < k <n.

From Lemmas 2.1, 2.2, 2.3 and 2.6, the following two lemmas holds immediately.
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Ut+1 Ut+1 Ur+1
............ —
Uyp41 "
Gu,v co—e
Vg
..... k=1, PR PR
Up Uy U Uy
G G

Fig. 3 The graphs in Lemma 2.5

Lemma 2.7. z(R(2272,1,m)) = 22 2Fy o + (A = 2)223F 1 B
iW(R(22721,m)) = 32 2F o F i + 257 2F 1 By

1Py F,
Frv1

Lemma 2.8. Z(Ck(klilﬁkQQﬂ ) kiﬁ”)) = (Fk+1 + Fa + -21 ) .Hl F/g+1’
Jj= J=

. m l m l
Z(Ck(kll17 ké27 cee I{f;;v)) = Fk+1 ]'1;[1 Fk;+2 + Fk—l 71;[1 ijJrl.
Lemma 2.9. For two positive integers k and m, we have
D F if k<ms
Fka Fk—lFm+1 - { (—1)7n71Fk7m71 ’Lf k > m.
Proof. We only prove the case when & < m, and the proof for the case when k& > m is

similar and is therefore omitted.
Fka - Fk—lFerl

- (kal + Fk‘*2)Fm - kal(Fm + mel)

= (_I)I(kaanLfl - Fk72Fr",/)

(=D)'[(Fiez + Fyes) Frne1 — Fiea(Frue1 + Fr)]
= (71)2[Fk—2Fm—2 - Fk’—3Fm,—1]
= (71)k72[F2Fm—(k—2) - Flme(kf?))}

(=1 Ey g

Thus the proof is completed. O
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3 Main results

Now we start to consider the maximal Hosoya index and minimal Merrifield-Simmons
index of graphs in U(n, A). If A =2, only one graph, the cycle C,,, belongs to U(n, A).
When A = n — 1, the set U(n, A) consists of a single graph C3(1"~?), which is a graph
obtained from the star S,, by adding an edge. So, in the following, we always assume that
2<A<n—1

In order to continue our study, we first choose two subsets of U(n,A). Denote by
Uy (n, A) the set of all graphs C’,i”(kihkéﬂ where 1 < ky < 2 when ky = 1, ky > 2 when
k1 = 2, and Iy = 1 when ky > 2. And we denote by Us(n,A) the set of all graphs
Cr(Klt, K2) where 1 < ky <2 when ky = 1, ky > 2 when ky = 2, and Iy = 1 when k; > 2.

Lemma 3.1. Suppose that G* from U(n,A) has mazimal Hosoya index or minimal

Merrifield-Simmons index. Then, either G* € Ui(n, A) or G* € Us(n, A).

Proof. Suppose that the unique cycle in G* is (.

If all vertices of maximum degree A are not on the cycle Cy, Let T7 be a subtree
such that V(Ty) \ V(Cp) contains a vertex of degree A. By Remark 2.1, if we replace
all subtrees attached at Cy by paths of the same order, the Hosoya index will increase.
Therefore, after removing the paths attached at Cy but not in 77 and enlarging the length
of Cy while the obtained graph is still in ¢ (n, A), in view of Remark 2.1 and Lemma 2.5,
the Hosoya index will increase again. By Lemma 2.4, all paths attached at the vertex
of degree A in T} must be of the lengths 1 or 2 except a unique possible path of length
kE > 2. So G* belongs to U;(n,A). Note that if all the vertices of degree A have A —1
neighbors of degree 1, then it is the case when ky = ky = 1.

If there exists a vertex of degree A which is on the cycle Cy, by a similar argument, we
have G* € Uy(n, A). The proof for the Merrifield-Simmons index is completely analogous

and is omitted. This completes the proof. O

Lemma 3.2. If A > "Tfl, and Gy € Uy (n, A), then there exists a graph Gy € Us(n, A)
such that z(Gs) > z(G1) and i(Gy) > i(Ga).
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Proof. Suppose that G; = C’,El)(/clf7 k%). First we claim that k; = 1 in Gy. Otherwise,
by Lemma 2.4, the graph R(K!', k%, 1) in G, must be R(2471,1), we find that the order of
Gris2A—1)+1+1+k—1>20-1+14+2=2A+2>2A+1>n(I>1,k>3) a
contradiction.

Consider a graph Gy = Cpyyi(11712"2) from Us(n, A) as shown in Fig. 4. By
applying (1) of Lemma 2.1 to the edges vyv; and v1vy of Gy and G, respectively, we have

2(Gh) = 2(Gy — vov1) + 2(Py_2)z(R(11, 22,1 — 1))

U1 vy U1 Uy

Fig. 4 The graphs G; and G, for A > ";1

and
2(Gy) = 2(Gy — v1va) + 2(Ga — {v1, v2})
= 2(Gy — v1v9) + 2(Pr_2)2(R(11 71,22 1)) + 2(P_3)2(R(11 71,22 1 — 1)).
Note that G} —vgv; = Gy—v1vy, and by Lemma 2.4, z(R(1171 22 1)) > z(R(14, 2" -
1)), so we have z(Gq) > 2(G1).
By Lemmas 2.1 and 2.8, we get
i(Gh) = 234Gy (1 = 1)1) + 22i(Cu((1 = 2)1))
=2032(Fyyyp — Fr—oFY) 4+ 22 (Flopy — Fy_oFj—1)
and
i(Gy) = 20713y o + 2.
When [ =1 or 2, a simple calculation shows the validity of the formula of i(G;). So,
by Lemma 2.6, we have
i(Gh) —i(Ga) = 207132(2F 11 — 2Fy—oF) — Fyqugo) + 22 (Frpy — Fy—o By — Fiyy)
=271 (Fl g — 2F o F) — 22F) o F 4
= 20713 (F Fiyy — FroF)) — 22 F, 2 F
=207 13(F, B+ Fy 1By — FioFy) — 22F) o F
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=213 (F_ F) — FyoFy) 4+ 207132 F_ Fi_y — 22F),_»F_; > 0.
If k1 = ky = 1, it implies that [, = 0. Obviously, 2(G3) > 2(G4) and i(G1) > i(G2).
This completes the proof. O

Lemma 3.3. If A < "T’l, and Gy € Uy(n, A), then there exists a graph Gy € Us(n, A)
such that i(Gy) > i(Ga).

Proof. Suppose that Gy = CV (k% k2). If ky = 1 and ky = 2, or k; = ky = 1, with a
similar method as in Lemma 3.2, our result follows.

2872 m!) where m > 2.

Suppose that k; = 2. Then the graph G is isomorphic to C,gl)(
We choose a graph Gy = Ciy14m(2272) from Us(n, A) as shown in Fig. 5.

By Lemmas 2.1 and 2.8, we have

Ci }12 ..... % i o, ... %
\' ....... vy \' ..... ‘vleMx‘
Gy e Go

U2

Fig. 5 The graphs G; and G, for A < ";1

i(G1) = 32 F2i(Ci((1 = 1)) + 2572 Fi(Cr((1 = 2)1))
=3%"2F 0 Frpir1 — FroF) + 2272 F 1 (Fiopt — FrooFio1)
and
i(G2) = 322 Fqrpme1 + 28 2 Fogrim-1.
Note that the formula of ¢(Gy) holds if I =1 or [ = 2. So we have
i(G1) — i(G2) = 32 2[Frg2(Frpis1 — FeeoF1) — Frpioms]
+ 28721 (Frvr — FroFiy) — Frrtom 1)
Set A1 = Frpo(Fepimr — Fo2Fl) — Frpipmpr and Ay = Fo (Fop — FroFio0) —
Frtivm—1. Then, by Lemma 2.6, we have

Ay = FooFry — oo FyoF) — (Fyii1 Fopr + FrFn)

= Fp b — FppeFroF — Fpby,

=l — Pl ok
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= Fo(Fr1 Frpy + FroFy) — (Fonpa + Fn) Fr o F)
=FpFe by — F B o bl
= F(Fyo + Fi—3) F1 + FpFyo1 Fioy — Fo By o F) — Fry 1 F o
= FnFysF) + FpFy bl — Fin1 Fy o F)
= %(FmQFk—st — FpiFyoFi 4+ FoF12Fy — Fy1 Fi_oF) > 0
and
Ay = Fr1 Frpi — Fppr Fro Fioy — (B Frim + FnFrvi—2)
= Fos1Frrio — FnpiFeoFion — FpFlqo
= Fno1Fpi—2 — Fn Fr—oFi
= Fo1(Fyor Fi 4+ FyoFiq) — (Fon 4+ Frut) Fr—o Fia
=FyaFaF — FpFyoF .
Note that A; > 0, thus, by Lemma 2.6, we get
i(Gh) —i(Gy) = 35724, + 28724,
> 2872( A + Ay)
=22 FpFyaFr — Fr FeoFy+ F 1 Fo 1 Fy — FruFp o Fi )
= 282\ Foyt — FioFpy)) > 0.
Therefore i(G1) > i(Gy) as desired. By now we complete the proof. O

Lemma 3.4. Suppose that 4 < A < 251 Let G be the graph from U(n, A) with mazimal
Hosoya index. Then G € Us(n, A), or

1) Ge{cW 2N Uls(n, A) if n=2A+2 or n>2A+3 and A > 4;
n—2A+1
2) Ge{C@22 (n—2A —1)1),C 00 (22D} if n=2A+3, or A=4.

Proof. From Lemma 3.1, G € U;(n, A) or G € Uy(n, A). If the latter holds, we are done.
It G =~ O (K1 K2) € Uy(n,A), we claim that k; = 2. Otherwise, suppose that ky = 1.
With a similar argument that as used in the proof of Lemma 3.2, we can find a graph G,
from Us(n, A) such that 2(G3) > 2(G), a contradiction to the choice of G.

Suppose that k&, = 2. Then, G is isomorphic to Clgl)(QA*Z,ml) where m > 2. For
convenience, we denote G' by (. Next we claim that [ = 1. Suppose to the contrary

that [ > 2. We choose a graph Ga = Ciy 14 (2872) from Us(n, A) as shown in Fig. 4. By
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applying Lemma 2.1 to G; and G5 (in a same way as in the proof of Lemma 3.2, denote
by Gy the isomorphic couple G7 —vov; and Gg —v103), from Lemmas 2.6 and 2.7, we have
2(Gh) = 2(Go) + 2(Pez)2(R(2272,1 — 1,m))
= 2(Go) + 2272 F 1 Flomar + (A = 2223 B F 1 Fyy
and
2(Go) = 2(Go) + 2(R(227 2k +1—2,m — 1)
= 2(Go) + 222 Fp i + (A — 20253\ F,..
So, by Lemma 2.6, we have
2(G2) = 2(G1) = 227 (Fytipm—1 — Foc1 Frpme1) + (A= 2)22 73 (Fiy 1 Fr— FiF1 Fya)
= 2A72(Fk—1F‘l+m+1 + FeoFiom — Fr1 Fiymet)
+ (A =2)223(Fpyy Fyy — BiF i1 Fisy)
=282 o Fm + (A = 2)2273( By 1 By — FiF i1 Fiq)
Set A= Fyy 1F — FiF1Fr_1. Then, from Lemma 2.6, we have
A= (FpFy + Fea Fia) Ey — By B(Ey + Foa)
=R F, — FyaFnFio— FpaFFy
= (Fy1+ Fyo)F1 Py — By 1 FuFi o — Fy, 1 FF,
= Foa(Fia 4+ Fioo) (P + Frnca) + Fr o Ey — Froa By o(Fy + Fra)
— By a(Fia+ Fio) o
= b+ FroFE, — Fi 1 FioF,
= %(kalFlleFmﬁ +2F, o FiF — 2F 1 Fi_9Fp )
> %(Fk—lﬂ—lFm—l — Fy 1By oF oy + Fy  FiF, — Fy FioF, 1) > 0.
So z(G2) — z(Gy) > 0. A contradiction to the maximality of 2(Gy). Therefore G =
C}(Cl)(QA—27 mb).
Set B = z(G3) — 2(G1). From the above computation and by Lemma 2.9, we have
B = 2(Ci1pm(2272)) — 2(C (252, m1))
= 9A2F L F i+ (A — 2)283(FLFyy — Frat Fry)
A2 oF i + (—DF YA = 22278, o if k<m;
2L Fir + (1) YA —2)288F, .y if k> m.

It is easy to see that B > 0 if k < m and k is odd, or m < k and m is odd, or k = 3,
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or k =m + 1. By the choice of GG, we only consider the cases where 4 < k < m and k is
even, or k > m + 2 and m is even. By Lemmas 2.1, 2.3 and 2.6, we have
2002572, mY)) = 2(CR)2(R(2%72,mY) + 2(Pe-1)2% 2 Fp
= (Fr+Fio) 2272 (Fp + F) +(A=2)2873F, 1] 4282 F B
=287 (Fpy1 + By + Fr1) Fogr + (Figr + Foo1) Bl
+ (A =222 Fp 1 (Frgr + Fr)
= 28722F 1 Frst + 2F3Fy + (Fisr + Fimy — 255 F)
+ (A =222 Fy (Fre + Fra)
=282 i1 + Fr 3 Fo) + (A = 2)223F  (Fiyr + Fr1)
=287 1 + 2873 2F 3 F + (A = 2)Fp (Bt + Fi))-
When m > 4 and k£ > m + 2, we have
HC ) a(2572,2Y) — 2(C7 (222, m1))
=287 Fni1 + 287 25 B + (A = 2) F3(Fim—1 + Frm—3))]
— 287 F g1 + 28732F 5 Fy 4 (A = 2) Fp (Fiegr + Fi1))
= 2873(2(Frym—s — Fr-3Fm) + (A = 2) 2Fhim-1 + 2Fkgm—3 — Frn1 Frn — Fr1 Fr)]
Set By = Fyim—5 — Fy—3fFn and By = 2Fj i1 + 2Fjym-3 — Fup1 Fiopn — Fa Fia.
Then, by Lemma 2.6, we have
By =Fy 3Fm 1+ Fyalyo— Fr3Fy
=Fy sl — Fy 3l o= —Fp5Fn o,
By = 2(Fpp1Fn1 + FuFm) — Fr1 Frr + 2(Frm1 Frnmt + Fr—oFr—2) — Fp1 Fioy
= Frp1(2F 1 — Ft) + Fim1 2F o — Fig) 4 2Fo(Fy + Fi2)
= — (L1 + Fm1) Frnea + 2F,,2(F), + Fi2)
= (2F, — Frq1 + 2F—9 — Fy—1)Frs
= (Fy—2 + Frea) Frns.
So, for m > 4 and k > m + 2, it follows that
H(Cf ) 2(2272,2Y) = 2(C{V (2572, m1)) = 22-3(2B, + By)
= 283 Fy g+ Fyoy — 2F_5)Fus > 0 (%).
When k& > 4 and m > k, we have
(2572, (m+ k — 4)1) — 2(C0 (2572, m1))



= 2% P + 22 2F Fryna + (A = 2)(F5 + F3) Frymos]
— 287 s + 28732F) 3B+ (A — 2)Fot (Bt + i)
= 28732(Fhym—1 — Fi—sFn) + (A = 2)(TFism—s — Frn1 Font — Fr1 Fii)]
= 28732 Fy_sFp + FoosFry — FrosFyy)
+2873(A = 2)[7(Fn—sFio1 + FoFy) — Frp1 Fio — Frp Fid]
= 9839+ 2573(A — 2)[(TEys — Fonst) Fyos + TF—sFyy — Foor Fist]
=2872F 4 F
+2873(A = 2)[(TFns — FaFpo — FsFo 3)Fpy + TEy o By — Bt By — Fr1 i
—oh2p B
+2873(A = 2)[(5Fp_3 — 3F—9 — Fy1) Frmy + (TFp—s — F3Foy — FoFy o) Fy
— 9820 B+ 2873(A — 2)[(2F s — 3Fyt — Fyst ) Fyot + (6Fpg — 2Fy_1) Fi]
=282F ,F, 4
+2873(A = 2)[(2F 3 — 3Fy 4 — Fpi)Fi1 + (2F o+ 2F 4)(Fioy + Fi2))]
—oA2p F
283 (A=2)[(2F 35— 3F 4+ 2F - 0+2Fpa—Fpus1) Foor+(2F o+ 2F_4) F_o]
=2872F 4B 1 +2873(A = 2) [~ (Fca + Fna) it + (Fro + Fra)2F) o)
=920 By 4 253(A = 2)(Fhs + Fya)(2Fhs — Fry) > 0 (%),
By the inequalities (*) and (**), we find that Z(C’I(Cl)(ZA”,ml)) reaches its maximal
value at m =2 or k =4. Here k > m + 2 and m is even, or 4 < k < m and k is even.
Note that k +m = n — 2A + 3. So the couple CL), ,(2272,21) and C{" (222, (m +
k —4)') are just CL22A+1(2A’1) and C’f)(QA*Z, (n —2A — 1)), respectively. Finally, we
will show that 2(C{Yya,1(2271)) > 2(CV (2272, (n — 2A —1)1)) with the equality holding
if and only if n = 2A 4+ 3 or A = 4. In fact, we have, for n > 2A + 3,
ACY5a 11 (257Y) = 2(CV (2572 (n — 24 — 1)1)
= 2873[2(F—an—0 — Fr_an—1) + (A — 2)(2F,_aaya + 25, oa — TF_2n)]
= 2873[=2F, oa 3+ (A —2)(2F, ani2 — 5F, 24)]
= 2873[22F, oa 3+ (A —2)(2F, aas1 — 3F,_oa)]
=2873—2F, oan_3+ (A —2)F,_oa_3]
=283(A —4)F, 9n_3 >0,
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and for n = 2A + 2,

2 p 1 (25— 2(CD (222, (=28 1)1)) = 23-9[-2F 1 (A—2) (2F 4 2F,~TF)
=28"3(A—4)>0.

The proof is completed. O

Next we will prove the following four theorems, in which the graphs from U(n, A) are

characterized with maximal Hosoya index and minimal Merrifield-Simmons index.

Theorem 3.1. If A > % > 3, the graph from U(n, A) with mazimal Hosoya index and
minimal Merrifield-Simmons index is C3(2" 12 12471 And 2(Cy(2n~ 12,1247 1m))

— (SA —n+ 1)277,—1—A7 Z‘(c3(2n—l—A7 12A—1—n)) — 277,—1—A + 371,—A22A—1—n.

Proof. Suppose that a graph G from U(n,A) has the maximal Hosoya index or the
minimal Merrifield-Simmons index. By Lemmas 3.1 and 3.2, , we have G € Uy (n, A).

Thanks to Lemma 2.4, we find that G is Cp_a42(1272) or of the form Cy(k, k)
where k| = 1, ky = 2. First we prove that G is not C,,_a2(1%72) by comparing the two
indices of Cp,_a42(1472) and C,,_a11(1473,2"). By Lemma 2.8, we have

2HCrons2(127%)) = (A = 1) Fyoago + 2F, a1,

2(Cpn1(1873,2Y)) = (2A = 3)EF,_ay1 + 45,4,

and

i(Cronga(1872)) = 2272F, _ais + Fuoavts

(Chonst (1573,21)) = 3. 283F Ay + 2F, 4.

So we get

H(Coan(1375,2) = 2(Co_s12(152))

=02A=3)F, a1 — (A =1)F a0+ 202F, A — Fuay1)

=(A-1)2F—at1 — Froas2) — Fooas1 +2F,_a_s

=(A=1)Fha1— Fpons1 +2F, a0

=(A=3)F_a1+2F, A —F, a41 >0,

and

H(Coar2(1372)) = i(Cosey(1873,21))

=28"302F, a3 —3F_as2) + Fuoatr — 2F,-a
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= 2A73(2Fn7A+1 - Fn,—A+2) - Fn7A72
= 2A73Fn7A71 —Fya2>0.
So we claim that G is of the form Ck(kll‘,klf) where k1 = 1 and ks = 2. Secondly, we

claim that
HCas1 (18737 251)) S 2(Clnsn (187270 21))
and
i(Coe st (187370 251)) < i(Ch_pra (187271, 21Y)
that is to say, after decreasing the length of Cj in Cy(1",2"2) by 1 and increasing the
number of attached Py’s in Cy (11, 2"2) by 1, the Hosoya index increases and the Merrifield—
Simmons index decreases.
By Lemma 2.8, we have
2(Cr o (1AL 20)) = 25 (2A = 2 — ) Fy_ayo 1 +4F0 A1),
2(Cro (147370201 = 2[(2A — 3 — 1) Fy_ay11 +4F, Ay,
and
i(Crngog (187270 20)) = 32872 E, Ays +2'F, g1y,
i(Cruopgy (187371 2L)) = gi+1QA=3=lp L IR
So we get
2(Crrepg g (187371 2H1)) — 2(Cl_pag (187271, 20))
= 2 (AA — 6 — 21) Fyy_ps11+ 8Fpng— (20 —2— 1) Fp_nyot — AF a1
=27(4A =10 = 20)Fp a1 1+ 8F a1 — (2A =2 —1)F\_at0-]
= 27M(4A =18 — 2D Fy Ayt 1 +8F A 1i2 — (2A =2 —D)F,_ato ]
= 27(2A — 9 — 1)2F, a1t — (2A — 10 — ) Fyy_pyo] > 0,
and
(o nrot (187271 21)) — §(Chy g (18731, 2041
=31227372F, _at31 — 3Fnated] + 2 [Fuati1 — 2Fay]
=383 A =2 F, A0 > 0.
Therefore, for A > "T“ >3, Gis C3(2" 12, 122717"). By Lemma 2.8, with a simple

calculation, we have

Z(Og(QniliA, 12A717")) = (3A —n+ 1)2n71—A



and
,[:(03(211—1—A7 12A—1—n)) _ Qn—l—A + 3n—A22A—1—n

ending the proof. O

Theorem 3.2. If3 < A < "T“, the graph from U (n, A) with minimal Merrifield-Simmons
index is C3(227%,(n — 2A + 3)N). And i(C3(2273,(n — 2A + 3)1)) = 3572F, oays +

A-3
2 Fn—2A+4 .

Proof. Suppose that a graph G from U (n, A) has the minimal Merrifield-Simmons index.
By Lemmas 3.1, 3.2 and 3.3, we have G € Uy(n, A).

Combining the arguments in the proof of Theorem 3.1, we find that if 3 < A < "T“,
G is of the form Cy(2", k%) where ky > 2. In the next step, we will show that, in
G = C(21, k%), 2 < ky <n —2A + 3 is impossible when 3 < A < %L,

For n —2A +3 > 1> 3, by Lemmas 2.6 and 2.8, we have

1(Croaase—1(2273,11) = 3273 F, onsr i Frio + 2273 F, onis i Frin,

i(Cro2a4+4(2872)) = 3272 Fonts + 2872 Fanss.

So for n —2A +3 > 1 > 3, we have

i(Cranye-1(287%,11) — i(Cranya(2472))

= 3873 (Froaasr—iFive — 3Fans) + 287 (Fuanss—iFryn — 2F,onts)
=323 Fosasr—iFrie — 3(FryaFuoonta—t + Frn Faoongs—)]

+ 2873 Fyonss 1 Fier — 2B Fmonsa—y + FiFy_onto)]
=32 %2F, anys—iFip — 3F Fuoongs—] + 222 (Frn — 2F) Froaaga
=3273(2F — Fi)Fosass — 2873(2F, — Fiia) Fuanga— > 0.

Thus, for n — 2A +3 > [ > 3, we have i(Cp,_oa14(2272)) < i(Ch_anre_1(2873,11).
Finally, we look for the form of G by comparing the Hosoya indices of C,,_sa14(2272) and
C3(2273, (n — 2A + 3)1). Similarly, we have

i(C3(2873, (n — 2A 4+ 3)Y)) = 3234 F, onys + 22 F, anty

=3%72F, aa4s5 4+ 283 F, aaya
Obviously, we get
i(Crionra(2872) —i(C(2273, (n — 2A + 3)1)) = 2273(2F, _anr3 — Flooaya) > 0.
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Therefore, if 3 < A < 2, G is C5(2273%, (n — 2A + 3)1), and i(C5(2272, (n — 2A +
3)N) = 3272F, aanrs + 2473F, _ya 44, which finishes the proof. O

Theorem 3.3. Suppose that 3 < A < % Let G € U(n, A) be a graph with the mazimal
Hosoya index. Then

(1) G is Croona(2272) if 3 < A <6, or 52 <A< ™ or A=12 < 10,

2 T2 2
or =4 >Ae{6,7}, or 2> A=38;

(2) Gis Cponia(2272) or CVop (28D if A =6 =13 or A=8= 15
or A=10="21;

(3) Gis Cppn (22N if A=1356, 0r A="52>10, or8 < A < 5%,

And 2(Cp_onra(2272)) = 2273(AF, anra + 45, oa43), Z(Cfll_)mH(QA_l)) =
2871 E, oaga + 2272F, an_o + 2272(A = 2)(Fy_aaqe + Fuoa).

Proof. Note that if % <A< "T“, the graph G must be in Us(n, A) from the application
of Lemma 3.2. By Lemma 3.4, for 3 < A < "T’l, we find that G is either in Us(n, A), or
CVp 1 (2271 or V(2272 (n — 24 — 1)),

First we will show that if G is in Uy (n, A), then G must be C,,_ga14(2272). Considering
the arguments in the proof of Theorem 3.1, we find that G is of the form Cy (21, klzl) where
ko > 2if G € Us(n, A). Next we will show that, in C (2, k‘lzz), ko > 2 is impossible when
3<A< "T’l For [ > 3, by Lemmas 2.6 and 2.8, we have

2(Crsase—1(2273,11) = (Foosasr—itFuoonys—1)28 P Fa+(A=3)28 1 Fy F_onve

+ 28R Fy ant6
=283 Fosasr+ Fro Faoaagst) + (A =3)22 4 Fiuy F_onset,
2(Cro2nta(2872) = (Fuoaays + Fruaass)2872 4+ (A = 2)2273F, a4

So we obtain

2(Crooa4a(2872)) = 2(Croanyea(2272,11))

=2873(2F, onys +2F, onis — Fuonrr — Fipi B onys 1) + 2873 F, aata
+ (A =3)28742F, ona — FraFuanio)

= 2A73(2Fn72A+3 — Foonpa — FriFyonys ) + 2A73Fn72A+4
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+ (A - 3)2A74(2Fn72A+4 — FrFyonte-i)

=2873(2F, ant3 — FiiiFuoonss—t) + (A = 3)2274(2F, ona — Fri1Fuoate-1),

Set Dy = 2F, aonrs — Fip1Faoags— and Dy = 2F, ontq — Fiy1Fyoay6-1- Note that
n—2A+6—1>3in C,_snre_(2273,1Y), that is to say, [ < n—2A+3. Ifl = n—2A+3,
then Dy = 2F, _ont3 — FrhontaFo = Fy_onr1 > 0, and Dy = 0, so

2Cronra(2272)) — 2(Cponre1(2873,11) = 2273D; + (A — 3)2271Dy > 0.

If Il <n—2A+2, by Lemma 2.6, we have

Dy =2F, snv3 — (Fooats — FiFonva i)

= FFyonta-1 — Fronqte
= FF,ontam1 — (FiF—onys—1 + Fim1Fyonto—y)
= FFyonta-1— FioaFhone1 >0,

Dy =2F 1 Fy onva + 2 F onys— — FipiFyonye—i

=2FF, oni3 1 — FryiFuonys 1 > 0.

Then we also have

2(Crcansa(2872) — 2(Croante1(2273,11) = 2873D; + (A — 3)2271D, > 0.

Therefore G must be C,,_oa14(2272) if it is in Us(n, A), and 2(Cp_oa14(2472)) =
2873(AF,—aa44 + 4F,_2a43). Thus we have G = Cp_an44(2872) if %52 < A < »H. By
Lemma 3.4, we find that G must be C{" (2472, (n — 2A — 1)) or C,(LQMH(QA’l) if it
does not belong to Us(n, A). From the proof of Lemma 3.4, we have z(O,(ll_)zAH(QA‘l)) =
287N, onia + 28732F, an o 4+ 2(A — 2)(F_anye + Foa)]. Now we start to deter-
mine the graph from U(n, A) with maximal Hosoya index for 3 < A < "T’l First set
E = 2(Ch_ana(2272)) — z(C,(l122A+1(2A’1)). Then we have

E=2%1F, o3+ A2273F, onig —2871F, oapa

— 2873[2F, an0 + 2(A = 2)(F_oaso + Fron)]
= 2871 onia +2873AF, oats — 2F, on o — 2(A — 2)(Fy_sara + Fuoa)]
= —2871F, oato + 2873 (AF, oay1 — 2AF, o + 4F, onto + 2F, on + 2F,_oa_1)
= 283 AF,oa1 — 2AF, on + 4F, onyo + 2F, oa1 — 4F, ony0)
=2873(2F,_ans1 — AF,_oa_2).

Let M = 2F, on11—AF, aan 5. From Lemma 3.4, it is obvious that G is C,,_oa 14(2%72)
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if M >0, Gis CUpn (2571 if M < 0, and G is Cpana(2272) or Cpn, (2871 if
M = 0. We only need to consider the value of M. If 3 < A < 6, it follows that M > 0.
Also we easily obtain that M > 0 when n = 2A +2,ie. A = % So in the following we
always assume that 6 < A < %. We distinguish the following three cases.

Case 1. n =2A +3.

In this case, we have A = 23 So M = 2F, — AF; = 6 — A. Obviously, M < 0 if
A>6and M =0if A =6.

Case 2. n =2A +4.

In this case, we have A = "T*‘i. So M = 2F; — AF, = 10 — A. Obviously, M > 0 if
6<A<10and M =0if A =10and M <0 if A > 10.

Case 3. n > 2A +4.

In this case, we have A < ”7*4‘ So, by Lemma 2.6, we obtain

M = 2(Fy_on—oFy + Fr_on_3F3) — AF,_on—s

=(6—A)F,_on_o+4F, on_3.

Then it is easy to see that M > 0if 6 < A < 7. And obviously, M > 0 if A = 8 and

n>2A+5 M=0if A=8and n=2A+5. If A > 9, we have

M <AF, on—3+ (6 —9)F, aa—2 < 0.
Combining all the above cases, our results follow. O

Theorem 3.4. If A = 3, the graphs from U(n, A) with mazimal Hosoya index is Cy((n—
4N or Cpa(2Y), 2(Cy((n — 1)) = 2(Cp_a(2Y)) = Fy1 + 2F,_3; the graph from U(n, A)
with minimal Merrifield-Simmons index is C3((n — 3)'), i(Cs((n — 3)')) = Fp1 + F1.

Proof. By Lemma 3.1 and Remark 2.1, we find that the graph from ¢ (n, 3) with maximal
Hosoya index and minimal Merrifield-Simmons index is of the form Cj((n — k)!) where
3<k<n-1.
From Lemmas 2.6 and 2.8, we have
2(Ce((n = B)Y) = Fucppr (Fret + Frar) + FiFo
= Pk Py + (Faopri B + Fi F)
= Fr By e—1y + Foya,
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and

i(Ce((n —k)")) = Frpr Fapgr + Fro1 Frmp
= Fopgo + B — FrFoapr + Frooa P
=Fo— FroFoii i

Then, obviously, z(Ci((n — k)')) = 2(Cppr2((k — 2)1)) for 3 < k < n —1, and
i(Crl(n —k)Y) =i(Cppis((k = 3)Y)) for 4 <k <n—1.

For 3 < k <n—1, in view of Lemma 2.6, we have

FsFy 3 — FyFop = Fs(FooFp + FosFopn) — FoFg

= Fo y(F3Fys — Fy) + FysFy k1 F;
=Py Fh3+2F, 3F, k1
= e 3(2F, -1 — Fug) > 0,

and

RF, — FFo = FFog o+ B B — FrFog g,

=Fy 1 F,>0.

So we have FF,_ < F3F,_3 and F.F,,.1_ < [1F, for 3 < k < n — 1. Then it is
easy to see that Fr_1F,_(x—1) < F3F,_3 and Fy 2 F, 1 < F1F, for 4 <k <n—1. That
is to say, the maximal values of Fj_1F,_—1) and Fy_»F, 1 are attained at k = 4 or
n — 2, and k = 3, respectively. Therefore, the graph from U(n, A) with maximal Hosoya
index is Cy((n — 4)!) or C,,_5(2'), and the graph from U(n,A) with minimal Merrifield-
Simmons index is C3((n — 3)'). By Lemma 2.8, we have z(Cy((n —4)')) = 2(Cp,—2(2")) =
Foq +2F, 3 and i(Cs((n — 3)')) = F,. + F,_1. This completes the proof. O

Now all the extremal graphs from U (n, A) maximizing the Hosoya index or minimizing
the Merrifield-Simmons index are completely characterized. Finally, we would like to end
this paper with the following remark which presents an interesting property of the graph

from U(n, A) with maximal Hosoya index and minimal Merrifield-Simmons index.

Remark 3.1. In [3], the author showed that, among all trees of order n and with maximum
degree A, the tree with with mazimal Hosoya index and minimal Merrifield-Simmons index

is R(217A 12870 Gf A > 2oL or R(2A7E (n—2A+ 1)Y) if A < 51 Note that, when
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A > ”T“, the graph from U(n, A) with mazimal Hosoya index and minimal Merrifield-

on—1=A 28=n+1y by adding an edge at two

Simmons index is a graph obtained from R(
pendant vertices of two "rays” of length 1. But for 3 < A < "T“ the graphs from U(n, A)

with mazimal Hosoya index and minimal Merrifield-Simmons index are not always unique.
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