Some extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index*

Kexiang $\mathrm{Xu}^{\dagger}{ }^{\dagger} \quad$ Baogang Xu^{\dagger}
${ }^{\dagger}$ School of Mathematics and Computer Science, Nanjing Normal University, Nanjing, 210097
\ddagger College of Science, Nanjing University of Aeronautics \& Astronautics, Nanjing 210016

(Received January 16, 2009)

Abstract

The Hosoya index of a graph is defined as the total number of the matchings, including the empty edge set, of the graph. The Merrifield-Simmons index of a graph is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph. Let $\mathcal{U}(n, \Delta)$ be the set of connected unicyclic graphs of order n with maximum degree Δ. We consider the Hosoya indices and the Merrifield-Simmons indices of graphs from $\mathcal{U}(n, \Delta)$. In this paper, we characterize the graphs in $\mathcal{U}(n, \Delta)$ with the maximal Hosoya index and the minimal Merrifield-Simmons index, respectively, and determine the corresponding indices.

1 Introduction

The Hosoya index and the Merrifield-Simmons index of a graph G are two well-known topological indices in combinatorial chemistry. The former, denoted by $z(G)$, is defined as the total number of the matchings (independent edge subsets), including the empty edge set, of the graph, and the latter, denoted by $i(G)$, is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph.

[^0]The Hosoya index was introduced by Hosoya [1] in 1971. Since its first introduction the Hosoya index has received much attention (see [2, 3, 4, 5]). Moreover, it plays an important role in studying the relation between molecular structure and physical and chemical properties of certain hydrocarbon compounds. The Merrifield-Simmons index, introduced by Merrifield and Simmons [6] in 1989, is the other topological index whose mathematical properties can be found in some detail [7, 8, 9, 10]. In [6] it was shown that $i(G)$ is correlated with boiling points.

It is significant to determine the extremal (maximal or minimal) graphs with respect to these two indices. By now, many nice results can be found in $[2,3,4,5,6,7,8,9,10,11]$ concerning the extremal graphs with respect to these two indices. For examples, trees, unicyclic graphs, and so on, are of major interest. Especially, Wagner [3] characterizes the extremal trees with maximal Hosoya index and minimal Merrifield-Simmons index. Deng et al. [4] determine all the extremal unicyclic graphs with respect to these two indices. All graphs considered in this paper are finite and simple. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G)$, we denote by $N_{G}(v)$ the neighbors of v in G, and $N_{G}[v]=\{v\} \cup N_{G}(v) . d_{G}(v)=\left|N_{G}(v)\right|$ is called the degree of v in G or written as $d(v)$ for short. For other undefined notations and terminology from graph theory, the readers are referred to [12].

Let $\mathcal{U}(n, \Delta)$ be the set of connected unicyclic graphs of order n with maximum degree Δ. In Section 2, we list some basic lemmas which will be used in the proofs. In Section 3, we characterize the graphs in $\mathcal{U}(n, \Delta)$ with the maximal Hosoya index and the minimal Merrifield-Simmons index, respectively, and determine their corresponding indices.

2 Some lemmas

We first list three lemmas, which can be found in $[6,8]$, as basic but necessary preliminaries.

Lemma 2.1. Let G be a graph, and $v \in V(G), u v \in E(G)$. Then we have
(1) $z(G)=z(G-v)+\sum_{w \in N_{G}(v)} z(G-\{w, v\}), z(G)=z(G-u v)+z(G-\{u, v\})$;
(2) $i(G)=i(G-v)+i\left(G-N_{G}[v]\right)$.

Lemma 2.2. If $G_{1}, G_{2}, \cdots, G_{t}$ are the components of a graph G, we have
(1) $i(G)=\prod_{k=1}^{t} i\left(G_{k}\right)$;
(2) $z(G)=\prod_{k=1}^{t} z\left(G_{k}\right)$.

Lemma 2.3. Let F_{n} be the $n_{t h}$ Fibonacci number, that is, $F_{0}=0, F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. For a path P_{n} with n vertices (of length $n-1$), we have $z\left(P_{n}\right)=F_{n+1}$ and $i\left(P_{n}\right)=F_{n+2}$.

A tree is called a d-pode (see [3]) if it contains only one vertex v of degree $d>2 . v$ is called the center. Denote by $R\left(c_{1}, c_{2}, \cdots, c_{d}\right)$ the d-pode where $\sum_{k=1}^{d} c_{k}=n-1, c_{i}$ is the length of the i-th "ray" going out from the center. That is to say, $R\left(c_{1}, c_{2}, \cdots, c_{d}\right)-v=$ $\bigcup_{k=1}^{d} P_{c_{k}}$. For convenience, if the number of c_{k} is l_{k}, we write it as $c_{k}^{l_{k}}$ in the following. For example, $R(2,2,3,3,5)$ will be written as $R\left(2^{2}, 3^{2}, 5^{1}\right)$ for short.

For some positive integers $k_{1} \leq k_{2} \leq \cdots \leq k_{m}$ we denote by $C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}}\right)$ a graph obtained by attaching $l_{1}, l_{2}, \cdots, l_{m}$ paths of length $k_{1}, k_{2}, \cdots, k_{m}$, respectively, to one vertex of C_{k}. For convenience, we let $C_{k}=C_{k}\left(0^{1}\right)$ and $P_{k-1}=C_{k}\left((-1)^{1}\right)$. And let $C_{k}^{(l)}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}}\right)$ be a graph obtained from identifying a vertex of C_{k} with a pendant vertex of P_{l} of the graph $R\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}}, l^{1}\right)$ where $l \geq 1$ and the value of l is independent of those of $k_{1}, k_{2}, \cdots, k_{m}$. For examples, the graphs $C_{5}\left(2^{2}, 3^{2}, 4^{1}\right)$ and $C_{5}^{(2)}\left(2^{1}, 3^{2}, 4^{1}\right)$ are shown in Fig. 1.

Fig. 1 The graphs $C_{5}\left(2^{2}, 3^{2}, 4^{1}\right)$ and $C_{5}^{(2)}\left(2^{1}, 3^{2}, 4^{1}\right)$

Lemma 2.4. ([3]) Let $G \neq K_{1}$ be a connected graph, $v \in V(G) . G(k, n-1-k)$ is the graph resulting from attaching at v two paths of length k and $n-1-k$, respectively. Let $n=4 m+j$ where $j \in\{1,2,3,4\}$ and $m \geq 0$. Then

$$
\begin{aligned}
& z(G(1, n-2))<z(G(3, n-4))<\cdots<z(G(2 m+2 l-1, n-2 m-2 l))< \\
& z(G(2 m, n-1-2 m))<\cdots<z(G(2, n-3))<z(G(0, n-1))
\end{aligned}
$$

and

$$
\begin{gathered}
i(G(1, n-2))>i(G(3, n-4))>\cdots>i(G(2 m+2 l-1, n-2 m-2 l))> \\
i(G(2 m, n-1-2 m))>\cdots>i(G(2, n-3))>i(G(0, n-1))
\end{gathered}
$$

Where $l=\left\lfloor\frac{i-1}{2}\right\rfloor$, and $G(0, n-1)$ can be also viewed as a graph obtained by attaching at $v \in V(G)$ a path of length $n-1$.

By repeating Lemma 2.4, the following remark is easily obtained.
Remark 2.1. ([3]) When a tree T of size t attached to a graph G is replaced by a path P_{t+1} as shown in Fig. 2, the Hosoya index increases, and the Merrifield-Simmons index decreases.

Fig. 2 The graphs in Remark 2.1

Lemma 2.5. ([2, 10]) Let $P=u_{0} u_{1} u_{2} \cdots u_{t} u_{t+1}$ be a path or a cycle (if $u_{0}=u_{t+1}$) in a graph G, where the degrees of $u_{1}, u_{2}, \cdots u_{t}$ in G are $2, t \geq 1 . G_{1}$ denotes the graph that results from identifying $u_{r}(0 \leq r \leq t)$ with the vertex v_{k} of a simple path $v_{1} v_{2} \cdots v_{k}$, $G_{2}=G_{1}-u_{r} u_{r+1}+u_{r+1} v_{1}$ (see Fig. 3). Then we have $z\left(G_{1}\right)<z\left(G_{2}\right)$ and $i\left(G_{1}\right)>i\left(G_{2}\right)$.

By the definition of the Fibonacci number, the following lemma can be obtained.
Lemma 2.6. ([4]) $F_{n}=F_{k} F_{n-k+1}+F_{k-1} F_{n-k}$ for $1 \leq k \leq n$.
From Lemmas 2.1, 2.2, 2.3 and 2.6, the following two lemmas holds immediately.

Fig. 3 The graphs in Lemma 2.5

Lemma 2.7. $z\left(R\left(2^{\Delta-2}, l, m\right)\right)=2^{\Delta-2} F_{l+m+2}+(\Delta-2) 2^{\Delta-3} F_{l+1} F_{m+1}$

$$
i\left(R\left(2^{\Delta-2}, l, m\right)\right)=3^{\Delta-2} F_{l+2} F_{m+2}+2^{\Delta-2} F_{l+1} F_{m+1}
$$

Lemma 2.8. $z\left(C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}}\right)\right)=\left(F_{k+1}+F_{k-1}+\sum_{j=1}^{m} \frac{l_{j} F_{k} F_{k_{j}}}{F_{k_{j}+1}}\right) \prod_{j=1}^{m} F_{k_{j}+1}^{l_{j}}$,

$$
i\left(C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}}\right)\right)=F_{k+1} \prod_{j=1}^{m} F_{k_{j}+2}^{l_{j}}+F_{k-1} \prod_{j=1}^{m} F_{k_{j}+1}^{l_{j}} .
$$

Lemma 2.9. For two positive integers k and m, we have

$$
F_{k} F_{m}-F_{k-1} F_{m+1}=\left\{\begin{array}{lll}
(-1)^{k-1} F_{m-k+1} & \text { if } k \leq m ; \\
(-1)^{m-1} F_{k-m-1} & \text { if } k>m .
\end{array}\right.
$$

Proof. We only prove the case when $k \leq m$, and the proof for the case when $k>m$ is similar and is therefore omitted.

$$
\begin{aligned}
& F_{k} F_{m}-F_{k-1} F_{m+1} \\
= & \left(F_{k-1}+F_{k-2}\right) F_{m}-F_{k-1}\left(F_{m}+F_{m-1}\right) \\
= & (-1)^{1}\left(F_{k-1} F_{m-1}-F_{k-2} F_{m}\right) \\
= & (-1)^{1}\left[\left(F_{k-2}+F_{k-3}\right) F_{m-1}-F_{k-2}\left(F_{m-1}+F_{m-2}\right)\right] \\
= & (-1)^{2}\left[F_{k-2} F_{m-2}-F_{k-3} F_{m-1}\right] \\
= & \cdots \cdots \\
= & (-1)^{k-2}\left[F_{2} F_{m-(k-2)}-F_{1} F_{m-(k-3)}\right] \\
= & (-1)^{k-1} F_{m-k+1} .
\end{aligned}
$$

Thus the proof is completed.

3 Main results

Now we start to consider the maximal Hosoya index and minimal Merrifield-Simmons index of graphs in $\mathcal{U}(n, \Delta)$. If $\Delta=2$, only one graph, the cycle C_{n}, belongs to $\mathcal{U}(n, \Delta)$. When $\Delta=n-1$, the set $\mathcal{U}(n, \Delta)$ consists of a single graph $C_{3}\left(1^{n-3}\right)$, which is a graph obtained from the star S_{n} by adding an edge. So, in the following, we always assume that $2<\Delta<n-1$.

In order to continue our study, we first choose two subsets of $\mathcal{U}(n, \Delta)$. Denote by $\mathcal{U}_{1}(n, \Delta)$ the set of all graphs $C_{k}^{(l)}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right)$ where $1 \leq k_{2} \leq 2$ when $k_{1}=1, k_{2} \geq 2$ when $k_{1}=2$, and $l_{2}=1$ when $k_{2}>2$. And we denote by $\mathcal{U}_{2}(n, \Delta)$ the set of all graphs $C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right)$ where $1 \leq k_{2} \leq 2$ when $k_{1}=1, k_{2} \geq 2$ when $k_{1}=2$, and $l_{2}=1$ when $k_{2}>2$.

Lemma 3.1. Suppose that G^{*} from $\mathcal{U}(n, \Delta)$ has maximal Hosoya index or minimal Merrifield-Simmons index. Then, either $G^{*} \in \mathcal{U}_{1}(n, \Delta)$ or $G^{*} \in \mathcal{U}_{2}(n, \Delta)$.

Proof. Suppose that the unique cycle in G^{*} is C_{0}.
If all vertices of maximum degree Δ are not on the cycle C_{0}, Let T_{1} be a subtree such that $V\left(T_{1}\right) \backslash V\left(C_{0}\right)$ contains a vertex of degree Δ. By Remark 2.1, if we replace all subtrees attached at C_{0} by paths of the same order, the Hosoya index will increase. Therefore, after removing the paths attached at C_{0} but not in T_{1} and enlarging the length of C_{0} while the obtained graph is still in $\mathcal{U}(n, \Delta)$, in view of Remark 2.1 and Lemma 2.5, the Hosoya index will increase again. By Lemma 2.4, all paths attached at the vertex of degree Δ in T_{1} must be of the lengths 1 or 2 except a unique possible path of length $k>2$. So G^{*} belongs to $\mathcal{U}_{1}(n, \Delta)$. Note that if all the vertices of degree Δ have $\Delta-1$ neighbors of degree 1 , then it is the case when $k_{1}=k_{2}=1$.

If there exists a vertex of degree Δ which is on the cycle C_{0}, by a similar argument, we have $G^{*} \in \mathcal{U}_{2}(n, \Delta)$. The proof for the Merrifield-Simmons index is completely analogous and is omitted. This completes the proof.

Lemma 3.2. If $\Delta \geq \frac{n-1}{2}$, and $G_{1} \in \mathcal{U}_{1}(n, \Delta)$, then there exists a graph $G_{2} \in \mathcal{U}_{2}(n, \Delta)$ such that $z\left(G_{2}\right)>z\left(G_{1}\right)$ and $i\left(G_{1}\right)>i\left(G_{2}\right)$.

Proof. Suppose that $G_{1}=C_{k}^{(l)}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right)$. First we claim that $k_{1}=1$ in G_{1}. Otherwise, by Lemma 2.4, the graph $R\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, l\right)$ in G_{1} must be $R\left(2^{\Delta-1}, l\right)$, we find that the order of G_{1} is $2(\Delta-1)+1+l+k-1>2 \Delta-1+1+2=2 \Delta+2>2 \Delta+1 \geq n(l \geq 1, k \geq 3)$, a contradiction.

Consider a graph $G_{2}=C_{k+l+1}\left(1^{l_{1}-1}, 2^{l_{2}}\right)$ from $\mathcal{U}_{2}(n, \Delta)$ as shown in Fig. 4. By applying (1) of Lemma 2.1 to the edges $v_{0} v_{1}$ and $v_{1} v_{2}$ of G_{1} and G_{2}, respectively, we have

$$
z\left(G_{1}\right)=z\left(G_{1}-v_{0} v_{1}\right)+z\left(P_{k-2}\right) z\left(R\left(1^{l_{1}}, 2^{l_{2}}, l-1\right)\right)
$$

Fig. 4 The graphs G_{1} and G_{2} for $\Delta \geq \frac{n-1}{2}$
and

$$
\begin{aligned}
z\left(G_{2}\right) & =z\left(G_{2}-v_{1} v_{2}\right)+z\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right) \\
& =z\left(G_{2}-v_{1} v_{2}\right)+z\left(P_{k-2}\right) z\left(R\left(1^{l_{1}-1}, 2^{l_{2}}, l\right)\right)+z\left(P_{k-3}\right) z\left(R\left(1^{l_{1}-1}, 2^{l_{2}}, l-1\right)\right)
\end{aligned}
$$

Note that $G_{1}-v_{0} v_{1} \cong G_{2}-v_{1} v_{2}$, and by Lemma 2.4, $z\left(R\left(1^{l_{1}-1}, 2^{l_{2}}, l\right)\right)>z\left(R\left(1^{l_{1}}, 2^{l_{2}}, l-\right.\right.$ 1)), so we have $z\left(G_{2}\right)>z\left(G_{1}\right)$.

By Lemmas 2.1 and 2.8, we get

$$
\begin{aligned}
i\left(G_{1}\right) & =2^{l_{1}} 3^{l_{2}} i\left(C_{k}\left((l-1)^{1}\right)+2^{l_{2}} i\left(C_{k}\left((l-2)^{1}\right)\right)\right. \\
& =2^{l_{1}} 3^{l_{2}}\left(F_{k+l+1}-F_{k-2} F_{l}\right)+2^{l_{2}}\left(F_{k+l}-F_{k-2} F_{l-1}\right)
\end{aligned}
$$

and

$$
i\left(G_{2}\right)=2^{l_{1}-1} 3^{l_{2}} F_{k+l+2}+2^{l_{2}} F_{k+l} .
$$

When $l=1$ or 2 , a simple calculation shows the validity of the formula of $i\left(G_{1}\right)$. So, by Lemma 2.6, we have

$$
\begin{aligned}
i\left(G_{1}\right)-i\left(G_{2}\right) & =2^{l_{1}-1} 3^{l_{2}}\left(2 F_{k+l+1}-2 F_{k-2} F_{l}-F_{k+l+2}\right)+2^{l_{2}}\left(F_{k+l}-F_{k-2} F_{l-1}-F_{k+l}\right) \\
& =2^{l_{1}-1} 3^{l_{2}}\left(F_{k+l-1}-2 F_{k-2} F_{l}\right)-2^{l_{2}} F_{k-2} F_{l-1} \\
& =2^{l_{1}-1} 3^{l_{2}}\left(F_{k-1} F_{l+1}-F_{k-2} F_{l}\right)-2^{l_{2}} F_{k-2} F_{l-1} \\
& =2^{l_{1}-1} 3^{l_{2}}\left(F_{k-1} F_{l}+F_{k-1} F_{l-1}-F_{k-2} F_{l}\right)-2^{l_{2}} F_{k-2} F_{l-1}
\end{aligned}
$$

$$
=2^{l_{1}-1} 3^{l_{2}}\left(F_{k-1} F_{l}-F_{k-2} F_{l}\right)+2^{l_{1}-1} 3^{l_{2}} F_{k-1} F_{l-1}-2^{l_{2}} F_{k-2} F_{l-1}>0
$$

If $k_{1}=k_{2}=1$, it implies that $l_{2}=0$. Obviously, $z\left(G_{2}\right)>z\left(G_{1}\right)$ and $i\left(G_{1}\right)>i\left(G_{2}\right)$. This completes the proof.

Lemma 3.3. If $\Delta<\frac{n-1}{2}$, and $G_{1} \in \mathcal{U}_{1}(n, \Delta)$, then there exists a graph $G_{2} \in \mathcal{U}_{2}(n, \Delta)$ such that $i\left(G_{1}\right)>i\left(G_{2}\right)$.

Proof. Suppose that $G_{1}=C_{k}^{(l)}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right)$. If $k_{1}=1$ and $k_{2}=2$, or $k_{1}=k_{2}=1$, with a similar method as in Lemma 3.2, our result follows.

Suppose that $k_{1}=2$. Then the graph G_{1} is isomorphic to $C_{k}^{(l)}\left(2^{\Delta-2}, m^{1}\right)$ where $m \geq 2$. We choose a graph $G_{2}=C_{k+l+m}\left(2^{\Delta-2}\right)$ from $\mathcal{U}_{2}(n, \Delta)$ as shown in Fig. 5.

By Lemmas 2.1 and 2.8, we have

Fig. 5 The graphs G_{1} and G_{2} for $\Delta<\frac{n-1}{2}$

$$
\begin{aligned}
i\left(G_{1}\right) & =3^{\Delta-2} F_{m+2} i\left(C_{k}\left((l-1)^{1}\right)+2^{\Delta-2} F_{m+1} i\left(C_{k}\left((l-2)^{1}\right)\right)\right. \\
& =3^{\Delta-2} F_{m+2}\left(F_{k+l+1}-F_{k-2} F_{l}\right)+2^{\Delta-2} F_{m+1}\left(F_{k+l}-F_{k-2} F_{l-1}\right)
\end{aligned}
$$

and

$$
i\left(G_{2}\right)=3^{\Delta-2} F_{k+l+m+1}+2^{\Delta-2} F_{k+l+m-1} .
$$

Note that the formula of $i\left(G_{1}\right)$ holds if $l=1$ or $l=2$. So we have

$$
\begin{aligned}
i\left(G_{1}\right)-i\left(G_{2}\right)= & 3^{\Delta-2}\left[F_{m+2}\left(F_{k+l+1}-F_{k-2} F_{l}\right)-F_{k+l+m+1}\right] \\
& +2^{\Delta-2}\left[F_{m+1}\left(F_{k+l}-F_{k-2} F_{l-1}\right)-F_{k+l+m-1}\right]
\end{aligned}
$$

Set $A_{1}=F_{m+2}\left(F_{k+l+1}-F_{k-2} F_{l}\right)-F_{k+l+m+1}$ and $A_{2}=F_{m+1}\left(F_{k+l}-F_{k-2} F_{l-1}\right)-$ $F_{k+l+m-1}$. Then, by Lemma 2.6, we have

$$
\begin{aligned}
A_{1} & =F_{m+2} F_{k+l+1}-F_{m+2} F_{k-2} F_{l}-\left(F_{k+l+1} F_{m+1}+F_{k+l} F_{m}\right) \\
& =F_{m} F_{k+l+1}-F_{m+2} F_{k-2} F_{l}-F_{k+l} F_{m} \\
& =F_{m} F_{k+l-1}-F_{m+2} F_{k-2} F_{l}
\end{aligned}
$$

$$
\begin{aligned}
& =F_{m}\left(F_{k-1} F_{l+1}+F_{k-2} F_{l}\right)-\left(F_{m+1}+F_{m}\right) F_{k-2} F_{l} \\
& =F_{m} F_{k-1} F_{l+1}-F_{m+1} F_{k-2} F_{l} \\
& =F_{m}\left(F_{k-2}+F_{k-3} F_{l}+F_{m} F_{k-1} F_{l-1}-F_{m} F_{k-2} F_{l}-F_{m-1} F_{k-2} F_{l}\right. \\
& =F_{m} F_{k-3} F_{l}+F_{m} F_{k-1} F_{l-1}-F_{m-1} F_{k-2} F_{l} \\
& =\frac{1}{2}\left(F_{m} 2 F_{k-3} F_{l}-F_{m-1} F_{k-2} F_{l}+F_{m} F_{k-1} 2 F_{l-1}-F_{m-1} F_{k-2} F_{l}\right)>0
\end{aligned}
$$

and

$$
\begin{aligned}
A_{2} & =F_{m+1} F_{k+l}-F_{m+1} F_{k-2} F_{l-1}-\left(F_{m+1} F_{k+l-1}+F_{m} F_{k+l-2}\right) \\
& =F_{m+1} F_{k+l-2}-F_{m+1} F_{k-2} F_{l-1}-F_{m} F_{k+l-2} \\
& =F_{m-1} F_{k+l-2}-F_{m+1} F_{k-2} F_{l-1} \\
& =F_{m-1}\left(F_{k-1} F_{l}+F_{k-2} F_{l-1}\right)-\left(F_{m}+F_{m-1}\right) F_{k-2} F_{l-1} \\
& =F_{m-1} F_{k-1} F_{l}-F_{m} F_{k-2} F_{l-1} .
\end{aligned}
$$

Note that $A_{1}>0$, thus, by Lemma 2.6, we get

$$
\begin{aligned}
i\left(G_{1}\right)-i\left(G_{2}\right) & =3^{\Delta-2} A_{1}+2^{\Delta-2} A_{2} \\
& >2^{\Delta-2}\left(A_{1}+A_{2}\right) \\
& =2^{\Delta-2}\left(F_{m} F_{k-1} F_{l+1}-F_{m+1} F_{k-2} F_{l}+F_{m-1} F_{k-1} F_{l}-F_{m} F_{k-2} F_{l-1}\right) \\
& =2^{\Delta-2}\left(F_{k-1} F_{m+l}-F_{k-2} F_{m+l}\right)>0 .
\end{aligned}
$$

Therefore $i\left(G_{1}\right)>i\left(G_{2}\right)$ as desired. By now we complete the proof.
Lemma 3.4. Suppose that $4 \leq \Delta<\frac{n-1}{2}$. Let G be the graph from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index. Then $G \in \mathcal{U}_{2}(n, \Delta)$, or
(1) $G \in\left\{C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right\} \cup \mathcal{U}_{2}(n, \Delta)$ if $n=2 \Delta+2$ or $n>2 \Delta+3$ and $\Delta>4$;
(2) $G \in\left\{C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right), C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right\}$ if $n=2 \Delta+3$, or $\Delta=4$.

Proof. From Lemma 3.1, $G \in \mathcal{U}_{1}(n, \Delta)$ or $G \in \mathcal{U}_{2}(n, \Delta)$. If the latter holds, we are done. If $G \cong C_{k}^{(l)}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right) \in \mathcal{U}_{1}(n, \Delta)$, we claim that $k_{1}=2$. Otherwise, suppose that $k_{1}=1$. With a similar argument that as used in the proof of Lemma 3.2, we can find a graph G_{2} from $\mathcal{U}_{2}(n, \Delta)$ such that $z\left(G_{2}\right)>z(G)$, a contradiction to the choice of G.

Suppose that $k_{1}=2$. Then, G is isomorphic to $C_{k}^{(l)}\left(2^{\Delta-2}, m^{1}\right)$ where $m \geq 2$. For convenience, we denote G by G_{1}. Next we claim that $l=1$. Suppose to the contrary that $l \geq 2$. We choose a graph $G_{2}=C_{k+l+m}\left(2^{\Delta-2}\right)$ from $\mathcal{U}_{2}(n, \Delta)$ as shown in Fig. 4. By
applying Lemma 2.1 to G_{1} and G_{2} (in a same way as in the proof of Lemma 3.2, denote by G_{0} the isomorphic couple $G_{1}-v_{0} v_{1}$ and $\left.G_{2}-v_{1} v_{2}\right)$, from Lemmas 2.6 and 2.7, we have

$$
\begin{aligned}
z\left(G_{1}\right) & =z\left(G_{0}\right)+z\left(P_{k-2}\right) z\left(R\left(2^{\Delta-2}, l-1, m\right)\right) \\
& =z\left(G_{0}\right)+2^{\Delta-2} F_{k-1} F_{l+m+1}+(\Delta-2) 2^{\Delta-3} F_{l} F_{m+1} F_{k-1}
\end{aligned}
$$

and

$$
\begin{aligned}
z\left(G_{2}\right) & =z\left(G_{0}\right)+z\left(R\left(2^{\Delta-2}, k+l-2, m-1\right)\right. \\
& =z\left(G_{0}\right)+2^{\Delta-2} F_{k+l+m-1}+(\Delta-2) 2^{\Delta-3} F_{k+l-1} F_{m}
\end{aligned}
$$

So, by Lemma 2.6, we have

$$
\begin{aligned}
z\left(G_{2}\right)-z\left(G_{1}\right)= & 2^{\Delta-2}\left(F_{k+l+m-1}-F_{k-1} F_{l+m+1}\right)+(\Delta-2) 2^{\Delta-3}\left(F_{k+l-1} F_{m}-F_{l} F_{m+1} F_{k-1}\right) \\
= & 2^{\Delta-2}\left(F_{k-1} F_{l+m+1}+F_{k-2} F_{l+m}-F_{k-1} F_{l+m+1}\right) \\
& +(\Delta-2) 2^{\Delta-3}\left(F_{k+l-1} F_{m}-F_{l} F_{m+1} F_{k-1}\right) \\
= & 2^{\Delta-2} F_{k-2} F_{l+m}+(\Delta-2) 2^{\Delta-3}\left(F_{k+l-1} F_{m}-F_{l} F_{m+1} F_{k-1}\right)
\end{aligned}
$$

Set $A=F_{k+l-1} F_{m}-F_{l} F_{m+1} F_{k-1}$. Then, from Lemma 2.6, we have

$$
\begin{aligned}
A= & \left(F_{k} F_{l}+F_{k-1} F_{l-1}\right) F_{m}-F_{k-1} F_{l}\left(F_{m}+F_{m-1}\right) \\
= & F_{k} F_{l} F_{m}-F_{k-1} F_{m} F_{l-2}-F_{k-1} F_{l} F_{m-1} \\
= & \left(F_{k-1}+F_{k-2}\right) F_{l} F_{m}-F_{k-1} F_{m} F_{l-2}-F_{k-1} F_{l} F_{m-1} \\
= & F_{k-1}\left(F_{l-1}+F_{l-2}\right)\left(F_{m-1}+F_{m-2}\right)+F_{k-2} F_{l} F_{m}-F_{k-1} F_{l-2}\left(F_{m-1}+F_{m-2}\right) \\
& -F_{k-1}\left(F_{l-1}+F_{l-2}\right) F_{m-1} \\
= & F_{k-1} F_{l-1} F_{m-2}+F_{k-2} F_{l} F_{m}-F_{k-1} F_{l-2} F_{m-1} \\
= & \frac{1}{2}\left(F_{k-1} F_{l-1} 2 F_{m-2}+2 F_{k-2} F_{l} F_{m}-2 F_{k-1} F_{l-2} F_{m-1}\right) \\
& >\frac{1}{2}\left(F_{k-1} F_{l-1} F_{m-1}-F_{k-1} F_{l-2} F_{m-1}+F_{k-1} F_{l} F_{m}-F_{k-1} F_{l-2} F_{m-1}\right)>0 .
\end{aligned}
$$

So $z\left(G_{2}\right)-z\left(G_{1}\right)>0$. A contradiction to the maximality of $z\left(G_{1}\right)$. Therefore $G \cong$ $C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)$.

Set $B=z\left(G_{2}\right)-z\left(G_{1}\right)$. From the above computation and by Lemma 2.9, we have

$$
\begin{aligned}
B & =z\left(C_{k+1+m}\left(2^{\Delta-2}\right)\right)-z\left(C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)\right) \\
& =2^{\Delta-2} F_{k-2} F_{m+1}+(\Delta-2) 2^{\Delta-3}\left(F_{k} F_{m}-F_{m+1} F_{k-1}\right) \\
& = \begin{cases}2^{\Delta-2} F_{k-2} F_{m+1}+(-1)^{k-1}(\Delta-2) 2^{\Delta-3} F_{m-k+1} & \text { if } \quad k \leq m ; \\
2^{\Delta-2} F_{k-2} F_{m+1}+(-1)^{m-1}(\Delta-2) 2^{\Delta-3} F_{k-m-1} & \text { if } \quad k>m .\end{cases}
\end{aligned}
$$

It is easy to see that $B>0$ if $k \leq m$ and k is odd, or $m<k$ and m is odd, or $k=3$,
or $k=m+1$. By the choice of G, we only consider the cases where $4 \leq k \leq m$ and k is even, or $k \geq m+2$ and m is even. By Lemmas 2.1, 2.3 and 2.6, we have

$$
\begin{aligned}
z\left(C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)\right)= & z\left(C_{k}\right) z\left(R\left(2^{\Delta-2}, m^{1}\right)+z\left(P_{k-1}\right) 2^{\Delta-2} F_{m+1}\right. \\
= & \left(F_{k+1}+F_{k-1}\right)\left[2^{\Delta-2}\left(F_{m+1}+F_{m}\right)+(\Delta-2) 2^{\Delta-3} F_{m+1}\right]+2^{\Delta-2} F_{k} F_{m+1} \\
= & 2^{\Delta-2}\left[\left(F_{k+1}+F_{k}+F_{k-1}\right) F_{m+1}+\left(F_{k+1}+F_{k-1}\right) F_{m}\right] \\
& +(\Delta-2) 2^{\Delta-3} F_{m+1}\left(F_{k+1}+F_{k-1}\right) \\
= & 2^{\Delta-2}\left[2 F_{k+1} F_{m+1}+2 F_{k} F_{m}+\left(F_{k+1}+F_{k-1}-2 F_{k}\right) F_{m}\right] \\
& +(\Delta-2) 2^{\Delta-3} F_{m+1}\left(F_{k+1}+F_{k-1}\right) \\
= & 2^{\Delta-2}\left[2 F_{k+m+1}+F_{k-3} F_{m}\right]+(\Delta-2) 2^{\Delta-3} F_{m+1}\left(F_{k+1}+F_{k-1}\right) \\
= & 2^{\Delta-1} F_{k+m+1}+2^{\Delta-3}\left[2 F_{k-3} F_{m}+(\Delta-2) F_{m+1}\left(F_{k+1}+F_{k-1}\right)\right] .
\end{aligned}
$$

When $m \geq 4$ and $k \geq m+2$, we have

$$
\begin{aligned}
& z\left(C_{k+m-2}^{(1)}\left(2^{\Delta-2}, 2^{1}\right)\right)-z\left(C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)\right) \\
& =2^{\Delta-1} F_{k+m+1}+2^{\Delta-3}\left[2 F_{k+m-5} F_{2}+(\Delta-2) F_{3}\left(F_{k+m-1}+F_{k+m-3}\right)\right] \\
& \quad-2^{\Delta-1} F_{k+m+1}+2^{\Delta-3}\left[2 F_{k-3} F_{m}+(\Delta-2) F_{m+1}\left(F_{k+1}+F_{k-1}\right)\right] \\
& =2^{\Delta-3}\left[2\left(F_{k+m-5}-F_{k-3} F_{m}\right)+(\Delta-2)\left(2 F_{k+m-1}+2 F_{k+m-3}-F_{m+1} F_{k+1}-F_{m+1} F_{k-1}\right)\right]
\end{aligned}
$$

Set $B_{1}=F_{k+m-5}-F_{k-3} F_{m}$ and $B_{2}=2 F_{k+m-1}+2 F_{k+m-3}-F_{m+1} F_{k+1}-F_{m+1} F_{k-1}$.
Then, by Lemma 2.6, we have

$$
\begin{aligned}
B_{1} & =F_{k-3} F_{m-1}+F_{k-4} F_{m-2}-F_{k-3} F_{m} \\
& =F_{k-4} F_{m-2}-F_{k-3} F_{m-2}=-F_{k-5} F_{m-2}, \\
B_{2} & =2\left(F_{k+1} F_{m-1}+F_{k} F_{m-2}\right)-F_{m+1} F_{k+1}+2\left(F_{k-1} F_{m-1}+F_{k-2} F_{m-2}\right)-F_{m+1} F_{k-1} \\
& =F_{k+1}\left(2 F_{m-1}-F_{m+1}\right)+F_{k-1}\left(2 F_{m-1}-F_{m+1}\right)+2 F_{m-2}\left(F_{k}+F_{k-2}\right) \\
& =-\left(F_{k+1}+F_{k-1}\right) F_{m-2}+2 F_{m-2}\left(F_{k}+F_{k-2}\right) \\
& =\left(2 F_{k}-F_{k+1}+2 F_{k-2}-F_{k-1}\right) F_{m-2} \\
& =\left(F_{k-2}+F_{k-4}\right) F_{m-2} .
\end{aligned}
$$

So, for $m \geq 4$ and $k \geq m+2$, it follows that

$$
\begin{aligned}
z\left(C_{k+m-2}^{(1)}\left(2^{\Delta-2}, 2^{1}\right)\right)-z\left(C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)\right) & =2^{\Delta-3}\left(2 B_{1}+B_{2}\right) \\
& =2^{\Delta-3}\left(F_{k-2}+F_{k-4}-2 F_{k-5}\right) F_{m-2}>0(*)
\end{aligned}
$$

When $k \geq 4$ and $m \geq k$, we have

$$
z\left(C_{4}^{(1)}\left(2^{\Delta-2},(m+k-4)^{1}\right)\right)-z\left(C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)\right)
$$

$$
\begin{aligned}
= & 2^{\Delta-1} F_{k+m+1}+2^{\Delta-3}\left[2 F_{1} F_{k+m-4}+(\Delta-2)\left(F_{5}+F_{3}\right) F_{k+m-3}\right] \\
& -2^{\Delta-1} F_{k+m+1}+2^{\Delta-3}\left[2 F_{k-3} F_{m}+(\Delta-2) F_{m+1}\left(F_{k+1}+F_{k-1}\right)\right] \\
= & 2^{\Delta-3}\left[2\left(F_{k+m-4}-F_{k-3} F_{m}\right)+(\Delta-2)\left(7 F_{k+m-3}-F_{m+1} F_{k+1}-F_{m+1} F_{k-1}\right)\right] \\
= & 2^{\Delta-3} 2\left(F_{k-3} F_{m}+F_{k-4} F_{m-1}-F_{k-3} F_{m}\right) \\
& +2^{\Delta-3}(\Delta-2)\left[7\left(F_{m-3} F_{k-1}+F_{m-2} F_{k}\right)-F_{m+1} F_{k+1}-F_{m+1} F_{k-1}\right] \\
= & 2^{\Delta-3} 2 F_{k-4} F_{m-1}+2^{\Delta-3}(\Delta-2)\left[\left(7 F_{m-3}-F_{m+1}\right) F_{k-1}+7 F_{m-2} F_{k}-F_{m+1} F_{k+1}\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1} \\
+ & 2^{\Delta-3}(\Delta-2)\left[\left(7 F_{m-3}-F_{4} F_{m-2}-F_{3} F_{m-3}\right) F_{k-1}+7 F_{m-2} F_{k}-F_{m+1} F_{k}-F_{m+1} F_{k-1}\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1} \\
& +2^{\Delta-3}(\Delta-2)\left[\left(5 F_{m-3}-3 F_{m-2}-F_{m+1}\right) F_{k-1}+\left(7 F_{m-2}-F_{3} F_{m-1}-F_{2} F_{m-2}\right) F_{k}\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1}+2^{\Delta-3}(\Delta-2)\left[\left(2 F_{m-3}-3 F_{m-4}-F_{m+1}\right) F_{k-1}+\left(6 F_{m-2}-2 F_{m-1}\right) F_{k}\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1} \\
& +2^{\Delta-3}(\Delta-2)\left[\left(2 F_{m-3}-3 F_{m-4}-F_{m+1}\right) F_{k-1}+\left(2 F_{m-2}+2 F_{m-4}\right)\left(F_{k-1}+F_{k-2}\right)\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1} \\
& +2^{\Delta-3}(\Delta-2)\left[\left(2 F_{m-3}-3 F_{m-4}+2 F_{m-2}+2 F_{m-4}-F_{m+1}\right) F_{k-1}+\left(2 F_{m-2}+2 F_{m-4}\right) F_{k-2}\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1}+2^{\Delta-3}(\Delta-2)\left[-\left(F_{m-2}+F_{m-4}\right) F_{k-1}+\left(F_{m-2}+F_{m-4}\right) 2 F_{k-2}\right] \\
= & 2^{\Delta-2} F_{k-4} F_{m-1}+2^{\Delta-3}(\Delta-2)\left(F_{m-2}+F_{m-4}\right)\left(2 F_{k-2}-F_{k-1}\right)>0 \quad(* *) .
\end{aligned}
$$

By the inequalities $\left(^{*}\right)$ and $\left({ }^{* *}\right)$, we find that $z\left(C_{k}^{(1)}\left(2^{\Delta-2}, m^{1}\right)\right)$ reaches its maximal value at $m=2$ or $k=4$. Here $k \geq m+2$ and m is even, or $4 \leq k \leq m$ and k is even.

Note that $k+m=n-2 \Delta+3$. So the couple $C_{k+m-2}^{(1)}\left(2^{\Delta-2}, 2^{1}\right)$ and $C_{4}^{(1)}\left(2^{\Delta-2},(m+\right.$ $k-4)^{1}$) are just $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ and $C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right)$, respectively. Finally, we will show that $z\left(C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right) \geq z\left(C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right)\right)$ with the equality holding if and only if $n=2 \Delta+3$ or $\Delta=4$. In fact, we have, for $n \geq 2 \Delta+3$,

$$
\begin{aligned}
& z\left(C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right)-z\left(C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right)\right) \\
& =2^{\Delta-3}\left[2\left(F_{n-2 \Delta-2}-F_{n-2 \Delta-1}\right)+(\Delta-2)\left(2 F_{n-2 \Delta+2}+2 F_{n-2 \Delta}-7 F_{n-2 \Delta}\right)\right] \\
& =2^{\Delta-3}\left[-2 F_{n-2 \Delta-3}+(\Delta-2)\left(2 F_{n-2 \Delta+2}-5 F_{n-2 \Delta}\right)\right] \\
& =2^{\Delta-3}\left[-2 F_{n-2 \Delta-3}+(\Delta-2)\left(2 F_{n-2 \Delta+1}-3 F_{n-2 \Delta}\right)\right] \\
& =2^{\Delta-3}\left[-2 F_{n-2 \Delta-3}+(\Delta-2) F_{n-2 \Delta-3}\right] \\
& =2^{\Delta-3}(\Delta-4) F_{n-2 \Delta-3} \geq 0,
\end{aligned}
$$

and for $n=2 \Delta+2$,

$$
\begin{aligned}
z\left(C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right)-z\left(C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right)\right)= & 2^{\Delta-3}\left[-2 F_{1}+(\Delta-2)\left(2 F_{4}+2 F_{2}-7 F_{2}\right)\right] \\
& =2^{\Delta-3}(\Delta-4) \geq 0
\end{aligned}
$$

The proof is completed.

Next we will prove the following four theorems, in which the graphs from $\mathcal{U}(n, \Delta)$ are characterized with maximal Hosoya index and minimal Merrifield-Simmons index.

Theorem 3.1. If $\Delta \geq \frac{n+1}{2}>3$, the graph from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index and minimal Merrifield-Simmons index is $C_{3}\left(2^{n-1-\Delta}, 1^{2 \Delta-1-n}\right)$. And $z\left(C_{3}\left(2^{n-1-\Delta}, 1^{2 \Delta-1-n}\right)\right)$ $=(3 \Delta-n+1) 2^{n-1-\Delta}, i\left(C_{3}\left(2^{n-1-\Delta}, 1^{2 \Delta-1-n}\right)\right)=2^{n-1-\Delta}+3^{n-\Delta} 2^{2 \Delta-1-n}$.

Proof. Suppose that a graph G from $\mathcal{U}(n, \Delta)$ has the maximal Hosoya index or the minimal Merrifield-Simmons index. By Lemmas 3.1 and 3.2, , we have $G \in \mathcal{U}_{2}(n, \Delta)$.

Thanks to Lemma 2.4, we find that G is $C_{n-\Delta+2}\left(1^{\Delta-2}\right)$ or of the form $C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right)$ where $k_{1}=1, k_{2}=2$. First we prove that G is not $C_{n-\Delta+2}\left(1^{\Delta-2}\right)$ by comparing the two indices of $C_{n-\Delta+2}\left(1^{\Delta-2}\right)$ and $C_{n-\Delta+1}\left(1^{\Delta-3}, 2^{1}\right)$. By Lemma 2.8, we have

$$
\begin{aligned}
& z\left(C_{n-\Delta+2}\left(1^{\Delta-2}\right)\right)=(\Delta-1) F_{n-\Delta+2}+2 F_{n-\Delta+1}, \\
& z\left(C_{n-\Delta+1}\left(1^{\Delta-3}, 2^{1}\right)\right)=(2 \Delta-3) F_{n-\Delta+1}+4 F_{n-\Delta}
\end{aligned}
$$

and

$$
\begin{aligned}
& i\left(C_{n-\Delta+2}\left(1^{\Delta-2}\right)\right)=2^{\Delta-2} F_{n-\Delta+3}+F_{n-\Delta+1} \\
& i\left(C_{n-\Delta+1}\left(1^{\Delta-3}, 2^{1}\right)\right)=3 \cdot 2^{\Delta-3} F_{n-\Delta+2}+2 F_{n-\Delta}
\end{aligned}
$$

So we get

$$
\begin{aligned}
& z\left(C_{n-\Delta+1}\left(1^{\Delta-3}, 2^{1}\right)\right)-z\left(C_{n-\Delta+2}\left(1^{\Delta-2}\right)\right) \\
& =(2 \Delta-3) F_{n-\Delta+1}-(\Delta-1) F_{n-\Delta+2}+2\left(2 F_{n-\Delta}-F_{n-\Delta+1}\right) \\
& =(\Delta-1)\left(2 F_{n-\Delta+1}-F_{n-\Delta+2}\right)-F_{n-\Delta+1}+2 F_{n-\Delta-2} \\
& =(\Delta-1) F_{n-\Delta-1}-F_{n-\Delta+1}+2 F_{n-\Delta-2} \\
& =(\Delta-3) F_{n-\Delta-1}+2 F_{n-\Delta}-F_{n-\Delta+1}>0,
\end{aligned}
$$

and

$$
\begin{aligned}
& i\left(C_{n-\Delta+2}\left(1^{\Delta-2}\right)\right)-i\left(C_{n-\Delta+1}\left(1^{\Delta-3}, 2^{1}\right)\right) \\
& =2^{\Delta-3}\left(2 F_{n-\Delta+3}-3 F_{n-\Delta+2}\right)+F_{n-\Delta+1}-2 F_{n-\Delta}
\end{aligned}
$$

$$
\begin{aligned}
& =2^{\Delta-3}\left(2 F_{n-\Delta+1}-F_{n-\Delta+2}\right)-F_{n-\Delta-2} \\
& =2^{\Delta-3} F_{n-\Delta-1}-F_{n-\Delta-2}>0 .
\end{aligned}
$$

So we claim that G is of the form $C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}\right)$ where $k_{1}=1$ and $k_{2}=2$. Secondly, we claim that

$$
z\left(C_{n-\Delta+1-l}\left(1^{\Delta-3-l}, 2^{l+1}\right)\right)>z\left(C_{n-\Delta+2-l}\left(1^{\Delta-2-l}, 2^{l}\right)\right)
$$

and

$$
i\left(C_{n-\Delta+1-l}\left(1^{\Delta-3-l}, 2^{l+1}\right)\right)<i\left(C_{n-\Delta+2-l}\left(1^{\Delta-2-l}, 2^{l}\right)\right)
$$

that is to say, after decreasing the length of C_{k} in $C_{k}\left(1^{l_{1}}, 2^{l_{2}}\right)$ by 1 and increasing the number of attached P_{3} 's in $C_{k}\left(1^{l_{1}}, 2^{l_{2}}\right)$ by 1 , the Hosoya index increases and the MerrifieldSimmons index decreases.

By Lemma 2.8, we have

$$
\begin{aligned}
& z\left(C_{n-\Delta+2-l}\left(1^{\Delta-2-l}, 2^{l}\right)\right)=2^{l-1}\left[(2 \Delta-2-l) F_{n-\Delta+2-l}+4 F_{n-\Delta+1-l}\right], \\
& z\left(C_{n-\Delta+1-l}\left(1^{\Delta-3-l}, 2^{l+1}\right)\right)=2^{l}\left[(2 \Delta-3-l) F_{n-\Delta+1-l}+4 F_{n-\Delta-l}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
& i\left(C_{n-\Delta+2-l}\left(1^{\Delta-2-l}, 2^{l}\right)\right)=3^{l} 2^{\Delta-2-l} F_{n-\Delta+3-l}+2^{l} F_{n-\Delta+1-l}, \\
& i\left(C_{n-\Delta+1-l}\left(1^{\Delta-3-l}, 2^{l+1}\right)\right)=3^{l+1} 2^{\Delta-3-l} F_{n-\Delta+2-l}+2^{l+1} F_{n-\Delta-l} .
\end{aligned}
$$

So we get

$$
\begin{aligned}
& z\left(C_{n-\Delta+1-l}\left(1^{\Delta-3-l}, 2^{l+1}\right)\right)-z\left(C_{n-\Delta+2-l}\left(1^{\Delta-2-l}, 2^{l}\right)\right) \\
& =2^{l-1}\left[(4 \Delta-6-2 l) F_{n-\Delta+1-l}+8 F_{n-\Delta-l}-(2 \Delta-2-l) F_{n-\Delta+2-l}-4 F_{n-\Delta+1-l}\right] \\
& =2^{l-1}\left[(4 \Delta-10-2 l) F_{n-\Delta+1-l}+8 F_{n-\Delta-l}-(2 \Delta-2-l) F_{n-\Delta+2-l}\right] \\
& =2^{l-1}\left[(4 \Delta-18-2 l) F_{n-\Delta+1-l}+8 F_{n-\Delta-l+2}-(2 \Delta-2-l) F_{n-\Delta+2-l}\right] \\
& =2^{l-1}\left[(2 \Delta-9-l) 2 F_{n-\Delta+1-l}-(2 \Delta-10-l) F_{n-\Delta+2-l}\right]>0,
\end{aligned}
$$

and

$$
\begin{aligned}
& i\left(C_{n-\Delta+2-l}\left(1^{\Delta-2-l}, 2^{l}\right)\right)-i\left(C_{n-\Delta+1-l}\left(1^{\Delta-3-l}, 2^{l+1}\right)\right) \\
& =3^{l} 2^{\Delta-3-l}\left[2 F_{n-\Delta+3-l}-3 F_{n-\Delta+2-l}\right]+2^{l}\left[F_{n-\Delta+1-l}-2 F_{n-\Delta-l}\right] \\
& =3^{l} 2^{\Delta-3-l} F_{n-\Delta-1-l}-2^{l} F_{n-\Delta-l-2}>0
\end{aligned}
$$

Therefore, for $\Delta \geq \frac{n+1}{2}>3, G$ is $C_{3}\left(2^{n-1-\Delta}, 1^{2 \Delta-1-n}\right)$. By Lemma 2.8, with a simple calculation, we have

$$
z\left(C_{3}\left(2^{n-1-\Delta}, 1^{2 \Delta-1-n}\right)\right)=(3 \Delta-n+1) 2^{n-1-\Delta}
$$

and

$$
i\left(C_{3}\left(2^{n-1-\Delta}, 1^{2 \Delta-1-n}\right)\right)=2^{n-1-\Delta}+3^{n-\Delta} 2^{2 \Delta-1-n}
$$

ending the proof.

Theorem 3.2. If $3<\Delta<\frac{n+1}{2}$, the graph from $\mathcal{U}(n, \Delta)$ with minimal Merrifield-Simmons index is $C_{3}\left(2^{\Delta-3},(n-2 \Delta+3)^{1}\right)$. And $i\left(C_{3}\left(2^{\Delta-3},(n-2 \Delta+3)^{1}\right)\right)=3^{\Delta-2} F_{n-2 \Delta+5}+$ $2^{\Delta-3} F_{n-2 \Delta+4}$.

Proof. Suppose that a graph G from $\mathcal{U}(n, \Delta)$ has the minimal Merrifield-Simmons index.
By Lemmas 3.1, 3.2 and 3.3, we have $G \in \mathcal{U}_{2}(n, \Delta)$.
Combining the arguments in the proof of Theorem 3.1, we find that if $3<\Delta<\frac{n+1}{2}$, G is of the form $C_{k}\left(2^{l_{1}}, k_{2}^{l_{2}}\right)$ where $k_{2} \geq 2$. In the next step, we will show that, in $G \cong C_{k}\left(2^{l_{1}}, k_{2}^{l_{2}}\right), 2 \leq k_{2}<n-2 \Delta+3$ is impossible when $3<\Delta<\frac{n+1}{2}$.

For $n-2 \Delta+3>l \geq 3$, by Lemmas 2.6 and 2.8, we have

$$
\begin{aligned}
& i\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right)=3^{\Delta-3} F_{n-2 \Delta+7-l} F_{l+2}+2^{\Delta-3} F_{n-2 \Delta+5-l} F_{l+1}, \\
& i\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)=3^{\Delta-2} F_{n-2 \Delta+5}+2^{\Delta-2} F_{n-2 \Delta+3} .
\end{aligned}
$$

So for $n-2 \Delta+3>l \geq 3$, we have

$$
\begin{aligned}
& i\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right)-i\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right) \\
&= 3^{\Delta-3}\left(F_{n-2 \Delta+7-l} F_{l+2}-3 F_{n-2 \Delta+5}\right)+2^{\Delta-3}\left(F_{n-2 \Delta+5-l} F_{l+1}-2 F_{n-2 \Delta+3}\right) \\
&= 3^{\Delta-3}\left[F_{n-2 \Delta+7-l} F_{l+2}-3\left(F_{l+2} F_{n-2 \Delta+4-l}+F_{l+1} F_{n-2 \Delta+3-l}\right)\right] \\
&+2^{\Delta-3}\left[F_{n-2 \Delta+5-l} F_{l+1}-2\left(F_{l+1} F_{n-2 \Delta+3-l}+F_{l} F_{n-2 \Delta+2-l}\right)\right] \\
&= 3^{\Delta-3}\left[2 F_{n-2 \Delta+3-l} F_{l+2}-3 F_{l+1} F_{n-2 \Delta+3-l}\right]+2^{\Delta-3}\left(F_{l+1}-2 F_{l}\right) F_{n-2 \Delta+2-l} \\
&= 3^{\Delta-3}\left(2 F_{l}-F_{l+1}\right) F_{n-2 \Delta+3-l}-2^{\Delta-3}\left(2 F_{l}-F_{l+1}\right) F_{n-2 \Delta+2-l}>0 .
\end{aligned}
$$

Thus, for $n-2 \Delta+3>l \geq 3$, we have $i\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)<i\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right)$. Finally, we look for the form of G by comparing the Hosoya indices of $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$ and $C_{3}\left(2^{\Delta-3},(n-2 \Delta+3)^{1}\right)$. Similarly, we have

$$
\begin{aligned}
i\left(C_{3}\left(2^{\Delta-3},(n-2 \Delta+3)^{1}\right)\right) & =3^{\Delta-3} F_{4} F_{n-2 \Delta+5}+2^{\Delta-3} F_{2} F_{n-2 \Delta+4} \\
& =3^{\Delta-2} F_{n-2 \Delta+5}+2^{\Delta-3} F_{n-2 \Delta+4} .
\end{aligned}
$$

Obviously, we get

$$
i\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)-i\left(C_{3}\left(2^{\Delta-3},(n-2 \Delta+3)^{1}\right)\right)=2^{\Delta-3}\left(2 F_{n-2 \Delta+3}-F_{n-2 \Delta+4}\right)>0 .
$$

Therefore, if $3<\Delta<\frac{n+1}{2}, G$ is $C_{3}\left(2^{\Delta-3},(n-2 \Delta+3)^{1}\right)$, and $i\left(C_{3}\left(2^{\Delta-3},(n-2 \Delta+\right.\right.$ $\left.\left.3)^{1}\right)\right)=3^{\Delta-2} F_{n-2 \Delta+5}+2^{\Delta-3} F_{n-2 \Delta+4}$, which finishes the proof.

Theorem 3.3. Suppose that $3<\Delta<\frac{n+1}{2}$. Let $G \in \mathcal{U}(n, \Delta)$ be a graph with the maximal Hosoya index. Then
(1) G is $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$ if $3<\Delta<6$, or $\frac{n-2}{2} \leq \Delta<\frac{n+1}{2}$, or $\Delta=\frac{n-4}{2}<10$, or $\frac{n-4}{2}>\Delta \in\{6,7\}$, or $\frac{n-5}{2}>\Delta=8$;
(2) G is $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$ or $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ if $\Delta=6=\frac{n-3}{2}$, or $\Delta=8=\frac{n-5}{2}$, or $\Delta=10=\frac{n-4}{2}$;
(3) G is $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ if $\Delta=\frac{n-3}{2}>6$, or $\Delta=\frac{n-4}{2}>10$, or $8<\Delta<\frac{n-4}{2}$.

And $z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)=2^{\Delta-3}\left(\Delta F_{n-2 \Delta+4}+4 F_{n-2 \Delta+3}\right), z\left(C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right)=$ $2^{\Delta-1} F_{n-2 \Delta+4}+2^{\Delta-2} F_{n-2 \Delta-2}+2^{\Delta-2}(\Delta-2)\left(F_{n-2 \Delta+2}+F_{n-2 \Delta}\right)$.

Proof. Note that if $\frac{n-1}{2} \leq \Delta<\frac{n+1}{2}$, the graph G must be in $\mathcal{U}_{2}(n, \Delta)$ from the application of Lemma 3.2. By Lemma 3.4, for $3<\Delta<\frac{n-1}{2}$, we find that G is either in $\mathcal{U}_{2}(n, \Delta)$, or $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ or $C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right)$.

First we will show that if G is in $\mathcal{U}_{2}(n, \Delta)$, then G must be $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$. Considering the arguments in the proof of Theorem 3.1, we find that G is of the form $C_{k}\left(2^{l_{1}}, k_{2}^{l_{2}}\right)$ where $k_{2} \geq 2$ if $G \in \mathcal{U}_{2}(n, \Delta)$. Next we will show that, in $C_{k}\left(2^{l_{1}}, k_{2}^{l_{2}}\right), k_{2}>2$ is impossible when $3<\Delta<\frac{n-1}{2}$. For $l \geq 3$, by Lemmas 2.6 and 2.8 , we have

$$
\begin{aligned}
& z\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right)=\left(F_{n-2 \Delta+7-l}+F_{n-2 \Delta+5-l}\right) 2^{\Delta-3} F_{l+1}+(\Delta-3) 2^{\Delta-4} F_{l+1} F_{n-2 \Delta+6-l} \\
&+2^{\Delta-3} F_{l} F_{n-2 \Delta+6-l} \\
&= 2^{\Delta-3}\left(F_{n-2 \Delta+7}+F_{l+1} F_{n-2 \Delta+5-l}\right)+(\Delta-3) 2^{\Delta-4} F_{l+1} F_{n-2 \Delta+6-l}, \\
& z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)=\left(F_{n-2 \Delta+5}+F_{n-2 \Delta+3}\right) 2^{\Delta-2}+(\Delta-2) 2^{\Delta-3} F_{n-2 \Delta+4} .
\end{aligned}
$$

So we obtain

$$
\begin{aligned}
& z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)-z\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right) \\
& =2^{\Delta-3}\left(2 F_{n-2 \Delta+5}+2 F_{n-2 \Delta+3}-F_{n-2 \Delta+7}-F_{l+1} F_{n-2 \Delta+5-l}\right)+2^{\Delta-3} F_{n-2 \Delta+4} \\
& \quad+(\Delta-3) 2^{\Delta-4}\left(2 F_{n-2 \Delta+4}-F_{l+1} F_{n-2 \Delta+6-l}\right) \\
& =2^{\Delta-3}\left(2 F_{n-2 \Delta+3}-F_{n-2 \Delta+4}-F_{l+1} F_{n-2 \Delta+5-l}\right)+2^{\Delta-3} F_{n-2 \Delta+4}
\end{aligned}
$$

$$
\begin{aligned}
& +(\Delta-3) 2^{\Delta-4}\left(2 F_{n-2 \Delta+4}-F_{l+1} F_{n-2 \Delta+6-l}\right) \\
= & 2^{\Delta-3}\left(2 F_{n-2 \Delta+3}-F_{l+1} F_{n-2 \Delta+5-l}\right)+(\Delta-3) 2^{\Delta-4}\left(2 F_{n-2 \Delta+4}-F_{l+1} F_{n-2 \Delta+6-l}\right),
\end{aligned}
$$

Set $D_{1}=2 F_{n-2 \Delta+3}-F_{l+1} F_{n-2 \Delta+5-l}$ and $D_{2}=2 F_{n-2 \Delta+4}-F_{l+1} F_{n-2 \Delta+6-l}$. Note that $n-2 \Delta+6-l \geq 3$ in $C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)$, that is to say, $l \leq n-2 \Delta+3$. If $l=n-2 \Delta+3$, then $D_{1}=2 F_{n-2 \Delta+3}-F_{n-2 \Delta+4} F_{2}=F_{n-2 \Delta+1}>0$, and $D_{2}=0$, so

$$
z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)-z\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right)=2^{\Delta-3} D_{1}+(\Delta-3) 2^{\Delta-4} D_{2}>0
$$

If $l \leq n-2 \Delta+2$, by Lemma 2.6, we have

$$
\begin{aligned}
D_{1} & =2 F_{n-2 \Delta+3}-\left(F_{n-2 \Delta+5}-F_{l} F_{n-2 \Delta+4-l}\right) \\
& =F_{l} F_{n-2 \Delta+4-l}-F_{n-2 \Delta+2} \\
& =F_{l} F_{n-2 \Delta+4-l}-\left(F_{l} F_{n-2 \Delta+3-l}+F_{l-1} F_{n-2 \Delta+2-l}\right) \\
& =F_{l} F_{n-2 \Delta+2-l}-F_{l-1} F_{n-2 \Delta+2-l} \geq 0, \\
D_{2} & =2 F_{l+1} F_{n-2 \Delta+4-l}+2 F_{l} F_{n-2 \Delta+3-l}-F_{l+1} F_{n-2 \Delta+6-l} \\
& =2 F_{l} F_{n-2 \Delta+3-l}-F_{l+1} F_{n-2 \Delta+3-l}>0 .
\end{aligned}
$$

Then we also have

$$
z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)-z\left(C_{n-2 \Delta+6-l}\left(2^{\Delta-3}, l^{1}\right)\right)=2^{\Delta-3} D_{1}+(\Delta-3) 2^{\Delta-4} D_{2}>0
$$

Therefore G must be $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$ if it is in $\mathcal{U}_{2}(n, \Delta)$, and $z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)=$ $2^{\Delta-3}\left(\Delta F_{n-2 \Delta+4}+4 F_{n-2 \Delta+3}\right)$. Thus we have $G \cong C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$ if $\frac{n-1}{2} \leq \Delta<\frac{n+1}{2}$. By Lemma 3.4, we find that G must be $C_{4}^{(1)}\left(2^{\Delta-2},(n-2 \Delta-1)^{1}\right)$ or $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ if it does not belong to $\mathcal{U}_{2}(n, \Delta)$. From the proof of Lemma 3.4, we have $z\left(C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right)=$ $2^{\Delta-1} F_{n-2 \Delta+4}+2^{\Delta-3}\left[2 F_{n-2 \Delta-2}+2(\Delta-2)\left(F_{n-2 \Delta+2}+F_{n-2 \Delta}\right)\right]$. Now we start to determine the graph from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index for $3<\Delta<\frac{n-1}{2}$. First set $E=z\left(C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)\right)-z\left(C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)\right)$. Then we have

$$
\begin{aligned}
E= & 2^{\Delta-1} F_{n-2 \Delta+3}+\Delta 2^{\Delta-3} F_{n-2 \Delta+4}-2^{\Delta-1} F_{n-2 \Delta+4} \\
& -2^{\Delta-3}\left[2 F_{n-2 \Delta-2}+2(\Delta-2)\left(F_{n-2 \Delta+2}+F_{n-2 \Delta}\right)\right] \\
= & -2^{\Delta-1} F_{n-2 \Delta+2}+2^{\Delta-3}\left[\Delta F_{n-2 \Delta+4}-2 F_{n-2 \Delta-2}-2(\Delta-2)\left(F_{n-2 \Delta+2}+F_{n-2 \Delta}\right)\right] \\
= & -2^{\Delta-1} F_{n-2 \Delta+2}+2^{\Delta-3}\left(\Delta F_{n-2 \Delta+1}-2 \Delta F_{n-2 \Delta}+4 F_{n-2 \Delta+2}+2 F_{n-2 \Delta}+2 F_{n-2 \Delta-1}\right) \\
= & 2^{\Delta-3}\left(\Delta F_{n-2 \Delta+1}-2 \Delta F_{n-2 \Delta}+4 F_{n-2 \Delta+2}+2 F_{n-2 \Delta+1}-4 F_{n-2 \Delta+2}\right) \\
= & 2^{\Delta-3}\left(2 F_{n-2 \Delta+1}-\Delta F_{n-2 \Delta-2}\right) .
\end{aligned}
$$

Let $M=2 F_{n-2 \Delta+1}-\Delta F_{n-2 \Delta-2}$. From Lemma 3.4, it is obvious that G is $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$
if $M>0, G$ is $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ if $M<0$, and G is $C_{n-2 \Delta+4}\left(2^{\Delta-2}\right)$ or $C_{n-2 \Delta+1}^{(1)}\left(2^{\Delta-1}\right)$ if $M=0$. We only need to consider the value of M. If $3<\Delta<6$, it follows that $M>0$. Also we easily obtain that $M>0$ when $n=2 \Delta+2$, i.e. $\Delta=\frac{n-2}{2}$. So in the following we always assume that $6 \leq \Delta<\frac{\Delta-2}{2}$. We distinguish the following three cases.

Case 1. $n=2 \Delta+3$.
In this case, we have $\Delta=\frac{n-3}{2}$. So $M=2 F_{4}-\Delta F_{1}=6-\Delta$. Obviously, $M<0$ if $\Delta>6$ and $M=0$ if $\Delta=6$.

Case 2. $n=2 \Delta+4$.
In this case, we have $\Delta=\frac{n-4}{2}$. So $M=2 F_{5}-\Delta F_{2}=10-\Delta$. Obviously, $M>0$ if $6 \leq \Delta<10$ and $M=0$ if $\Delta=10$ and $M<0$ if $\Delta>10$.

Case 3. $n>2 \Delta+4$.
In this case, we have $\Delta<\frac{n-4}{2}$. So, by Lemma 2.6, we obtain

$$
\begin{aligned}
M & =2\left(F_{n-2 \Delta-2} F_{4}+F_{n-2 \Delta-3} F_{3}\right)-\Delta F_{n-2 \Delta-2} \\
& =(6-\Delta) F_{n-2 \Delta-2}+4 F_{n-2 \Delta-3} .
\end{aligned}
$$

Then it is easy to see that $M>0$ if $6 \leq \Delta \leq 7$. And obviously, $M>0$ if $\Delta=8$ and $n>2 \Delta+5 ; M=0$ if $\Delta=8$ and $n=2 \Delta+5$. If $\Delta \geq 9$, we have

$$
M \leq 4 F_{n-2 \Delta-3}+(6-9) F_{n-2 \Delta-2}<0 .
$$

Combining all the above cases, our results follow.
Theorem 3.4. If $\Delta=3$, the graphs from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index is $C_{4}((n-$ $\left.4)^{1}\right)$ or $C_{n-2}\left(2^{1}\right), z\left(C_{4}\left((n-4)^{1}\right)\right)=z\left(C_{n-2}\left(2^{1}\right)\right)=F_{n+1}+2 F_{n-3}$; the graph from $\mathcal{U}(n, \Delta)$ with minimal Merrifield-Simmons index is $C_{3}\left((n-3)^{1}\right), i\left(C_{3}\left((n-3)^{1}\right)\right)=F_{n+1}+F_{n-1}$.

Proof. By Lemma 3.1 and Remark 2.1, we find that the graph from $\mathcal{U}(n, 3)$ with maximal Hosoya index and minimal Merrifield-Simmons index is of the form $C_{k}\left((n-k)^{1}\right)$ where $3 \leq k \leq n-1$.

From Lemmas 2.6 and 2.8, we have

$$
\begin{aligned}
z\left(C_{k}\left((n-k)^{1}\right)\right) & =F_{n-k+1}\left(F_{k-1}+F_{k+1}\right)+F_{k} F_{n-k} \\
& =F_{n-k+1} F_{k-1}+\left(F_{n-k+1} F_{k+1}+F_{n-k} F_{k}\right) \\
& =F_{k-1} F_{n-(k-1)}+F_{n+1},
\end{aligned}
$$

and

$$
\begin{aligned}
i\left(C_{k}\left((n-k)^{1}\right)\right) & =F_{k+1} F_{n-k+2}+F_{k-1} F_{n-k+1} \\
& =F_{k+1} F_{n-k+2}+F_{k} F_{n-k+1}-F_{k} F_{n-k+1}+F_{k-1} F_{n-k+1} \\
& =F_{n+2}-F_{k-2} F_{n+1-k} .
\end{aligned}
$$

Then, obviously, $z\left(C_{k}\left((n-k)^{1}\right)\right)=z\left(C_{n-k+2}\left((k-2)^{1}\right)\right)$ for $3 \leq k \leq n-1$, and $i\left(C_{k}\left((n-k)^{1}\right)\right)=i\left(C_{n-k+3}\left((k-3)^{1}\right)\right)$ for $4 \leq k \leq n-1$.

For $3<k<n-1$, in view of Lemma 2.6, we have

$$
\begin{aligned}
F_{3} F_{n-3}-F_{k} F_{n-k} & =F_{3}\left(F_{k-2} F_{n-k}+F_{k-3} F_{n-k-1}\right)-F_{k} F_{n-k} \\
& =F_{n-k}\left(F_{3} F_{k-2}-F_{k}\right)+F_{k-3} F_{n-k-1} F_{3} \\
& =-F_{n-k} F_{k-3}+2 F_{k-3} F_{n-k-1} \\
& =F_{k-3}\left(2 F_{n-k-1}-F_{n-k}\right)>0,
\end{aligned}
$$

and

$$
\begin{aligned}
F_{1} F_{n}-F_{k} F_{n+1-k} & =F_{k} F_{n+1-k}+F_{k-1} F_{n-k}-F_{k} F_{n+1-k} \\
& =F_{k-1} F_{n-k}>0 .
\end{aligned}
$$

So we have $F_{k} F_{n-k}<F_{3} F_{n-3}$ and $F_{k} F_{n+1-k}<F_{1} F_{n}$ for $3<k<n-1$. Then it is easy to see that $F_{k-1} F_{n-(k-1)}<F_{3} F_{n-3}$ and $F_{k-2} F_{n+1-k}<F_{1} F_{n}$ for $4<k<n-1$. That is to say, the maximal values of $F_{k-1} F_{n-(k-1)}$ and $F_{k-2} F_{n+1-k}$ are attained at $k=4$ or $n-2$, and $k=3$, respectively. Therefore, the graph from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index is $C_{4}\left((n-4)^{1}\right)$ or $C_{n-2}\left(2^{1}\right)$, and the graph from $\mathcal{U}(n, \Delta)$ with minimal MerrifieldSimmons index is $C_{3}\left((n-3)^{1}\right)$. By Lemma 2.8, we have $z\left(C_{4}\left((n-4)^{1}\right)\right)=z\left(C_{n-2}\left(2^{1}\right)\right)=$ $F_{n+1}+2 F_{n-3}$ and $i\left(C_{3}\left((n-3)^{1}\right)\right)=F_{n+1}+F_{n-1}$. This completes the proof.

Now all the extremal graphs from $\mathcal{U}(n, \Delta)$ maximizing the Hosoya index or minimizing the Merrifield-Simmons index are completely characterized. Finally, we would like to end this paper with the following remark which presents an interesting property of the graph from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index and minimal Merrifield-Simmons index.

Remark 3.1. In [3], the author showed that, among all trees of order n and with maximum degree Δ, the tree with with maximal Hosoya index and minimal Merrifield-Simmons index is $R\left(2^{n-1-\Delta}, 1^{2 \Delta-n+1}\right)$ if $\Delta \geq \frac{n-1}{2}$ or $R\left(2^{\Delta-1},(n-2 \Delta+1)^{1}\right)$ if $\Delta \leq \frac{n-1}{2}$. Note that, when
$\Delta \geq \frac{n+1}{2}$, the graph from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index and minimal MerrifieldSimmons index is a graph obtained from $R\left(2^{n-1-\Delta}, 1^{2 \Delta-n+1}\right)$ by adding an edge at two pendant vertices of two "rays" of length 1. But for $3 \leq \Delta<\frac{n+1}{2}$ the graphs from $\mathcal{U}(n, \Delta)$ with maximal Hosoya index and minimal Merrifield-Simmons index are not always unique.

Acknowledgements. The authors are grateful to the anonymous referee for some valuable comments and corrections, which have considerably improved the presentation of this paper.

References

[1] H. Hosoya, Topological index, Bull. Chem. Soc. Jpn. 44 (1971) 2332-2339.
[2] H. Y. Deng, The largest Hosoya index of (n,n+1) graphs, Comput. Math. Appl. 56 (2008) 2499-2506.
[3] S. Wagner, Extremal trees with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 57 (2007) 221-233.
[4] H. Y. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrified-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008) 171-190.
[5] I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197-210.
[6] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[7] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16-21.
[8] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[9] X. L. Li, H. X. Zhao, I. Gutman, On the Merrified-Simmons index of trees, MATCH Commun. Math. Comput. Chem. 54 (2005) 389-402.
[10] H. Y. Deng, The smallest Merrified-Simmons index of ($\mathrm{n}, \mathrm{n}+1$) graphs, Math. Comput. Model. 49 (2008) 320-326.
[11] X. L. Li, H. X. Zhao, On the Fibonacci numbers of trees, Fibonacci Quart. 44 (2006) 32-38.
[12] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.

[^0]: *supported by NSFC 10671095
 ${ }^{\dagger},{ }^{\ddagger}$ Corresponding author: xukexiang0922@yahoo.cn or kexxu1221@126.com

