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Abstract The Hosoya index of a graph is defined as the total number of the match-
ings, including the empty edge set, of the graph. The Merrifield-Simmons index of a
graph is defined as the total number of the independent vertex sets, including the empty
vertex set, of the graph. Let U(n, Δ) be the set of connected unicyclic graphs of order
n with maximum degree Δ. We consider the Hosoya indices and the Merrifield-Simmons
indices of graphs from U(n, Δ). In this paper, we characterize the graphs in U(n, Δ) with
the maximal Hosoya index and the minimal Merrifield-Simmons index, respectively, and
determine the corresponding indices.

1 Introduction

The Hosoya index and the Merrifield-Simmons index of a graph G are two well-known

topological indices in combinatorial chemistry. The former, denoted by z(G), is defined

as the total number of the matchings (independent edge subsets), including the empty

edge set, of the graph, and the latter, denoted by i(G), is defined as the total number of

the independent vertex sets, including the empty vertex set, of the graph.
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The Hosoya index was introduced by Hosoya [1] in 1971. Since its first introduction

the Hosoya index has received much attention (see [2, 3, 4, 5]). Moreover, it plays an

important role in studying the relation between molecular structure and physical and

chemical properties of certain hydrocarbon compounds. The Merrifield-Simmons index,

introduced by Merrifield and Simmons [6] in 1989, is the other topological index whose

mathematical properties can be found in some detail [7, 8, 9, 10]. In [6] it was shown that

i(G) is correlated with boiling points.

It is significant to determine the extremal (maximal or minimal) graphs with respect

to these two indices. By now, many nice results can be found in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

concerning the extremal graphs with respect to these two indices. For examples, trees,

unicyclic graphs, and so on, are of major interest. Especially, Wagner [3] characterizes the

extremal trees with maximal Hosoya index and minimal Merrifield-Simmons index. Deng

et al. [4] determine all the extremal unicyclic graphs with respect to these two indices.

All graphs considered in this paper are finite and simple. Let G be a graph with vertex set

V (G) and edge set E(G). For a vertex v ∈ V (G), we denote by NG(v) the neighbors of v

in G, and NG[v] = {v}⋃NG(v). dG(v) = |NG(v)| is called the degree of v in G or written

as d(v) for short. For other undefined notations and terminology from graph theory, the

readers are referred to [12].

Let U(n, Δ) be the set of connected unicyclic graphs of order n with maximum degree

Δ. In Section 2, we list some basic lemmas which will be used in the proofs. In Section 3,

we characterize the graphs in U(n, Δ) with the maximal Hosoya index and the minimal

Merrifield-Simmons index, respectively, and determine their corresponding indices.

2 Some lemmas

We first list three lemmas, which can be found in [6, 8], as basic but necessary

preliminaries.

Lemma 2.1. Let G be a graph, and v ∈ V (G), uv ∈ E(G). Then we have

(1) z(G) = z(G − v) +
∑

w∈NG(v)
z(G − {w, v}), z(G) = z(G − uv) + z(G − {u, v});
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(2) i(G) = i(G − v) + i(G − NG[v]).

Lemma 2.2. If G1, G2, · · ·, Gt are the components of a graph G, we have

(1) i(G) =
t∏

k=1
i(Gk);

(2) z(G) =
t∏

k=1
z(Gk).

Lemma 2.3. Let Fn be the nth Fibonacci number, that is, F0 = 0, F1 = F2 = 1, and

Fn = Fn−1 + Fn−2 for n ≥ 3. For a path Pn with n vertices (of length n − 1), we have

z(Pn) = Fn+1 and i(Pn) = Fn+2.

A tree is called a d − pode (see [3]) if it contains only one vertex v of degree d > 2. v

is called the center. Denote by R(c1, c2, · · · , cd) the d-pode where
d∑

k=1
ck = n− 1, ci is the

length of the i−th ”ray” going out from the center. That is to say, R(c1, c2, · · · , cd)− v =
d⋃

k=1
Pck

. For convenience, if the number of ck is lk, we write it as clk
k in the following. For

example, R(2, 2, 3, 3, 5) will be written as R(22, 32, 51) for short.

For some positive integers k1 ≤ k2 ≤ · · · ≤ km we denote by Ck(k
l1
1 , kl2

2 , · · · , klm
m ) a

graph obtained by attaching l1, l2, · · · , lm paths of length k1, k2, · · · , km, respectively, to

one vertex of Ck. For convenience, we let Ck = Ck(0
1) and Pk−1 = Ck((−1)1). And let

C
(l)
k (kl1

1 , kl2
2 , · · · , klm

m ) be a graph obtained from identifying a vertex of Ck with a pendant

vertex of Pl of the graph R(kl1
1 , kl2

2 , · · · , klm
m , l1) where l ≥ 1 and the value of l is independent

of those of k1, k2, · · · , km. For examples, the graphs C5(2
2, 32, 41) and C

(2)
5 (21, 32, 41) are

shown in Fig. 1.

C5(2
2, 32, 41) C

(2)
5 (21, 32, 41)

Fig. 1 The graphs C5(2
2, 32, 41) and C

(2)
5 (21, 32, 41)
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Lemma 2.4. ([3]) Let G �= K1 be a connected graph, v ∈ V (G). G(k, n − 1 − k) is the

graph resulting from attaching at v two paths of length k and n − 1 − k, respectively. Let

n = 4m + j where j ∈ {1, 2, 3, 4} and m ≥ 0. Then

z(G(1, n − 2)) < z(G(3, n − 4)) < · · · < z(G(2m + 2l − 1, n − 2m − 2l)) <

z(G(2m, n − 1 − 2m)) < · · · < z(G(2, n − 3)) < z(G(0, n − 1)),

and

i(G(1, n − 2)) > i(G(3, n − 4)) > · · · > i(G(2m + 2l − 1, n − 2m − 2l)) >

i(G(2m,n − 1 − 2m)) > · · · > i(G(2, n − 3)) > i(G(0, n − 1)).

Where l = � i−1
2
�, and G(0, n − 1) can be also viewed as a graph obtained by attaching at

v ∈ V (G) a path of length n − 1.

By repeating Lemma 2.4, the following remark is easily obtained.

Remark 2.1. ([3]) When a tree T of size t attached to a graph G is replaced by a path

Pt+1 as shown in Fig. 2, the Hosoya index increases, and the Merrifield-Simmons index

decreases.

................G GT −→

Fig. 2 The graphs in Remark 2.1

Lemma 2.5. ([2, 10]) Let P = u0u1u2 · · ·utut+1 be a path or a cycle (if u0 = ut+1) in

a graph G, where the degrees of u1, u2, · · ·ut in G are 2, t ≥ 1. G1 denotes the graph

that results from identifying ur(0 ≤ r ≤ t) with the vertex vk of a simple path v1v2 · · · vk,

G2 = G1 −urur+1 +ur+1v1 (see Fig. 3). Then we have z(G1) < z(G2) and i(G1) > i(G2).

By the definition of the Fibonacci number, the following lemma can be obtained.

Lemma 2.6. ([4]) Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n.

From Lemmas 2.1, 2.2, 2.3 and 2.6, the following two lemmas holds immediately.
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u1

ur
vk−1

v1
ur+1

ut+1

u0 ur

vk−1

v1

ur+1ut+1

−→

G1 G2

..........

Fig. 3 The graphs in Lemma 2.5

Lemma 2.7. z(R(2Δ−2, l,m)) = 2Δ−2Fl+m+2 + (Δ − 2)2Δ−3Fl+1Fm+1

i(R(2Δ−2, l,m)) = 3Δ−2Fl+2Fm+2 + 2Δ−2Fl+1Fm+1.

Lemma 2.8. z(Ck(k
l1
1 , kl2

2 , · · · , klm
m )) = (Fk+1 + Fk−1 +

m∑
j=1

ljFkFkj

Fkj+1
)

m∏
j=1

F
lj
kj+1,

i(Ck(k
l1
1 , kl2

2 , · · · , klm
m )) = Fk+1

m∏
j=1

F
lj
kj+2 + Fk−1

m∏
j=1

F
lj
kj+1.

Lemma 2.9. For two positive integers k and m, we have

FkFm − Fk−1Fm+1 =

{
(−1)k−1Fm−k+1 if k ≤ m;
(−1)m−1Fk−m−1 if k > m.

Proof . We only prove the case when k ≤ m, and the proof for the case when k > m is

similar and is therefore omitted.

FkFm − Fk−1Fm+1

= (Fk−1 + Fk−2)Fm − Fk−1(Fm + Fm−1)

= (−1)1(Fk−1Fm−1 − Fk−2Fm)

= (−1)1[(Fk−2 + Fk−3)Fm−1 − Fk−2(Fm−1 + Fm−2)]

= (−1)2[Fk−2Fm−2 − Fk−3Fm−1]

= · · · · · ·

= (−1)k−2[F2Fm−(k−2) − F1Fm−(k−3)]

= (−1)k−1Fm−k+1.

Thus the proof is completed.
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3 Main results

Now we start to consider the maximal Hosoya index and minimal Merrifield-Simmons

index of graphs in U(n, Δ). If Δ = 2, only one graph, the cycle Cn, belongs to U(n, Δ).

When Δ = n − 1, the set U(n, Δ) consists of a single graph C3(1
n−3), which is a graph

obtained from the star Sn by adding an edge. So, in the following, we always assume that

2 < Δ < n − 1.

In order to continue our study, we first choose two subsets of U(n, Δ). Denote by

U1(n, Δ) the set of all graphs C
(l)
k (kl1

1 , kl2
2 ) where 1 ≤ k2 ≤ 2 when k1 = 1, k2 ≥ 2 when

k1 = 2, and l2 = 1 when k2 > 2. And we denote by U2(n, Δ) the set of all graphs

Ck(k
l1
1 , kl2

2 ) where 1 ≤ k2 ≤ 2 when k1 = 1, k2 ≥ 2 when k1 = 2, and l2 = 1 when k2 > 2.

Lemma 3.1. Suppose that G∗ from U(n, Δ) has maximal Hosoya index or minimal

Merrifield-Simmons index. Then, either G∗ ∈ U1(n, Δ) or G∗ ∈ U2(n, Δ).

Proof . Suppose that the unique cycle in G∗ is C0.

If all vertices of maximum degree Δ are not on the cycle C0, Let T1 be a subtree

such that V (T1) \ V (C0) contains a vertex of degree Δ. By Remark 2.1, if we replace

all subtrees attached at C0 by paths of the same order, the Hosoya index will increase.

Therefore, after removing the paths attached at C0 but not in T1 and enlarging the length

of C0 while the obtained graph is still in U(n, Δ), in view of Remark 2.1 and Lemma 2.5,

the Hosoya index will increase again. By Lemma 2.4, all paths attached at the vertex

of degree Δ in T1 must be of the lengths 1 or 2 except a unique possible path of length

k > 2. So G∗ belongs to U1(n, Δ). Note that if all the vertices of degree Δ have Δ − 1

neighbors of degree 1, then it is the case when k1 = k2 = 1.

If there exists a vertex of degree Δ which is on the cycle C0, by a similar argument, we

have G∗ ∈ U2(n, Δ). The proof for the Merrifield-Simmons index is completely analogous

and is omitted. This completes the proof.

Lemma 3.2. If Δ ≥ n−1
2

, and G1 ∈ U1(n, Δ), then there exists a graph G2 ∈ U2(n, Δ)

such that z(G2) > z(G1) and i(G1) > i(G2).
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Proof . Suppose that G1 = C
(l)
k (kl1

1 , kl2
2 ). First we claim that k1 = 1 in G1. Otherwise,

by Lemma 2.4, the graph R(kl1
1 , kl2

2 , l) in G1 must be R(2Δ−1, l), we find that the order of

G1 is 2(Δ− 1) + 1 + l + k − 1 > 2Δ− 1 + 1 + 2 = 2Δ + 2 > 2Δ + 1 ≥ n (l ≥ 1, k ≥ 3), a

contradiction.

Consider a graph G2 = Ck+l+1(1
l1−1, 2l2) from U2(n, Δ) as shown in Fig. 4. By

applying (1) of Lemma 2.1 to the edges v0v1 and v1v2 of G1 and G2, respectively, we have

z(G1) = z(G1 − v0v1) + z(Pk−2)z(R(1l1 , 2l2 , l − 1))

......
.....

..........
.............

........

.........

.........
..........

............

.............

.....

.........
Ck Ck+l+1

v0 v0

v1 v1v2 v2

G1 G2

Fig. 4 The graphs G1 and G2 for Δ ≥ n−1
2

and

z(G2) = z(G2 − v1v2) + z(G2 − {v1, v2})
= z(G2 − v1v2) + z(Pk−2)z(R(1l1−1, 2l2 , l)) + z(Pk−3)z(R(1l1−1, 2l2 , l − 1)).

Note that G1−v0v1
∼= G2−v1v2, and by Lemma 2.4, z(R(1l1−1, 2l2 , l)) > z(R(1l1 , 2l2 , l−

1)), so we have z(G2) > z(G1).

By Lemmas 2.1 and 2.8, we get

i(G1) = 2l13l2i(Ck((l − 1)1) + 2l2i(Ck((l − 2)1))

= 2l13l2(Fk+l+1 − Fk−2Fl) + 2l2(Fk+l − Fk−2Fl−1)

and

i(G2) = 2l1−13l2Fk+l+2 + 2l2Fk+l.

When l = 1 or 2, a simple calculation shows the validity of the formula of i(G1). So,

by Lemma 2.6, we have

i(G1) − i(G2) = 2l1−13l2(2Fk+l+1 − 2Fk−2Fl − Fk+l+2) + 2l2(Fk+l − Fk−2Fl−1 − Fk+l)

= 2l1−13l2(Fk+l−1 − 2Fk−2Fl) − 2l2Fk−2Fl−1

= 2l1−13l2(Fk−1Fl+1 − Fk−2Fl) − 2l2Fk−2Fl−1

= 2l1−13l2(Fk−1Fl + Fk−1Fl−1 − Fk−2Fl) − 2l2Fk−2Fl−1
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= 2l1−13l2(Fk−1Fl − Fk−2Fl) + 2l1−13l2Fk−1Fl−1 − 2l2Fk−2Fl−1 > 0.

If k1 = k2 = 1, it implies that l2 = 0. Obviously, z(G2) > z(G1) and i(G1) > i(G2).

This completes the proof.

Lemma 3.3. If Δ < n−1
2

, and G1 ∈ U1(n, Δ), then there exists a graph G2 ∈ U2(n, Δ)

such that i(G1) > i(G2).

Proof . Suppose that G1 = C
(l)
k (kl1

1 , kl2
2 ). If k1 = 1 and k2 = 2, or k1 = k2 = 1, with a

similar method as in Lemma 3.2, our result follows.

Suppose that k1 = 2. Then the graph G1 is isomorphic to C
(l)
k (2Δ−2,m1) where m ≥ 2.

We choose a graph G2 = Ck+l+m(2Δ−2) from U2(n, Δ) as shown in Fig. 5.

By Lemmas 2.1 and 2.8, we have

..........
......................

...............

................

..........

..........

..........

.......

............

........... ..........Ck

.....
Ck+l+m

v0 v0

v1 v1

v2 v2
G1 G2

Fig. 5 The graphs G1 and G2 for Δ < n−1
2

i(G1) = 3Δ−2Fm+2i(Ck((l − 1)1) + 2Δ−2Fm+1i(Ck((l − 2)1))

= 3Δ−2Fm+2(Fk+l+1 − Fk−2Fl) + 2Δ−2Fm+1(Fk+l − Fk−2Fl−1)

and

i(G2) = 3Δ−2Fk+l+m+1 + 2Δ−2Fk+l+m−1.

Note that the formula of i(G1) holds if l = 1 or l = 2. So we have

i(G1) − i(G2) = 3Δ−2[Fm+2(Fk+l+1 − Fk−2Fl) − Fk+l+m+1]

+ 2Δ−2[Fm+1(Fk+l − Fk−2Fl−1) − Fk+l+m−1]

Set A1 = Fm+2(Fk+l+1 − Fk−2Fl) − Fk+l+m+1 and A2 = Fm+1(Fk+l − Fk−2Fl−1) −
Fk+l+m−1. Then, by Lemma 2.6, we have

A1 = Fm+2Fk+l+1 − Fm+2Fk−2Fl − (Fk+l+1Fm+1 + Fk+lFm)

= FmFk+l+1 − Fm+2Fk−2Fl − Fk+lFm

= FmFk+l−1 − Fm+2Fk−2Fl
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= Fm(Fk−1Fl+1 + Fk−2Fl) − (Fm+1 + Fm)Fk−2Fl

= FmFk−1Fl+1 − Fm+1Fk−2Fl

= Fm(Fk−2 + Fk−3)Fl + FmFk−1Fl−1 − FmFk−2Fl − Fm−1Fk−2Fl

= FmFk−3Fl + FmFk−1Fl−1 − Fm−1Fk−2Fl

= 1
2
(Fm2Fk−3Fl − Fm−1Fk−2Fl + FmFk−12Fl−1 − Fm−1Fk−2Fl) > 0

and

A2 = Fm+1Fk+l − Fm+1Fk−2Fl−1 − (Fm+1Fk+l−1 + FmFk+l−2)

= Fm+1Fk+l−2 − Fm+1Fk−2Fl−1 − FmFk+l−2

= Fm−1Fk+l−2 − Fm+1Fk−2Fl−1

= Fm−1(Fk−1Fl + Fk−2Fl−1) − (Fm + Fm−1)Fk−2Fl−1

= Fm−1Fk−1Fl − FmFk−2Fl−1.

Note that A1 > 0, thus, by Lemma 2.6, we get

i(G1) − i(G2) = 3Δ−2A1 + 2Δ−2A2

> 2Δ−2(A1 + A2)

= 2Δ−2(FmFk−1Fl+1 − Fm+1Fk−2Fl + Fm−1Fk−1Fl − FmFk−2Fl−1)

= 2Δ−2(Fk−1Fm+l − Fk−2Fm+l) > 0.

Therefore i(G1) > i(G2) as desired. By now we complete the proof.

Lemma 3.4. Suppose that 4 ≤ Δ < n−1
2

. Let G be the graph from U(n, Δ) with maximal

Hosoya index. Then G ∈ U2(n, Δ), or

(1) G ∈ {C(1)
n−2Δ+1(2

Δ−1)}⋃U2(n, Δ) if n = 2Δ + 2 or n > 2Δ + 3 and Δ > 4;

(2) G ∈ {C(1)
4 (2Δ−2, (n − 2Δ − 1)1), C

(1)
n−2Δ+1(2

Δ−1)} if n = 2Δ + 3, or Δ = 4.

Proof . From Lemma 3.1, G ∈ U1(n, Δ) or G ∈ U2(n, Δ). If the latter holds, we are done.

If G ∼= C
(l)
k (kl1

1 , kl2
2 ) ∈ U1(n, Δ), we claim that k1 = 2. Otherwise, suppose that k1 = 1.

With a similar argument that as used in the proof of Lemma 3.2, we can find a graph G2

from U2(n, Δ) such that z(G2) > z(G), a contradiction to the choice of G.

Suppose that k1 = 2. Then, G is isomorphic to C
(l)
k (2Δ−2,m1) where m ≥ 2. For

convenience, we denote G by G1. Next we claim that l = 1. Suppose to the contrary

that l ≥ 2. We choose a graph G2 = Ck+l+m(2Δ−2) from U2(n, Δ) as shown in Fig. 4. By
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applying Lemma 2.1 to G1 and G2 (in a same way as in the proof of Lemma 3.2, denote

by G0 the isomorphic couple G1−v0v1 and G2−v1v2), from Lemmas 2.6 and 2.7, we have

z(G1) = z(G0) + z(Pk−2)z(R(2Δ−2, l − 1,m))

= z(G0) + 2Δ−2Fk−1Fl+m+1 + (Δ − 2)2Δ−3FlFm+1Fk−1

and

z(G2) = z(G0) + z(R(2Δ−2, k + l − 2,m − 1)

= z(G0) + 2Δ−2Fk+l+m−1 + (Δ − 2)2Δ−3Fk+l−1Fm.

So, by Lemma 2.6, we have

z(G2)−z(G1) = 2Δ−2(Fk+l+m−1−Fk−1Fl+m+1)+(Δ−2)2Δ−3(Fk+l−1Fm−FlFm+1Fk−1)

= 2Δ−2(Fk−1Fl+m+1 + Fk−2Fl+m − Fk−1Fl+m+1)

+ (Δ − 2)2Δ−3(Fk+l−1Fm − FlFm+1Fk−1)

= 2Δ−2Fk−2Fl+m + (Δ − 2)2Δ−3(Fk+l−1Fm − FlFm+1Fk−1)

Set A = Fk+l−1Fm − FlFm+1Fk−1. Then, from Lemma 2.6, we have

A = (FkFl + Fk−1Fl−1)Fm − Fk−1Fl(Fm + Fm−1)

= FkFlFm − Fk−1FmFl−2 − Fk−1FlFm−1

= (Fk−1 + Fk−2)FlFm − Fk−1FmFl−2 − Fk−1FlFm−1

= Fk−1(Fl−1 + Fl−2)(Fm−1 + Fm−2) + Fk−2FlFm − Fk−1Fl−2(Fm−1 + Fm−2)

− Fk−1(Fl−1 + Fl−2)Fm−1

= Fk−1Fl−1Fm−2 + Fk−2FlFm − Fk−1Fl−2Fm−1

= 1
2
(Fk−1Fl−12Fm−2 + 2Fk−2FlFm − 2Fk−1Fl−2Fm−1)

> 1
2
(Fk−1Fl−1Fm−1 − Fk−1Fl−2Fm−1 + Fk−1FlFm − Fk−1Fl−2Fm−1) > 0.

So z(G2) − z(G1) > 0. A contradiction to the maximality of z(G1). Therefore G ∼=
C

(1)
k (2Δ−2,m1).

Set B = z(G2) − z(G1). From the above computation and by Lemma 2.9, we have

B = z(Ck+1+m(2Δ−2)) − z(C
(1)
k (2Δ−2, m1))

= 2Δ−2Fk−2Fm+1 + (Δ − 2)2Δ−3(FkFm − Fm+1Fk−1)

=

⎧⎪⎨
⎪⎩

2Δ−2Fk−2Fm+1 + (−1)k−1(Δ − 2)2Δ−3Fm−k+1 if k ≤ m;

2Δ−2Fk−2Fm+1 + (−1)m−1(Δ − 2)2Δ−3Fk−m−1 if k > m.

It is easy to see that B > 0 if k ≤ m and k is odd, or m < k and m is odd, or k = 3,
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or k = m + 1. By the choice of G, we only consider the cases where 4 ≤ k ≤ m and k is

even, or k ≥ m + 2 and m is even. By Lemmas 2.1, 2.3 and 2.6, we have

z(C
(1)
k (2Δ−2,m1)) = z(Ck)z(R(2Δ−2,m1) + z(Pk−1)2

Δ−2Fm+1

= (Fk+1+Fk−1)[2
Δ−2(Fm+1+Fm)+(Δ−2)2Δ−3Fm+1]+2Δ−2FkFm+1

= 2Δ−2[(Fk+1 + Fk + Fk−1)Fm+1 + (Fk+1 + Fk−1)Fm]

+ (Δ − 2)2Δ−3Fm+1(Fk+1 + Fk−1)

= 2Δ−2[2Fk+1Fm+1 + 2FkFm + (Fk+1 + Fk−1 − 2Fk)Fm]

+ (Δ − 2)2Δ−3Fm+1(Fk+1 + Fk−1)

= 2Δ−2[2Fk+m+1 + Fk−3Fm] + (Δ − 2)2Δ−3Fm+1(Fk+1 + Fk−1)

= 2Δ−1Fk+m+1 + 2Δ−3[2Fk−3Fm + (Δ − 2)Fm+1(Fk+1 + Fk−1)].

When m ≥ 4 and k ≥ m + 2, we have

z(C
(1)
k+m−2(2

Δ−2, 21)) − z(C
(1)
k (2Δ−2,m1))

= 2Δ−1Fk+m+1 + 2Δ−3[2Fk+m−5F2 + (Δ − 2)F3(Fk+m−1 + Fk+m−3)]

− 2Δ−1Fk+m+1 + 2Δ−3[2Fk−3Fm + (Δ − 2)Fm+1(Fk+1 + Fk−1)]

= 2Δ−3[2(Fk+m−5 −Fk−3Fm)+ (Δ− 2)(2Fk+m−1 +2Fk+m−3 −Fm+1Fk+1 −Fm+1Fk−1)]

Set B1 = Fk+m−5 − Fk−3Fm and B2 = 2Fk+m−1 + 2Fk+m−3 − Fm+1Fk+1 − Fm+1Fk−1.

Then, by Lemma 2.6, we have

B1 = Fk−3Fm−1 + Fk−4Fm−2 − Fk−3Fm

= Fk−4Fm−2 − Fk−3Fm−2 = −Fk−5Fm−2,

B2 = 2(Fk+1Fm−1 + FkFm−2) − Fm+1Fk+1 + 2(Fk−1Fm−1 + Fk−2Fm−2) − Fm+1Fk−1

= Fk+1(2Fm−1 − Fm+1) + Fk−1(2Fm−1 − Fm+1) + 2Fm−2(Fk + Fk−2)

= −(Fk+1 + Fk−1)Fm−2 + 2Fm−2(Fk + Fk−2)

= (2Fk − Fk+1 + 2Fk−2 − Fk−1)Fm−2

= (Fk−2 + Fk−4)Fm−2.

So, for m ≥ 4 and k ≥ m + 2, it follows that

z(C
(1)
k+m−2(2

Δ−2, 21)) − z(C
(1)
k (2Δ−2,m1)) = 2Δ−3(2B1 + B2)

= 2Δ−3(Fk−2 + Fk−4 − 2Fk−5)Fm−2 > 0 (∗).
When k ≥ 4 and m ≥ k, we have

z(C
(1)
4 (2Δ−2, (m + k − 4)1)) − z(C

(1)
k (2Δ−2,m1))
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= 2Δ−1Fk+m+1 + 2Δ−3[2F1Fk+m−4 + (Δ − 2)(F5 + F3)Fk+m−3]

− 2Δ−1Fk+m+1 + 2Δ−3[2Fk−3Fm + (Δ − 2)Fm+1(Fk+1 + Fk−1)]

= 2Δ−3[2(Fk+m−4 − Fk−3Fm) + (Δ − 2)(7Fk+m−3 − Fm+1Fk+1 − Fm+1Fk−1)]

= 2Δ−32(Fk−3Fm + Fk−4Fm−1 − Fk−3Fm)

+ 2Δ−3(Δ − 2)[7(Fm−3Fk−1 + Fm−2Fk) − Fm+1Fk+1 − Fm+1Fk−1]

= 2Δ−32Fk−4Fm−1 + 2Δ−3(Δ − 2)[(7Fm−3 − Fm+1)Fk−1 + 7Fm−2Fk − Fm+1Fk+1]

= 2Δ−2Fk−4Fm−1

+ 2Δ−3(Δ − 2)[(7Fm−3 − F4Fm−2 − F3Fm−3)Fk−1 + 7Fm−2Fk − Fm+1Fk − Fm+1Fk−1]

= 2Δ−2Fk−4Fm−1

+ 2Δ−3(Δ − 2)[(5Fm−3 − 3Fm−2 − Fm+1)Fk−1 + (7Fm−2 − F3Fm−1 − F2Fm−2)Fk]

= 2Δ−2Fk−4Fm−1 + 2Δ−3(Δ− 2)[(2Fm−3 − 3Fm−4 −Fm+1)Fk−1 + (6Fm−2 − 2Fm−1)Fk]

= 2Δ−2Fk−4Fm−1

+ 2Δ−3(Δ − 2)[(2Fm−3 − 3Fm−4 − Fm+1)Fk−1 + (2Fm−2 + 2Fm−4)(Fk−1 + Fk−2)]

= 2Δ−2Fk−4Fm−1

+2Δ−3(Δ−2)[(2Fm−3−3Fm−4+2Fm−2+2Fm−4−Fm+1)Fk−1+(2Fm−2+2Fm−4)Fk−2]

= 2Δ−2Fk−4Fm−1 + 2Δ−3(Δ − 2)[−(Fm−2 + Fm−4)Fk−1 + (Fm−2 + Fm−4)2Fk−2]

= 2Δ−2Fk−4Fm−1 + 2Δ−3(Δ − 2)(Fm−2 + Fm−4)(2Fk−2 − Fk−1) > 0 (∗∗).
By the inequalities (*) and (**), we find that z(C

(1)
k (2Δ−2, m1)) reaches its maximal

value at m = 2 or k = 4. Here k ≥ m + 2 and m is even, or 4 ≤ k ≤ m and k is even.

Note that k + m = n − 2Δ + 3. So the couple C
(1)
k+m−2(2

Δ−2, 21) and C
(1)
4 (2Δ−2, (m +

k − 4)1) are just C
(1)
n−2Δ+1(2

Δ−1) and C
(1)
4 (2Δ−2, (n − 2Δ − 1)1), respectively. Finally, we

will show that z(C
(1)
n−2Δ+1(2

Δ−1)) ≥ z(C
(1)
4 (2Δ−2, (n−2Δ−1)1)) with the equality holding

if and only if n = 2Δ + 3 or Δ = 4. In fact, we have, for n ≥ 2Δ + 3,

z(C
(1)
n−2Δ+1(2

Δ−1)) − z(C
(1)
4 (2Δ−2, (n − 2Δ − 1)1))

= 2Δ−3[2(Fn−2Δ−2 − Fn−2Δ−1) + (Δ − 2)(2Fn−2Δ+2 + 2Fn−2Δ − 7Fn−2Δ)]

= 2Δ−3[−2Fn−2Δ−3 + (Δ − 2)(2Fn−2Δ+2 − 5Fn−2Δ)]

= 2Δ−3[−2Fn−2Δ−3 + (Δ − 2)(2Fn−2Δ+1 − 3Fn−2Δ)]

= 2Δ−3[−2Fn−2Δ−3 + (Δ − 2)Fn−2Δ−3]

= 2Δ−3(Δ − 4)Fn−2Δ−3 ≥ 0,
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and for n = 2Δ + 2,

z(C
(1)
n−2Δ+1(2

Δ−1))−z(C
(1)
4 (2Δ−2, (n−2Δ−1)1)) = 2Δ−3[−2F1+(Δ−2)(2F4+2F2−7F2)]

= 2Δ−3(Δ − 4) ≥ 0.

The proof is completed.

Next we will prove the following four theorems, in which the graphs from U(n, Δ) are

characterized with maximal Hosoya index and minimal Merrifield-Simmons index.

Theorem 3.1. If Δ ≥ n+1
2

> 3, the graph from U(n, Δ) with maximal Hosoya index and

minimal Merrifield-Simmons index is C3(2
n−1−Δ, 12Δ−1−n). And z(C3(2

n−1−Δ, 12Δ−1−n))

= (3Δ − n + 1)2n−1−Δ, i(C3(2
n−1−Δ, 12Δ−1−n)) = 2n−1−Δ + 3n−Δ22Δ−1−n.

Proof . Suppose that a graph G from U(n, Δ) has the maximal Hosoya index or the

minimal Merrifield-Simmons index. By Lemmas 3.1 and 3.2, , we have G ∈ U2(n, Δ).

Thanks to Lemma 2.4, we find that G is Cn−Δ+2(1
Δ−2) or of the form Ck(k

l1
1 , kl2

2 )

where k1 = 1, k2 = 2. First we prove that G is not Cn−Δ+2(1
Δ−2) by comparing the two

indices of Cn−Δ+2(1
Δ−2) and Cn−Δ+1(1

Δ−3, 21). By Lemma 2.8, we have

z(Cn−Δ+2(1
Δ−2)) = (Δ − 1)Fn−Δ+2 + 2Fn−Δ+1,

z(Cn−Δ+1(1
Δ−3, 21)) = (2Δ − 3)Fn−Δ+1 + 4Fn−Δ,

and

i(Cn−Δ+2(1
Δ−2)) = 2Δ−2Fn−Δ+3 + Fn−Δ+1,

i(Cn−Δ+1(1
Δ−3, 21)) = 3 · 2Δ−3Fn−Δ+2 + 2Fn−Δ.

So we get

z(Cn−Δ+1(1
Δ−3, 21)) − z(Cn−Δ+2(1

Δ−2))

= (2Δ − 3)Fn−Δ+1 − (Δ − 1)Fn−Δ+2 + 2(2Fn−Δ − Fn−Δ+1)

= (Δ − 1)(2Fn−Δ+1 − Fn−Δ+2) − Fn−Δ+1 + 2Fn−Δ−2

= (Δ − 1)Fn−Δ−1 − Fn−Δ+1 + 2Fn−Δ−2

= (Δ − 3)Fn−Δ−1 + 2Fn−Δ − Fn−Δ+1 > 0,

and

i(Cn−Δ+2(1
Δ−2)) − i(Cn−Δ+1(1

Δ−3, 21))

= 2Δ−3(2Fn−Δ+3 − 3Fn−Δ+2) + Fn−Δ+1 − 2Fn−Δ
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= 2Δ−3(2Fn−Δ+1 − Fn−Δ+2) − Fn−Δ−2

= 2Δ−3Fn−Δ−1 − Fn−Δ−2 > 0.

So we claim that G is of the form Ck(k
l1
1 , kl2

2 ) where k1 = 1 and k2 = 2. Secondly, we

claim that

z(Cn−Δ+1−l(1
Δ−3−l, 2l+1)) > z(Cn−Δ+2−l(1

Δ−2−l, 2l))

and

i(Cn−Δ+1−l(1
Δ−3−l, 2l+1)) < i(Cn−Δ+2−l(1

Δ−2−l, 2l))

that is to say, after decreasing the length of Ck in Ck(1
l1 , 2l2) by 1 and increasing the

number of attached P3’s in Ck(1
l1 , 2l2) by 1, the Hosoya index increases and the Merrifield–

Simmons index decreases.

By Lemma 2.8, we have

z(Cn−Δ+2−l(1
Δ−2−l, 2l)) = 2l−1[(2Δ − 2 − l)Fn−Δ+2−l + 4Fn−Δ+1−l],

z(Cn−Δ+1−l(1
Δ−3−l, 2l+1)) = 2l[(2Δ − 3 − l)Fn−Δ+1−l + 4Fn−Δ−l],

and

i(Cn−Δ+2−l(1
Δ−2−l, 2l)) = 3l2Δ−2−lFn−Δ+3−l + 2lFn−Δ+1−l,

i(Cn−Δ+1−l(1
Δ−3−l, 2l+1)) = 3l+12Δ−3−lFn−Δ+2−l + 2l+1Fn−Δ−l.

So we get

z(Cn−Δ+1−l(1
Δ−3−l, 2l+1)) − z(Cn−Δ+2−l(1

Δ−2−l, 2l))

= 2l−1[(4Δ − 6 − 2l)Fn−Δ+1−l + 8Fn−Δ−l − (2Δ − 2 − l)Fn−Δ+2−l − 4Fn−Δ+1−l]

= 2l−1[(4Δ − 10 − 2l)Fn−Δ+1−l + 8Fn−Δ−l − (2Δ − 2 − l)Fn−Δ+2−l]

= 2l−1[(4Δ − 18 − 2l)Fn−Δ+1−l + 8Fn−Δ−l+2 − (2Δ − 2 − l)Fn−Δ+2−l]

= 2l−1[(2Δ − 9 − l)2Fn−Δ+1−l − (2Δ − 10 − l)Fn−Δ+2−l] > 0,

and

i(Cn−Δ+2−l(1
Δ−2−l, 2l)) − i(Cn−Δ+1−l(1

Δ−3−l, 2l+1))

= 3l2Δ−3−l[2Fn−Δ+3−l − 3Fn−Δ+2−l] + 2l[Fn−Δ+1−l − 2Fn−Δ−l]

= 3l2Δ−3−lFn−Δ−1−l − 2lFn−Δ−l−2 > 0.

Therefore, for Δ ≥ n+1
2

> 3, G is C3(2
n−1−Δ, 12Δ−1−n). By Lemma 2.8, with a simple

calculation, we have

z(C3(2
n−1−Δ, 12Δ−1−n)) = (3Δ − n + 1)2n−1−Δ
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and

i(C3(2
n−1−Δ, 12Δ−1−n)) = 2n−1−Δ + 3n−Δ22Δ−1−n

ending the proof.

Theorem 3.2. If 3 < Δ < n+1
2

, the graph from U(n, Δ) with minimal Merrifield-Simmons

index is C3(2
Δ−3, (n − 2Δ + 3)1). And i(C3(2

Δ−3, (n − 2Δ + 3)1)) = 3Δ−2Fn−2Δ+5 +

2Δ−3Fn−2Δ+4.

Proof . Suppose that a graph G from U(n, Δ) has the minimal Merrifield-Simmons index.

By Lemmas 3.1, 3.2 and 3.3, we have G ∈ U2(n, Δ).

Combining the arguments in the proof of Theorem 3.1, we find that if 3 < Δ < n+1
2

,

G is of the form Ck(2
l1 , kl2

2 ) where k2 ≥ 2. In the next step, we will show that, in

G ∼= Ck(2
l1 , kl2

2 ), 2 ≤ k2 < n − 2Δ + 3 is impossible when 3 < Δ < n+1
2

.

For n − 2Δ + 3 > l ≥ 3, by Lemmas 2.6 and 2.8, we have

i(Cn−2Δ+6−l(2
Δ−3, l1)) = 3Δ−3Fn−2Δ+7−lFl+2 + 2Δ−3Fn−2Δ+5−lFl+1,

i(Cn−2Δ+4(2
Δ−2)) = 3Δ−2Fn−2Δ+5 + 2Δ−2Fn−2Δ+3.

So for n − 2Δ + 3 > l ≥ 3, we have

i(Cn−2Δ+6−l(2
Δ−3, l1)) − i(Cn−2Δ+4(2

Δ−2))

= 3Δ−3(Fn−2Δ+7−lFl+2 − 3Fn−2Δ+5) + 2Δ−3(Fn−2Δ+5−lFl+1 − 2Fn−2Δ+3)

= 3Δ−3[Fn−2Δ+7−lFl+2 − 3(Fl+2Fn−2Δ+4−l + Fl+1Fn−2Δ+3−l)]

+ 2Δ−3[Fn−2Δ+5−lFl+1 − 2(Fl+1Fn−2Δ+3−l + FlFn−2Δ+2−l)]

= 3Δ−3[2Fn−2Δ+3−lFl+2 − 3Fl+1Fn−2Δ+3−l] + 2Δ−3(Fl+1 − 2Fl)Fn−2Δ+2−l

= 3Δ−3(2Fl − Fl+1)Fn−2Δ+3−l − 2Δ−3(2Fl − Fl+1)Fn−2Δ+2−l > 0.

Thus, for n − 2Δ + 3 > l ≥ 3, we have i(Cn−2Δ+4(2
Δ−2)) < i(Cn−2Δ+6−l(2

Δ−3, l1)).

Finally, we look for the form of G by comparing the Hosoya indices of Cn−2Δ+4(2
Δ−2) and

C3(2
Δ−3, (n − 2Δ + 3)1). Similarly, we have

i(C3(2
Δ−3, (n − 2Δ + 3)1)) = 3Δ−3F4Fn−2Δ+5 + 2Δ−3F2Fn−2Δ+4

= 3Δ−2Fn−2Δ+5 + 2Δ−3Fn−2Δ+4.

Obviously, we get

i(Cn−2Δ+4(2
Δ−2)) − i(C3(2

Δ−3, (n − 2Δ + 3)1)) = 2Δ−3(2Fn−2Δ+3 − Fn−2Δ+4) > 0.

- 643 -



Therefore, if 3 < Δ < n+1
2

, G is C3(2
Δ−3, (n − 2Δ + 3)1), and i(C3(2

Δ−3, (n − 2Δ +

3)1)) = 3Δ−2Fn−2Δ+5 + 2Δ−3Fn−2Δ+4, which finishes the proof.

Theorem 3.3. Suppose that 3 < Δ < n+1
2

. Let G ∈ U(n, Δ) be a graph with the maximal

Hosoya index. Then

(1) G is Cn−2Δ+4(2
Δ−2) if 3 < Δ < 6, or n−2

2
≤ Δ < n+1

2
,, or Δ = n−4

2
< 10,

or n−4
2

> Δ ∈ {6, 7}, or n−5
2

> Δ = 8;

(2) G is Cn−2Δ+4(2
Δ−2) or C

(1)
n−2Δ+1(2

Δ−1) if Δ = 6 = n−3
2

, or Δ = 8 = n−5
2

,

or Δ = 10 = n−4
2

;

(3) G is C
(1)
n−2Δ+1(2

Δ−1) if Δ = n−3
2

> 6, or Δ = n−4
2

> 10, or 8 < Δ < n−4
2

.

And z(Cn−2Δ+4(2
Δ−2)) = 2Δ−3(ΔFn−2Δ+4 + 4Fn−2Δ+3) , z(C

(1)
n−2Δ+1(2

Δ−1)) =

2Δ−1 Fn−2Δ+4 + 2Δ−2Fn−2Δ−2 + 2Δ−2(Δ − 2)(Fn−2Δ+2 + Fn−2Δ).

Proof . Note that if n−1
2

≤ Δ < n+1
2

, the graph G must be in U2(n, Δ) from the application

of Lemma 3.2. By Lemma 3.4, for 3 < Δ < n−1
2

, we find that G is either in U2(n, Δ), or

C
(1)
n−2Δ+1(2

Δ−1) or C
(1)
4 (2Δ−2, (n − 2Δ − 1)1).

First we will show that if G is in U2(n, Δ), then G must be Cn−2Δ+4(2
Δ−2). Considering

the arguments in the proof of Theorem 3.1, we find that G is of the form Ck(2
l1 , kl2

2 ) where

k2 ≥ 2 if G ∈ U2(n, Δ). Next we will show that, in Ck(2
l1 , kl2

2 ), k2 > 2 is impossible when

3 < Δ < n−1
2

. For l ≥ 3, by Lemmas 2.6 and 2.8, we have

z(Cn−2Δ+6−l(2
Δ−3, l1)) = (Fn−2Δ+7−l+Fn−2Δ+5−l)2

Δ−3Fl+1+(Δ−3)2Δ−4Fl+1Fn−2Δ+6−l

+ 2Δ−3FlFn−2Δ+6−l

= 2Δ−3(Fn−2Δ+7 +Fl+1Fn−2Δ+5−l)+(Δ−3)2Δ−4Fl+1Fn−2Δ+6−l,

z(Cn−2Δ+4(2
Δ−2)) = (Fn−2Δ+5 + Fn−2Δ+3)2

Δ−2 + (Δ − 2)2Δ−3Fn−2Δ+4.

So we obtain

z(Cn−2Δ+4(2
Δ−2)) − z(Cn−2Δ+6−l(2

Δ−3, l1))

= 2Δ−3(2Fn−2Δ+5 + 2Fn−2Δ+3 − Fn−2Δ+7 − Fl+1Fn−2Δ+5−l) + 2Δ−3Fn−2Δ+4

+ (Δ − 3)2Δ−4(2Fn−2Δ+4 − Fl+1Fn−2Δ+6−l)

= 2Δ−3(2Fn−2Δ+3 − Fn−2Δ+4 − Fl+1Fn−2Δ+5−l) + 2Δ−3Fn−2Δ+4
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+ (Δ − 3)2Δ−4(2Fn−2Δ+4 − Fl+1Fn−2Δ+6−l)

= 2Δ−3(2Fn−2Δ+3 − Fl+1Fn−2Δ+5−l) + (Δ − 3)2Δ−4(2Fn−2Δ+4 − Fl+1Fn−2Δ+6−l),

Set D1 = 2Fn−2Δ+3 − Fl+1Fn−2Δ+5−l and D2 = 2Fn−2Δ+4 − Fl+1Fn−2Δ+6−l. Note that

n−2Δ+6− l ≥ 3 in Cn−2Δ+6−l(2
Δ−3, l1), that is to say, l ≤ n−2Δ+3. If l = n−2Δ+3,

then D1 = 2Fn−2Δ+3 − Fn−2Δ+4F2 = Fn−2Δ+1 > 0, and D2 = 0, so

z(Cn−2Δ+4(2
Δ−2)) − z(Cn−2Δ+6−l(2

Δ−3, l1)) = 2Δ−3D1 + (Δ − 3)2Δ−4D2 > 0.

If l ≤ n − 2Δ + 2, by Lemma 2.6, we have

D1 = 2Fn−2Δ+3 − (Fn−2Δ+5 − FlFn−2Δ+4−l)

= FlFn−2Δ+4−l − Fn−2Δ+2

= FlFn−2Δ+4−l − (FlFn−2Δ+3−l + Fl−1Fn−2Δ+2−l)

= FlFn−2Δ+2−l − Fl−1Fn−2Δ+2−l ≥ 0,

D2 = 2Fl+1Fn−2Δ+4−l + 2FlFn−2Δ+3−l − Fl+1Fn−2Δ+6−l

= 2FlFn−2Δ+3−l − Fl+1Fn−2Δ+3−l > 0.

Then we also have

z(Cn−2Δ+4(2
Δ−2)) − z(Cn−2Δ+6−l(2

Δ−3, l1)) = 2Δ−3D1 + (Δ − 3)2Δ−4D2 > 0.

Therefore G must be Cn−2Δ+4(2
Δ−2) if it is in U2(n, Δ), and z(Cn−2Δ+4(2

Δ−2)) =

2Δ−3(ΔFn−2Δ+4 + 4Fn−2Δ+3). Thus we have G ∼= Cn−2Δ+4(2
Δ−2) if n−1

2
≤ Δ < n+1

2
. By

Lemma 3.4, we find that G must be C
(1)
4 (2Δ−2, (n − 2Δ − 1)1) or C

(1)
n−2Δ+1(2

Δ−1) if it

does not belong to U2(n, Δ). From the proof of Lemma 3.4, we have z(C
(1)
n−2Δ+1(2

Δ−1)) =

2Δ−1Fn−2Δ+4 + 2Δ−3[2Fn−2Δ−2 + 2(Δ − 2)(Fn−2Δ+2 + Fn−2Δ)]. Now we start to deter-

mine the graph from U(n, Δ) with maximal Hosoya index for 3 < Δ < n−1
2

. First set

E = z(Cn−2Δ+4(2
Δ−2)) − z(C

(1)
n−2Δ+1(2

Δ−1)). Then we have

E = 2Δ−1Fn−2Δ+3 + Δ2Δ−3Fn−2Δ+4 − 2Δ−1Fn−2Δ+4

− 2Δ−3[2Fn−2Δ−2 + 2(Δ − 2)(Fn−2Δ+2 + Fn−2Δ)]

= −2Δ−1Fn−2Δ+2 + 2Δ−3[ΔFn−2Δ+4 − 2Fn−2Δ−2 − 2(Δ − 2)(Fn−2Δ+2 + Fn−2Δ)]

= −2Δ−1Fn−2Δ+2 + 2Δ−3(ΔFn−2Δ+1 − 2ΔFn−2Δ + 4Fn−2Δ+2 + 2Fn−2Δ + 2Fn−2Δ−1)

= 2Δ−3(ΔFn−2Δ+1 − 2ΔFn−2Δ + 4Fn−2Δ+2 + 2Fn−2Δ+1 − 4Fn−2Δ+2)

= 2Δ−3(2Fn−2Δ+1 − ΔFn−2Δ−2).

Let M = 2Fn−2Δ+1−ΔFn−2Δ−2. From Lemma 3.4, it is obvious that G is Cn−2Δ+4(2
Δ−2)
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if M > 0, G is C
(1)
n−2Δ+1(2

Δ−1) if M < 0, and G is Cn−2Δ+4(2
Δ−2) or C

(1)
n−2Δ+1(2

Δ−1) if

M = 0. We only need to consider the value of M . If 3 < Δ < 6, it follows that M > 0.

Also we easily obtain that M > 0 when n = 2Δ + 2, i.e. Δ = n−2
2

. So in the following we

always assume that 6 ≤ Δ < Δ−2
2

. We distinguish the following three cases.

Case 1. n = 2Δ + 3.

In this case, we have Δ = n−3
2

. So M = 2F4 − ΔF1 = 6 − Δ. Obviously, M < 0 if

Δ > 6 and M = 0 if Δ = 6.

Case 2. n = 2Δ + 4.

In this case, we have Δ = n−4
2

. So M = 2F5 − ΔF2 = 10 − Δ. Obviously, M > 0 if

6 ≤ Δ < 10 and M = 0 if Δ = 10 and M < 0 if Δ > 10.

Case 3. n > 2Δ + 4.

In this case, we have Δ < n−4
2

. So, by Lemma 2.6, we obtain

M = 2(Fn−2Δ−2F4 + Fn−2Δ−3F3) − ΔFn−2Δ−2

= (6 − Δ)Fn−2Δ−2 + 4Fn−2Δ−3.

Then it is easy to see that M > 0 if 6 ≤ Δ ≤ 7. And obviously, M > 0 if Δ = 8 and

n > 2Δ + 5; M = 0 if Δ = 8 and n = 2Δ + 5. If Δ ≥ 9, we have

M ≤ 4Fn−2Δ−3 + (6 − 9)Fn−2Δ−2 < 0.

Combining all the above cases, our results follow.

Theorem 3.4. If Δ = 3, the graphs from U(n, Δ) with maximal Hosoya index is C4((n−
4)1) or Cn−2(2

1), z(C4((n− 4)1)) = z(Cn−2(2
1)) = Fn+1 + 2Fn−3; the graph from U(n, Δ)

with minimal Merrifield-Simmons index is C3((n − 3)1), i(C3((n − 3)1)) = Fn+1 + Fn−1.

Proof . By Lemma 3.1 and Remark 2.1, we find that the graph from U(n, 3) with maximal

Hosoya index and minimal Merrifield-Simmons index is of the form Ck((n − k)1) where

3 ≤ k ≤ n − 1.

From Lemmas 2.6 and 2.8, we have

z(Ck((n − k)1)) = Fn−k+1(Fk−1 + Fk+1) + FkFn−k

= Fn−k+1Fk−1 + (Fn−k+1Fk+1 + Fn−kFk)

= Fk−1Fn−(k−1) + Fn+1,
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and

i(Ck((n − k)1)) = Fk+1Fn−k+2 + Fk−1Fn−k+1

= Fk+1Fn−k+2 + FkFn−k+1 − FkFn−k+1 + Fk−1Fn−k+1

= Fn+2 − Fk−2Fn+1−k.

Then, obviously, z(Ck((n − k)1)) = z(Cn−k+2((k − 2)1)) for 3 ≤ k ≤ n − 1, and

i(Ck((n − k)1)) = i(Cn−k+3((k − 3)1)) for 4 ≤ k ≤ n − 1.

For 3 < k < n − 1, in view of Lemma 2.6, we have

F3Fn−3 − FkFn−k = F3(Fk−2Fn−k + Fk−3Fn−k−1) − FkFn−k

= Fn−k(F3Fk−2 − Fk) + Fk−3Fn−k−1F3

= −Fn−kFk−3 + 2Fk−3Fn−k−1

= Fk−3(2Fn−k−1 − Fn−k) > 0,

and

F1Fn − FkFn+1−k = FkFn+1−k + Fk−1Fn−k − FkFn+1−k

= Fk−1Fn−k > 0.

So we have FkFn−k < F3Fn−3 and FkFn+1−k < F1Fn for 3 < k < n − 1. Then it is

easy to see that Fk−1Fn−(k−1) < F3Fn−3 and Fk−2Fn+1−k < F1Fn for 4 < k < n− 1. That

is to say, the maximal values of Fk−1Fn−(k−1) and Fk−2Fn+1−k are attained at k = 4 or

n − 2, and k = 3, respectively. Therefore, the graph from U(n, Δ) with maximal Hosoya

index is C4((n − 4)1) or Cn−2(2
1), and the graph from U(n, Δ) with minimal Merrifield-

Simmons index is C3((n− 3)1). By Lemma 2.8, we have z(C4((n− 4)1)) = z(Cn−2(2
1)) =

Fn+1 + 2Fn−3 and i(C3((n − 3)1)) = Fn+1 + Fn−1. This completes the proof.

Now all the extremal graphs from U(n, Δ) maximizing the Hosoya index or minimizing

the Merrifield-Simmons index are completely characterized. Finally, we would like to end

this paper with the following remark which presents an interesting property of the graph

from U(n, Δ) with maximal Hosoya index and minimal Merrifield-Simmons index.

Remark 3.1. In [3], the author showed that, among all trees of order n and with maximum

degree Δ, the tree with with maximal Hosoya index and minimal Merrifield-Simmons index

is R(2n−1−Δ, 12Δ−n+1) if Δ ≥ n−1
2

or R(2Δ−1, (n− 2Δ+1)1) if Δ ≤ n−1
2

. Note that, when

- 647 -



Δ ≥ n+1
2

, the graph from U(n, Δ) with maximal Hosoya index and minimal Merrifield-

Simmons index is a graph obtained from R(2n−1−Δ, 12Δ−n+1) by adding an edge at two

pendant vertices of two ”rays” of length 1. But for 3 ≤ Δ < n+1
2

the graphs from U(n, Δ)

with maximal Hosoya index and minimal Merrifield-Simmons index are not always unique.

Acknowledgements. The authors are grateful to the anonymous referee for some valu-
able comments and corrections, which have considerably improved the presentation of this
paper.

References

[1] H. Hosoya, Topological index, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339.

[2] H. Y. Deng, The largest Hosoya index of (n,n+1) graphs, Comput. Math. Appl. 56
(2008) 2499–2506.

[3] S. Wagner, Extremal trees with respect to Hosoya index and Merrifield–Simmons
index, MATCH Commun. Math. Comput. Chem. 57 (2007) 221–233.

[4] H. Y. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index
and Merrified–Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008)
171–190.

[5] I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197–210.

[6] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry , Wiley, New
York, 1989.

[7] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982)
16–21.

[8] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry , Springer,
Berlin, 1986.

[9] X. L. Li, H. X. Zhao, I. Gutman, On the Merrified–Simmons index of trees, MATCH
Commun. Math. Comput. Chem. 54 (2005) 389–402.

[10] H. Y. Deng, The smallest Merrified–Simmons index of (n,n+1) graphs, Math. Com-
put. Model. 49 (2008) 320–326.

[11] X. L. Li, H. X. Zhao, On the Fibonacci numbers of trees, Fibonacci Quart. 44 (2006)
32–38.

[12] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications , Macmillan Press, New
York, 1976.

- 648 -


