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Abstract
Let m(G, k) be the number of the k-matching of a graph G, z(G)

denotes the Hosoya index of the graph G, then the Hosoya index of

G is z(G) =
�n

2
�∑

k=0
m(G, k), where n denote the number of vertex of G.

In this paper, the second largest Hosoya index of unicyclic graphs is
determined.

1 Introduction

Let G = (V, E) be a simple connected graph with the vertex set V (G)

and the edge set E(G). For any v ∈ V , N(v) denotes the neighbors of v, and
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NG[v] = {v} ∪ {u|uv ∈ E(G)}, dG(v) = |N(v)| is the degree of v. A leaf is

a vertex of degree one and a stem is a vertex adjacent to at least one leaf,

leaves and their stems consisting all pendent edges. The girth of a graph is

the smallest cycle length of the graph, if the graph contains no cycle, the

girth is defined as ∝. If E ′ ⊆ E(G), we denote by G−E′ the subgraph of G

obtained by deleting the edges of E ′. If W ⊆ V (G), we denote by G−W the

subgraph of G obtained by deleting the vertices of W and the edges incident

with them. If W = {v} and E ′ = {xy}, we write G − v and G − xy instead

of G−{v} and G−{xy}, respectively. If G has components G1, G2, · · ·, Gt,

then G is denoted by
⋃t

i=1 Gi. We denote the sequence of fibonacci numbers

by F (n), i.e. F (0) = 0, F (1) = 1, and for n ≥ 2, the fibonacci number has

the recursion formula: F (n) = F (n − 1) + F (n − 2). The related reviews

referred as [2-4].

The Hosoya index z(G) of a graph, proposed by Hosoya in [1], defined as

the total number of its matching, namely

z(G) =

�n

2
�∑

k=0

m(G, k)

where �n
2
� stands for the integer part of n

2
and m(G, k) is the number of

k-matching of G. A k-matching of graph G is a subset S of its edge set such

that |S| = k and that no two different edges of S enjoy a common vertex.

It is convenient to see m(G, 0) = 1 and m(G, 1) = m, the number of edges

of graph G. When k > n/2, we have m(G, k) = 0. The Hosoya index is

well correlated with the boiling points, entropies, calculated bond orders,

and for the coding of chemical structures [2,3]. Since then, many authors

have investigated the Hosoya index. It was established long ago that the

n-vertex path Pn has maximal Hosoya index, which equal to the (n + 1)th

Fibonacci number F (n + 1) and the star Sn has the minimal Hosoya index.

In recent, Hou [5] characterized the acyclic graphs that have the first and

the second minimal Hosoya indices. Gutman [6] showed that the linear chain
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is the unique chain with minimal Hosoya index among all hexagonal chain.

Zhang [7] determined the unique graphs with minimal and second minimal

Hosoya index among all catacondensed systems. Ou [8] characterized the

unicyclic molecular graphs with the smallest Hosoya index. Deng and Chen

[9] characterized the extremal Hosoya index of unicyclic graphs, and Deng

[10] got the smallest Hosoya index of bicyclic graphs.

Let Pn, Cn and Sn (i.e.,K1,n−1) be the path, cycle and the star on n

vertices.

A graph is called unicyclic if it is connected and contains exactly one

cycle. A graph is unicyclic if and only if it is connected and has size equal

to its order.

Let Un denote the set of the unicyclic graphs with n vertices.

Let Ug
n denote the set of the unicyclic graphs with n vertices and girth g.

Hn,g be the unicyclic graph that results from identifying one vertex u of

Cg with the vertex v0 of a simple path v0v1 · · · vn−g of length n − g.

In this paper, we shall determine the second largest Hosoya index of

unicyclic graphs.

The related graph notations and terminologies undefined will conform to

[11].

2 Preliminaries

The following basic results will be used and can be found in the references

cited.

(i) If G is a graph with components G1, G2, · · · , Gk, then z(G) =
k∏

i=1
z(Gi).

(i) If e = uv is an edge of G, then z(G) = z(G − uv) + z(G − {u, v}).

(iii) If v is a vertex of G, then z(G) = z(G − v) +
∑

x∈NG(v)
z(G − {v, x}).

(iv) z(P0) = 0, z(P1) = 1 and z(Pn) = F (n + 1) for n ≥ 2;

z(Cn) = F (n − 1) + F (n + 1), z(K1,n−1) = n.
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From above, if uv be an edge of G, then we have z(G) > z(G − uv);

moreover if G is a graph with at least one edge, then z(G) > z(G − v).

....... .......

G0

u
v1 vk vn

A

......... .......

G0

u
vk vk+1 vnvk−1 v1

G1 G2

Fig.1. Transformation A

For convenience, we introduce two transformations.

Transformation A. Let G 	= P1 be a simple connected graph, u ∈ V (G).

G1 be the graph that results from identifying u with the vertex vk (1 < k < n)

of the simple path v1v2 · · · vn; G2 is obtained from G1 by deleting the edge

vk−1vk and adding the edge vk−1vn (see Fig 1.).

Lemma 1 ([9,10]). Let G1 and G2 be the graphs depicted above. Then

z(G2) > z(G1).

Remark 1. Repeating transformation A, an arbitrary tree Ti in G can

be changed into the graph Pi (see Fig.2), and the Hosoya index increasing

after transformation.

TG G

Fig 2.

Transformation B. Let P = uu1u2 · · ·utv be a path in G, and G 	= P .

Let G is obtained from identifying u with the vertex vk of P1 = v1v2 · · · vk, and

identifying v with the vertex vk+1 of P2 = vk+1vk+2 · · · vn; G1 is obtained from

G by deleting the edge vk−1vk and adding the edge vnvk−1; G2 is obtained

from G by deleting the edge vk+1vk+2 and adding the edge v1vk+2 (see Fig.3).
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Fig.3. Transformation B

Lemma 2 ([9,10]). Let G1 and G2 be the graphs depicted in Fig 3, then

z(G1) > z(G) or z(G2) > z(G).

Remark 2. After repeating transformation A, if we repeating transfor-

mation B, then, any arbitrary unicyclic graph with girth g can be changed

into the graph Hn,g, and the Hosoya index increasing.

3 The unicyclic graphs with the second largest

Hosoya index

In this section we shall get the upper bounds of the unicyclic graphs

with respect to their Hosoya indices.

Theorem 1 ([9]). Hn,g has the largest Hosoya index in Ug
n (g ≥ 3).

Theorem 2 ([9]). Cn (i.e.,Hn,n) is the unique graph with the largest

Hosoya index among all unicyclic graphs of order n.

Theorem 3. Hn,4 and Hn,n−2 are the graphs with the second largest

Hosoya index among all unicyclic graphs of order n, where Hn,4 and Hn,n−2

are shown in Fig.4.
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.........︸ ︷︷ ︸
n − 4

Cn−2

Hn,4 Hn,n−2

Fig.4.

Proof. From the theorems 1 and 2, we need only to compare the Hosoya

indices of Hn,r for 3 ≤ r ≤ n − 1. By the definition of Hosoya index, it is

easy to see that

z(Hn,r) = F (n + 1) + F (r − 1)F (n + 1 − r) = z(Hn,n+2−r);

Let Δ = z(Hn,r) − z(Hn,r−1), Δ′ = z(Hn,r) − z(Hn,r−2).

When 4 ≤ r ≤ �n
2
� + 1, we have

Δ = F (r − 1)F (n + 1 − r) − F (r − 2)F (n + 2 − r)
= [F (r − 2) + F (r − 3)][F (n − r + 2) − F (n − r)]

−F (r − 2)F (n + 2 − r)
= −[F (r − 2)F (n − r) − F (r − 3)F (n + 1 − r)]
= · · ·
= (−1)r−2[F (1)F (n + 3 − 2r) − F (0)F (n + 4 − 2r)]
= (−1)rF (n + 3 − 2r).

So,

z(Hn,3) < z(Hn,4) > Hn,5) < z(Hn,6) > · · ·

and z(Hn,n−1) < z(Hn,n−2) > Hn,n−3) < z(Hn,n−4) > · · · since z(Hn,r) =

z(Hn,n+2−r).

When 5 ≤ r ≤ �n
2
� + 1,

Δ′ = F (r − 1)F (n + 1 − r) − F (r − 3)F (n + 3 − r)
= [F (r − 2) + F (r − 3)][F (n + 3 − r) − F (n + 2 − r)]

−F (r − 2)F (n + 3 − r)
= −[−F (r − 2)F (n + 3 − r) + F (r − 1)F (n + 2 − r)]
= · · ·
= (−1)r−2[−F (1)F (n + 6 − 2r) + F (2)F (n + 5 − 2r)]
= (−1)r−1F (n + 4 − 2r)

So, we have

z(Hn,3) < z(Hn,5) < · · · and z(Hn,n−1) < z(Hn,n−3) < · · ·;

z(Hn,4) > z(Hn,6) > · · · and z(Hn,n−2) > z(Hn,n−4) > · · ·.
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We now only need to compare z(Hn,4) = z(Hn,n−2) with z(H(n, n
2

+ 1))

(n is even) or z(Hn, n+1
2

) (n is odd).

Calculating immediately, z(Hn,4) > z(H(n, n
2
+1)) or z(Hn,4) > z(Hn, n+1

2
).

Therefore, Hn,4 and Hn,n−2 have the second largest Hosoya index among

all unicyclic graphs, and Hn,4 and Hn,n−2 are the graphs with the second

largest Hosoya index among all unicyclic graphs.

The proof of the Theorem is completed.
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