The Second Largest Hosoya Index of Unicyclic Graphs

Lixin $\mathrm{Xu}{ }^{1}$
Department of Science and Information Science, Shaoyang University, Shaoyang, Hunan 422000, P. R. China
Email: lixinxusyu@gmail.com
(Received October 11, 2007)

Abstract

Let $m(G, k)$ be the number of the k-matching of a graph $G, z(G)$ denotes the Hosoya index of the graph G, then the Hosoya index of G is $z(G)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m(G, k)$, where n denote the number of vertex of G. In this paper, the second largest Hosoya index of unicyclic graphs is determined.

1 Introduction

Let $G=(V, E)$ be a simple connected graph with the vertex set $V(G)$ and the edge set $E(G)$. For any $v \in V, N(v)$ denotes the neighbors of v, and

[^0]$N_{G}[v]=\{v\} \cup\{u \mid u v \in E(G)\}, d_{G}(v)=|N(v)|$ is the degree of v. A leaf is a vertex of degree one and a stem is a vertex adjacent to at least one leaf, leaves and their stems consisting all pendent edges. The girth of a graph is the smallest cycle length of the graph, if the graph contains no cycle, the girth is defined as \propto. If $E^{\prime} \subseteq E(G)$, we denote by $G-E^{\prime}$ the subgraph of G obtained by deleting the edges of E^{\prime}. If $W \subseteq V(G)$, we denote by $G-W$ the subgraph of G obtained by deleting the vertices of W and the edges incident with them. If $W=\{v\}$ and $E^{\prime}=\{x y\}$, we write $G-v$ and $G-x y$ instead of $G-\{v\}$ and $G-\{x y\}$, respectively. If G has components $G_{1}, G_{2}, \cdots, G_{t}$, then G is denoted by $\bigcup_{i=1}^{t} G_{i}$. We denote the sequence of fibonacci numbers by $F(n)$, i.e. $F(0)=0, F(1)=1$, and for $n \geq 2$, the fibonacci number has the recursion formula: $F(n)=F(n-1)+F(n-2)$. The related reviews referred as [2-4].

The Hosoya index $z(G)$ of a graph, proposed by Hosoya in [1], defined as the total number of its matching, namely

$$
z(G)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m(G, k)
$$

where $\left\lfloor\frac{n}{2}\right\rfloor$ stands for the integer part of $\frac{n}{2}$ and $m(G, k)$ is the number of k-matching of G. A k-matching of graph G is a subset S of its edge set such that $|S|=k$ and that no two different edges of S enjoy a common vertex. It is convenient to see $m(G, 0)=1$ and $m(G, 1)=m$, the number of edges of graph G. When $k>n / 2$, we have $m(G, k)=0$. The Hosoya index is well correlated with the boiling points, entropies, calculated bond orders, and for the coding of chemical structures $[2,3]$. Since then, many authors have investigated the Hosoya index. It was established long ago that the n-vertex path P_{n} has maximal Hosoya index, which equal to the $(n+1)$ th Fibonacci number $F(n+1)$ and the star S_{n} has the minimal Hosoya index. In recent, Hou [5] characterized the acyclic graphs that have the first and the second minimal Hosoya indices. Gutman [6] showed that the linear chain
is the unique chain with minimal Hosoya index among all hexagonal chain. Zhang [7] determined the unique graphs with minimal and second minimal Hosoya index among all catacondensed systems. Ou [8] characterized the unicyclic molecular graphs with the smallest Hosoya index. Deng and Chen [9] characterized the extremal Hosoya index of unicyclic graphs, and Deng [10] got the smallest Hosoya index of bicyclic graphs.

Let P_{n}, C_{n} and S_{n} (i.e., $K_{1, n-1}$) be the path, cycle and the star on n vertices.

A graph is called unicyclic if it is connected and contains exactly one cycle. A graph is unicyclic if and only if it is connected and has size equal to its order.

Let \mathcal{U}_{n} denote the set of the unicyclic graphs with n vertices.
Let \mathcal{U}_{n}^{g} denote the set of the unicyclic graphs with n vertices and girth g.
$H_{n, g}$ be the unicyclic graph that results from identifying one vertex u of C_{g} with the vertex v_{0} of a simple path $v_{0} v_{1} \cdots v_{n-g}$ of length $n-g$.

In this paper, we shall determine the second largest Hosoya index of unicyclic graphs.

The related graph notations and terminologies undefined will conform to [11].

2 Preliminaries

The following basic results will be used and can be found in the references cited.
(i) If G is a graph with components $G_{1}, G_{2}, \cdots, G_{k}$, then $z(G)=\prod_{i=1}^{k} z\left(G_{i}\right)$.
(i) If $e=u v$ is an edge of G, then $z(G)=z(G-u v)+z(G-\{u, v\})$.
(iii) If v is a vertex of G, then $z(G)=z(G-v)+\sum_{x \in N_{G}(v)} z(G-\{v, x\})$.
(iv) $z\left(P_{0}\right)=0, z\left(P_{1}\right)=1$ and $z\left(P_{n}\right)=F(n+1)$ for $n \geq 2$;
$z\left(C_{n}\right)=F(n-1)+F(n+1), z\left(K_{1, n-1}\right)=n$.

From above, if $u v$ be an edge of G, then we have $z(G)>z(G-u v)$; moreover if G is a graph with at least one edge, then $z(G)>z(G-v)$.

Fig.1. Transformation A

For convenience, we introduce two transformations.
Transformation A. Let $G \neq P_{1}$ be a simple connected graph, $u \in V(G)$. G_{1} be the graph that results from identifying u with the vertex $v_{k}(1<k<n)$ of the simple path $v_{1} v_{2} \cdots v_{n} ; G_{2}$ is obtained from G_{1} by deleting the edge $v_{k-1} v_{k}$ and adding the edge $v_{k-1} v_{n}$ (see Fig 1.).

Lemma $1([9,10])$. Let G_{1} and G_{2} be the graphs depicted above. Then $z\left(G_{2}\right)>z\left(G_{1}\right)$.

Remark 1. Repeating transformation A, an arbitrary tree T_{i} in G can be changed into the graph P_{i} (see Fig.2), and the Hosoya index increasing after transformation.

Fig 2.

Transformation B. Let $P=u u_{1} u_{2} \cdots u_{t} v$ be a path in G, and $G \neq P$. Let G is obtained from identifying u with the vertex v_{k} of $P_{1}=v_{1} v_{2} \cdots v_{k}$, and identifying v with the vertex v_{k+1} of $P_{2}=v_{k+1} v_{k+2} \cdots v_{n} ; G_{1}$ is obtained from G by deleting the edge $v_{k-1} v_{k}$ and adding the edge $v_{n} v_{k-1} ; G_{2}$ is obtained from G by deleting the edge $v_{k+1} v_{k+2}$ and adding the edge $v_{1} v_{k+2}$ (see Fig.3).

G

G_{1}

G_{2}

Fig.3. Transformation B
Lemma $2([9,10])$. Let G_{1} and G_{2} be the graphs depicted in Fig 3, then $z\left(G_{1}\right)>z(G)$ or $z\left(G_{2}\right)>z(G)$.

Remark 2. After repeating transformation A, if we repeating transformation B, then, any arbitrary unicyclic graph with girth g can be changed into the graph $H_{n, g}$, and the Hosoya index increasing.

3 The unicyclic graphs with the second largest Hosoya index

In this section we shall get the upper bounds of the unicyclic graphs with respect to their Hosoya indices.

Theorem 1 ([9]). $H_{n, g}$ has the largest Hosoya index in $\mathcal{U}_{n}^{g}(g \geq 3)$.
Theorem $2([9]) . C_{n}$ (i.e., $H_{n, n}$) is the unique graph with the largest Hosoya index among all unicyclic graphs of order n.

Theorem 3. $H_{n, 4}$ and $H_{n, n-2}$ are the graphs with the second largest Hosoya index among all unicyclic graphs of order n, where $H_{n, 4}$ and $H_{n, n-2}$ are shown in Fig.4.

$H_{n, n-2}$

Fig.4.
Proof. From the theorems 1 and 2, we need only to compare the Hosoya indices of $H_{n, r}$ for $3 \leq r \leq n-1$. By the definition of Hosoya index, it is easy to see that

$$
z\left(H_{n, r}\right)=F(n+1)+F(r-1) F(n+1-r)=z\left(H_{n, n+2-r}\right) ;
$$

Let $\Delta=z\left(H_{n, r}\right)-z\left(H_{n, r-1}\right), \Delta^{\prime}=z\left(H_{n, r}\right)-z\left(H_{n, r-2}\right)$.
When $4 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor+1$, we have

$$
\begin{aligned}
\Delta= & F(r-1) F(n+1-r)-F(r-2) F(n+2-r) \\
= & {[F(r-2)+F(r-3)][F(n-r+2)-F(n-r)] } \\
& -F(r-2) F(n+2-r) \\
= & -[F(r-2) F(n-r)-F(r-3) F(n+1-r)] \\
= & \cdots \\
= & (-1)^{r-2}[F(1) F(n+3-2 r)-F(0) F(n+4-2 r)] \\
= & (-1)^{r} F(n+3-2 r) .
\end{aligned}
$$

So,
$\left.z\left(H_{n, 3}\right)<z\left(H_{n, 4}\right)>H_{n, 5}\right)<z\left(H_{n, 6}\right)>\cdots$
and $\left.z\left(H_{n, n-1}\right)<z\left(H_{n, n-2}\right)>H_{n, n-3}\right)<z\left(H_{n, n-4}\right)>\cdots$ since $z\left(H_{n, r}\right)=$ $z\left(H_{n, n+2-r}\right)$.

When $5 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor+1$,

$$
\begin{aligned}
\Delta^{\prime}= & F(r-1) F(n+1-r)-F(r-3) F(n+3-r) \\
= & {[F(r-2)+F(r-3)][F(n+3-r)-F(n+2-r)] } \\
& -F(r-2) F(n+3-r) \\
= & -[-F(r-2) F(n+3-r)+F(r-1) F(n+2-r)] \\
= & \cdots \\
= & (-1)^{r-2}[-F(1) F(n+6-2 r)+F(2) F(n+5-2 r)] \\
= & (-1)^{r-1} F(n+4-2 r)
\end{aligned}
$$

So, we have

$$
\begin{aligned}
& z\left(H_{n, 3}\right)<z\left(H_{n, 5}\right)<\cdots \text { and } z\left(H_{n, n-1}\right)<z\left(H_{n, n-3}\right)<\cdots ; \\
& z\left(H_{n, 4}\right)>z\left(H_{n, 6}\right)>\cdots \text { and } z\left(H_{n, n-2}\right)>z\left(H_{n, n-4}\right)>\cdots
\end{aligned}
$$

We now only need to compare $z\left(H_{n, 4}\right)=z\left(H_{n, n-2}\right)$ with $z\left(H\left(n, \frac{n}{2}+1\right)\right)$ (n is even) or $z\left(H_{n, \frac{n+1}{2}}\right)$ (n is odd).

Calculating immediately, $z\left(H_{n, 4}\right)>z\left(H\left(n, \frac{n}{2}+1\right)\right)$ or $z\left(H_{n, 4}\right)>z\left(H_{n, \frac{n+1}{2}}\right)$.
Therefore, $H_{n, 4}$ and $H_{n, n-2}$ have the second largest Hosoya index among all unicyclic graphs, and $H_{n, 4}$ and $H_{n, n-2}$ are the graphs with the second largest Hosoya index among all unicyclic graphs.

The proof of the Theorem is completed.

References

[1] H. Hosoya, Topological index, a newly proposed quantity characterizing the topo- logical nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.
[2] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[3] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[4] J. W. Moon, L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28.
[5] Y. P. Hou, On acyclic systems with minimal Hosoya index, Discrete Appl. Math. 119 (2002) 251-257.
[6] I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197210.
[7] L. Zhang, F. Tian, Extremal catacondensed benzenoids, J. Math. Chem. 34 (2003)111-122.
[8] J. P. Ou, On extremal unicyclic molecular graphs with prescribed girth and minimal Hosoya index, J. Math. Chem. 42 (2007) 423-432.
[9] H. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Commun. Comput. Chem. 59 (2008) 171-190.
[10] H. Deng, The smallest Hosoya index in (n, n+1)-graphs, J. Math. Chem. (2006), DOI: 10.1007/s10910-006-9186-6.
[11] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.

[^0]: ${ }^{1}$ A Project Supported by Hunan Provincial Education Department (06C755).

