A Note on the Estrada Index of Trees ${ }^{1}$

Hanyuan Deng

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China e-mail: hydeng@hunnu.edu.cn

(Received on November 6, 2008)

Abstract

The trees with the fourth, fifth, and sixth greatest Estrada index are determined among all trees on n vertices, and the first six trees with the greatest Estrada index are exactly the first six trees with the greatest eigenvalue.

Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of a graph G on n vertices. Then the Estrada index $E E(G)$ of G is the sum of the terms $e^{\lambda_{i}}$, i.e.,

$$
E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}
$$

This graph invariant appeared for the first time in year 2000, in a paper by Ernesto Estrada [1], dealing with the folding of protein molecules. Since then a remarkable variety of other chemical and non-chemical applications of $E E$ were communicated. The mathematical studies of the Estrada index started only a few years ago. Until now a number of lower and upper bounds were obtained, and the problem of extremal $E E$ for trees solved [2]. The relevant results on the Estrada index are surveyed in [3].

[^0]Recently, Zhao and Jia [4] obtained the following result and determined the first three trees with the greatest Estrada index among all trees on n vertices.

Lemma $\mathbf{1}([4])$. For any two trees T_{1} and T_{2} on $n \geq 6$ vertices, if $T_{1} \notin\left\{S_{n}^{i} \mid i=\right.$ $1,2,3,4,5,6\}, T_{2} \notin\left\{S_{n}^{i} \mid i=1,2,3\right\}$, then

$$
\begin{gathered}
E E\left(S_{n}^{1}\right)>E E\left(S_{n}^{2}\right)>E E\left(S_{n}^{3}\right)>E E\left(S_{n}^{5}\right)>E E\left(S_{n}^{6}\right)>E E\left(T_{1}\right) \\
E E\left(S_{n}^{1}\right)>E E\left(S_{n}^{2}\right)>E E\left(S_{n}^{3}\right)>E E\left(T_{2}\right)
\end{gathered}
$$

where S_{n}^{i} is the tree on n vertices depicted in Figure $1,1 \leq i \leq 6$.
Note that S_{n}^{i} is also the tree with the $i t h$ greatest eigenvalue among all trees on n vertices [5].

Fig. 1. Trees $S_{n}^{i}, i=1,2,3,4,5,6$.

From Lemma 1, we know that S_{n}^{1}, S_{n}^{2} and S_{n}^{3} are the first three trees with the greatest Estrads index among trees on n vertices, respectively. In the following, we
show that $E E\left(S_{n}^{4}\right)>E E\left(S_{n}^{5}\right)$, and S_{n}^{i} is the tree with the i th greatest Estrada index among all trees on n vertices, $i=1,2,3,4,5,6$.

Lemma 2. Let $P_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$ be the path on 5 vertices. Then there is a nonsurjective injection ξ from $W_{2 k}\left(v_{2}\right)$ to $W_{2 k}\left(v_{3}\right)$ for $k \geq 2$, where $W_{2 k}\left(v_{i}\right)$ is the sets of self-returning walks of length $2 k$ of v_{i} in P_{5}.

Proof. Let

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

be the adjacent matrix of P_{5}. Using induction on k, we can easily show that

$$
A^{2 k}=\left[\begin{array}{ccccc}
\frac{3^{k-1}+1}{2} & 0 & 3^{k-1} & 0 & \frac{3^{k-1}-1}{2} \\
0 & \frac{3^{k}+1}{2} & 0 & \frac{3^{k}-1}{2} & 0 \\
3^{k-1} & 0 & 2 \times 3^{k-1} & 0 & 3^{k-1} \\
0 & \frac{3^{k}-1}{2} & 0 & \frac{3^{k}+1}{2} & 0 \\
\frac{3^{k-1}-1}{2} & 0 & 3^{k-1} & 0 & \frac{3^{k-1}+1}{2}
\end{array}\right]
$$

So, $\left|W_{2 k}\left(v_{2}\right)\right|=\frac{3^{k}+1}{2}<\left|W_{2 k}\left(v_{3}\right)\right|=2 \times 3^{k-1}$ for $k \geq 2$, and there is a non-surjective injection ξ from $W_{2 k}\left(v_{2}\right)$ to $W_{2 k}\left(v_{3}\right)$.

Lemma 3. Let u be a non-isolated vertex of a simple graph G. If G_{1} and G_{2} are the graphs obtained from G by identifying v_{2} and v_{3} of the path P_{5} with u, respectively, depicted in Figure 2, then $M_{2 k}\left(G_{1}\right)<M_{2 k}\left(G_{2}\right)$ for $k \geq 2$, where $M_{k}(G)$ denotes the k th spectral moment of the graph G.

Fig. 2. The graphs G_{1} and G_{2}.

Proof. Let $W_{2 k}(G)$ denote the set of self-returning walks of length $2 k$ of G. Then $W_{2 k}\left(G_{i}\right)=W_{2 k}(G) \cup W_{2 k}\left(P_{5}\right) \cup W_{i}$ is a partition, where W_{i} is the set of self-returning walks of length $2 k$ of G_{i}, each of them contains both at least one edge in $E(G)$ and at least one edge in $E\left(P_{5}\right), i=1,2$. So, $M_{2 k}\left(G_{i}\right)=\left|W_{2 k}(G)\right|+\left|W_{2 k}\left(P_{5}\right)\right|+\left|W_{i}\right|=$ $M_{2 k}(G)+M_{2 k}\left(P_{5}\right)+\left|W_{i}\right|$. Obviously, it is enough to show $\left|W_{1}\right|<\left|W_{2}\right|$.

Let $\eta: W_{1} \rightarrow W_{2}, \forall x \in W_{1}, \eta(x)=\left(x-x \cap P_{5}\right) \cup \xi\left(x \cap P_{5}\right)$, i.e., $\eta(x)$ is the selfreturning walk of length $2 k$ in W_{2} obtained from x by replacing its every self-returning walk of v_{2} in P_{5} with its image under the map ξ.

By Lemma 2, ξ is a non-surjective injection and so is η. And $\left|W_{1}\right|<\left|W_{2}\right|$, $M_{2 k}\left(G_{1}\right)<M_{2 k}\left(G_{2}\right)$.

Theorem 4. If $n \geq 6$, then $E E\left(S_{n}^{4}\right)>E E\left(S_{n}^{5}\right)$, and S_{n}^{i} is the tree with the i-th greatest Estrada index among all trees on n vertices, $i=1,2,3,4,5,6$.

Proof. Let $G=S_{n-4}$ be the star on $n-4$ vertices with its center u. $G_{1}=S_{n}^{5}$ and $G_{2}=S_{n}^{4}$. By Lemma 3, $M_{2 k}\left(S_{n}^{5}\right)<M_{2 k}\left(S_{n}^{4}\right)$ for $k \geq 2$. And

$$
E E\left(S_{n}^{5}\right)=\sum_{k \geq 0} \frac{M_{2 k}\left(S_{n}^{5}\right)}{(2 k)!}<\sum_{k \geq 0} \frac{M_{2 k}\left(S_{n}^{4}\right)}{(2 k)!}=E E\left(S_{n}^{4}\right)
$$

From Lemma 1, we know that S_{n}^{i} is the tree with the i-th greatest Estrada index among all trees on n vertices, $i=1,2,3,4,5,6$.

References

[1] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000) 713-718.
[2] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606.
[3] H. Deng, S. Radenković, I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman (Eds.), Applications of Graph Spectra, Inst. Math., Belgrade, 2009, in press.
[4] H. Zhao, Y. Jia, On the Estrada index of bipartite graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 495-501.
[5] M. Hofmeister, On the two greatest eigenvalues of trees, Lin. Algebra Appl. 260 (1997) 43-59.

[^0]: ${ }^{1}$ Project 10771061 supported by National Natural Science Foundation of China.

