MATCH Communications in Mathematical and in Computer Chemistry

A Note on the Estrada Index of $Trees^{1}$

Hanyuan Deng

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China e-mail: hydeng@hunnu.edu.cn

(Received on November 6, 2008)

Abstract

The trees with the fourth, fifth, and sixth greatest Estrada index are determined among all trees on n vertices, and the first six trees with the greatest Estrada index are exactly the first six trees with the greatest eigenvalue.

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of a graph G on n vertices. Then the Estrada index EE(G) of G is the sum of the terms e^{λ_i} , i.e.,

$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i}.$$

This graph invariant appeared for the first time in year 2000, in a paper by Ernesto Estrada [1], dealing with the folding of protein molecules. Since then a remarkable variety of other chemical and non-chemical applications of EE were communicated. The mathematical studies of the Estrada index started only a few years ago. Until now a number of lower and upper bounds were obtained, and the problem of extremal EE for trees solved [2]. The relevant results on the Estrada index are surveyed in [3].

¹Project 10771061 supported by National Natural Science Foundation of China.

Recently, Zhao and Jia [4] obtained the following result and determined the first three trees with the greatest Estrada index among all trees on n vertices.

Lemma 1([4]). For any two trees T_1 and T_2 on $n \ge 6$ vertices, if $T_1 \notin \{S_n^i | i = 1, 2, 3, 4, 5, 6\}, T_2 \notin \{S_n^i | i = 1, 2, 3\}$, then

$$EE(S_n^1) > EE(S_n^2) > EE(S_n^3) > EE(S_n^5) > EE(S_n^6) > EE(T_1)$$

 $EE(S_n^1) > EE(S_n^2) > EE(S_n^3) > EE(T_2)$

where S_n^i is the tree on *n* vertices depicted in Figure 1, $1 \le i \le 6$.

Note that S_n^i is also the tree with the *i*th greatest eigenvalue among all trees on n vertices [5].

Fig. 1. Trees S_n^i , i = 1, 2, 3, 4, 5, 6.

From Lemma 1, we know that S_n^1 , S_n^2 and S_n^3 are the first three trees with the greatest Estrads index among trees on n vertices, respectively. In the following, we

show that $EE(S_n^4) > EE(S_n^5)$, and S_n^i is the tree with the *i*th greatest Estrada index among all trees on n vertices, i = 1, 2, 3, 4, 5, 6.

Lemma 2. Let $P_5 = v_1 v_2 v_3 v_4 v_5$ be the path on 5 vertices. Then there is a nonsurjective injection ξ from $W_{2k}(v_2)$ to $W_{2k}(v_3)$ for $k \ge 2$, where $W_{2k}(v_i)$ is the sets of self-returning walks of length 2k of v_i in P_5 .

Proof. Let

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

be the adjacent matrix of ${\cal P}_5$. Using induction on k, we can easily show that

$$A^{2k} = \begin{bmatrix} \frac{3^{k-1}+1}{2} & 0 & 3^{k-1} & 0 & \frac{3^{k-1}-1}{2} \\ 0 & \frac{3^{k}+1}{2} & 0 & \frac{3^{k}-1}{2} & 0 \\ 3^{k-1} & 0 & 2 \times 3^{k-1} & 0 & 3^{k-1} \\ 0 & \frac{3^{k}-1}{2} & 0 & \frac{3^{k}+1}{2} & 0 \\ \frac{3^{k-1}-1}{2} & 0 & 3^{k-1} & 0 & \frac{3^{k-1}+1}{2} \end{bmatrix}$$

So, $|W_{2k}(v_2)| = \frac{3^k+1}{2} < |W_{2k}(v_3)| = 2 \times 3^{k-1}$ for $k \ge 2$, and there is a non-surjective injection ξ from $W_{2k}(v_2)$ to $W_{2k}(v_3)$.

Lemma 3. Let u be a non-isolated vertex of a simple graph G. If G_1 and G_2 are the graphs obtained from G by identifying v_2 and v_3 of the path P_5 with u, respectively, depicted in Figure 2, then $M_{2k}(G_1) < M_{2k}(G_2)$ for $k \ge 2$, where $M_k(G)$ denotes the kth spectral moment of the graph G.

Fig. 2. The graphs G_1 and G_2 .

Proof. Let $W_{2k}(G)$ denote the set of self-returning walks of length 2k of G. Then $W_{2k}(G_i) = W_{2k}(G) \cup W_{2k}(P_5) \cup W_i$ is a partition, where W_i is the set of self-returning walks of length 2k of G_i , each of them contains both at least one edge in E(G) and at least one edge in $E(P_5)$, i = 1, 2. So, $M_{2k}(G_i) = |W_{2k}(G)| + |W_{2k}(P_5)| + |W_i| = M_{2k}(G) + M_{2k}(P_5) + |W_i|$. Obviously, it is enough to show $|W_1| < |W_2|$.

Let $\eta: W_1 \to W_2, \forall x \in W_1, \eta(x) = (x - x \cap P_5) \cup \xi(x \cap P_5)$, i.e., $\eta(x)$ is the self-returning walk of length 2k in W_2 obtained from x by replacing its every self-returning walk of v_2 in P_5 with its image under the map ξ .

By Lemma 2, ξ is a non-surjective injection and so is η . And $|W_1| < |W_2|$, $M_{2k}(G_1) < M_{2k}(G_2)$.

Theorem 4. If $n \ge 6$, then $EE(S_n^4) > EE(S_n^5)$, and S_n^i is the tree with the *i*-th greatest Estrada index among all trees on n vertices, i = 1, 2, 3, 4, 5, 6.

Proof. Let $G = S_{n-4}$ be the star on n-4 vertices with its center u. $G_1 = S_n^5$ and $G_2 = S_n^4$. By Lemma 3, $M_{2k}(S_n^5) < M_{2k}(S_n^4)$ for $k \ge 2$. And

$$EE(S_n^5) = \sum_{k\geq 0} \frac{M_{2k}(S_n^5)}{(2k)!} < \sum_{k\geq 0} \frac{M_{2k}(S_n^4)}{(2k)!} = EE(S_n^4)$$

From Lemma 1, we know that S_n^i is the tree with the *i*-th greatest Estrada index among all trees on *n* vertices, i = 1, 2, 3, 4, 5, 6.

References

- E. Estrada, Characterization of 3D molecular structure, *Chem. Phys. Lett.* **319** (2000) 713–718.
- H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599–606.
- [3] H. Deng, S. Radenković, I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman (Eds.), *Applications of Graph Spectra*, Inst. Math., Belgrade, 2009, in press.
- [4] H. Zhao, Y. Jia, On the Estrada index of bipartite graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 495–501.
- [5] M. Hofmeister, On the two greatest eigenvalues of trees, *Lin. Algebra Appl.* 260 (1997) 43–59.