
On Incidence Energy of Graphs

Ivan Gutman,a Dariush Kianib,c and Maryam Mirzakhahb

aFaculty of Science, University of Kragujevac,
P. O. Box 60, 34000 Kragujevac, Serbia

e-mail: gutman@kg.ac.rs

bFaculty of Mathematics and Computer Science,
Amirkabir University of Technology,
P. O. Box 15875–4413, Tehran, Iran

e-mail: dkiani@aut.ac.ir ; mirzakhah@aut.ac.ir

cSchool of Mathematics, Institute for Research in Fundamental
Sciences (IPM), P. O. Box 19395–5746, Tehran, Iran

(Received January 14, 2009)

Abstract

It is shown that in the case of bipartite graphs, the incidence energy IE , introduced
in a recent work [M. R. Jooyandeh, D. Kiani, M. Mirzakhah, MATCH Commun. Math.
Comput. Chem., preceding article] coincides with the previously studied Laplacian–energy
like invariant, LEL [ J. Liu, B. Liu, MATCH Commun. Math. Comput. Chem. 59 (2008)
355–372]. In the case of non-bipartite graphs, IE is equal to the quantity LEL+ , calculated
in an analogous manner as LEL , but from the eigenvalues of the signless Laplacian matrix.
Some other relations for IE are pointed out.

1. INTRODUCTION

Two of the present authors, together M. R. Jooyandeh [1], conceived recently

a graph–energy like quantity, called incidence energy , IE(G) , calculated from the

incidence matrix I(G) of a graph G .

The energy E(G) of a graph G is equal to the sum of the absolute values of the

graph eigenvalues, i. e., of the eigenvalues of the adjacency matrix A(G) of G . (For
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details on graph energy see the reviews [2, 3].) Nikiforov [4] recently extended the

concept of energy to all (not necessarily square) matrices, defining the energy of a

matrix M as the sum of the singular values of M . Recall that the singular values of

a matrix M are equal to the square roots of the eigenvalues of the (square) matrix

MMt .

Let G = (V, E) be a simple graph, where V = {v1, v2, . . . , vn} is its vertex set, and

E = {e1, e2, . . . , em} its edge set. Thus n and m denote, respectively, the number of

vertices and edges of G . In [1] as well as in the present paper, I(G) is the vertex–edge

incidence matrix , an (n × m)-matrix whose (i, j)-element is equal to 1 if the vertex

vi is incident to the edge ej , and is equal to 0 otherwise (see, for instance [5], p. 16).

In line with Nikiforov’s idea, the incidence energy of a graph G was defined [1] as

the sum of the singular values of the incidence matrix I(G) , that, in turn, are equal

to the square roots of the eigenvalues of I(G) I(G)t . Recall that I(G) I(G)t is a square

matrix of order n .

Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the degree (=

number of first neighbors) of the vertex vi of the graph G . Then the matrix L(G) =

D(G) − A(G) is the Laplacian matrix of the graph G , for details see [6, 7]. The

matrix L+(G) = D(G) + A(G) is the signless Laplacian matrix , for details see [8].

Denote by μ1, μ2, . . . , μn the eigenvalues of the Laplacian matrix L(G) and by

μ+
1 , μ+

2 , . . . , μ+
n the eigenvalues of the signless Laplacian matrix L+(G) . All eigenval-

ues of both L(G) and L+(G) are real and non-negative. If the graph G is connected,

then n − 1 eigenvalues of L(G) are positive, and one is equal to zero [6, 7]. If G is

a connected non-bipartite graph, then all eigenvalues of L+(G) are positive; if G is

connected and bipartite, then exactly one eigenvalue of L+(G) is equal to zero [8].

The following result is well known [6, 7, 8]:

Lemma 1. The spectra of L(G) and L+(G) coincide if and only if the graph G is

bipartite.

Short time ago, J. Liu and B. Liu [9] introduced the so-called Laplacian–energy

like invariant , LEL(G) of a graph G , as the sum of the square roots of the eigenvalues
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of the Laplacian matrix of G , i. e.,

LEL(G) :=
n∑

i=1

√
μi . (1)

In [9] and in the subsequent papers [10, 11, 12] a number of properties of LEL were

established.

2. RELATION BETWEEN INCIDENCE ENERGY AND

LAPLACIAN–ENERGY LIKE INVARIANT

A well known identity for the incidence matrix of any graph G is (see, for instance,

[5], p. 16):

I(G) I(G)t = A(G) + D(G)

i. e.,

I(G) I(G)t = L+(G) . (2)

Then an immediate consequence of Eq. (2) and the definition of the incidence energy

is:

Theorem 2. If IE(G) is the incidence energy of an n-vertex graph G , and if

μ+
1 , μ+

2 , . . . , μ+
n are the eigenvalues of the signless Laplacian matrix of G , then

IE(G) =
n∑

i=1

√
μ+

i .

In view of Lemma 1 and Eq. (1), we arrive at the following noteworthy:

Corollary 3. If IE(G) is the incidence energy of a bipartite graph G , and μ1 ,

μ2 ,. . . ,μn are the eigenvalues of the Laplacian matrix of G , then

IE(G) =
n∑

i=1

√
μi ≡ LEL(G) .

In other words, for bipartite graphs the incidence energy IE and the Laplacian–energy

like invariant LEL coincide.

In analogy with Eq. (1), we define

LEL+(G) :=
n∑

i=1

√
μ+

i
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which immediately implies:

Corollary 4. If G is any graph, then IE(G) ≡ LEL+(G) .

3. ON A RELATION BETWEEN INCIDENCE ENERGY AND

GRAPH ENERGY

In [1] it was demonstrated that if G is any graph, it is possible to find a bipartite

graph Ĝ , such that

IE(G) =
1

2
E(Ĝ)

where E(Ĝ) is the ordinary energy of the graph Ĝ . In [1] the graph Ĝ is constructed

so that its adjacency matrix is of the form:

A(Ĝ) =

[
0 I(G)

I(G)t 0

]
. (3)

In graph theory it is well known that the graph defined via Eq. (3) is the subdivi-

sion graph S(G) of the graph G , obtained by inserting an additional vertex into each

edge of G (see, for instance, [5], p. 16). Thus Ĝ is just the subdivision graph of G .

If G is a graph with n vertices and m edges, then its subdivision graph S(G) has

n + m vertices and 2m edges.

A connection between the spectrum of S(G) and the Laplacian spectrum of G was

recently communicated [13]. The main result in [13] is the following:

Theorem 5. Let G be a bipartite graph with n vertices and m edges, and let S(G)

be its subdivision graph. If μi , i = 1, . . . , h , are the non-zero eigenvalues of the

Laplacian matrix of G , then the ordinary spectrum of S(G) consists of the numbers

±√
μi , i = 1, . . . , h , and of n + m − 2h zeros.

Although not stated in [13], the following extension of Theorem 5 to all graphs is

evident (and is proven in the same way as Theorem 5 itself):
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Theorem 6. Let G be a graph with n vertices and m edges, and let S(G) be its

subdivision graph. If μ+
i , i = 1, . . . , h , are the non-zero eigenvalues of the signless

Laplacian matrix of G , then the ordinary spectrum of S(G) consists of the numbers

±
√

μ+
i , i = 1, . . . , h , and of n + m − 2h zeros.

From Theorem 5 it immediately follows (but is not stated in [13]) that for a

bipartite graph G , E(S(G)) = 2 LEL(G) . Analogously, Theorem 6 implies that for

any graph G , E(S(G)) = 2 LEL+(G) . In view of Corollaries 3 and 4, we then get

Corollary 7. For any graph G whose subdivision graph is S(G) ,

IE(G) =
1

2
E(S(G)) .

Corollary 7 is, of course, precisely identical to Theorem 1 in [1].

4. TREES WITH MINIMAL AND MAXIMAL INCIDENCE ENERGY

Let Tn be the set of all n-vertex trees. Let Sn and Pn be the n-vertex star and

n-vertex path, respectively. In [11] it was shown that for any tree T ∈ Tn ,

LEL(Sn) ≤ LEL(T ) ≤ LEL(Pn) (4)

with equality if and only if T ∼= Sn and T ∼= Pn , respectively. Because trees are

bipartite graphs, by means of Corollary 3 the above result can be re-stated as:

Theorem 8. For any tree T ∈ Tn ,

IE(Sn) ≤ IE(T ) ≤ IE(Pn)

with equality if and only if T ∼= Sn and T ∼= Pn , respectively.

In view of the result reported in [11], no proof of Theorem 8 would be needed. We

nevertheless offer an alternative proof.

Proof. Denote by ψ(G, λ) the characteristic polynomial of the Laplacian matrix of

the graph G . Its zeros are μ1, μ2, . . . , μn . It is known [5, 13] that this polynomial is
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of the form

ψ(G, λ) =
∑
k≥0

(−1)k ck(G) λn−k

where ck(G) ≥ 0 .1

Let Ψ(G, λ) be an auxiliary polynomial defined as

Ψ(G, λ) = ψ(G, λ2) =
∑
k≥0

(−1)k ck(G) λ2n−2k .

Then the zeros of Ψ(G, λ) are ±√
μ1,±

√
μ2, . . . ,±

√
μn . Therefore, the sum of the

positive zeros of Ψ(G, λ) is just LEL(G) .

The Coulson integral formula (see [2, 14, 15] and the references cited therein)

makes it possible to compute the sum of the positive zeros of a polynomial without

knowing the actual values of these zeros. Applying to Ψ(G, λ) a variant of the Coulson

integral formula from the work [16], we get

LEL(G) =
1

π

+∞∫
0

ln

[∑
k≥0

ck(G) x2k

]
dx

x2
. (5)

From formula (5) we see that LEL(G) is a monotonically increasing function of each

of the coefficients ck(G) .

For n-vertex trees it has been shown [13] that for all k ≥ 0 and for all T ∈ Tn ,

ck(Sn) ≤ ck(T ) ≤ ck(Pn) (6)

and that equality for all values of k occurs if and only if T ∼= Sn and T ∼= Pn ,

respectively. Combining (5) and (6) we immediately obtain the relations (4), from

which Theorem 8 follows. �
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1The dependence of the coefficients ck(G) on the structure of the graph G is also fully understood
[5], but is irrelevant for the present considerations.
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