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Abstract

The energy of a graph E(G), is the sum of the singular values of its adjacency matrix.
We define incidence energy of the graph G, denoted by IE(G), as the sum of the singular
values of its incidence matrix. We are interested to find the relation between the energy
and the incidence energy of graphs. For any graph G we obtain a bipartite graph Ĝ such

that IE(G) = E(Ĝ)
2 . Moreover we find some similar upper and lower bounds of energy

for incidence energy. Finally we show that for any proper subgraph H of the graph G,
IE(G) > IE(H).
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INTRODUCTION

The energy of a graph is defined as the sum of the absolute values of its eigenvalues.

This concept was proposed quite some time ago by Gutman in [1], motivated by (much

older) chemical applications [2–5]. Research on graph energy is nowadays very active,

as seen from the recent papers [6–19] and the references quoted therein.

Let G be an undirected, simple and finite graph with n vertices and m edges, the

vertex set and the edge set of G are denoted by V (G) and E(G), respectively. Also

the adjacency matrix and the incidence matrix of the graph G are denoted by A(G)

and I(G), respectively. Suppose E is a subset of E(G), the spanning subgraph of G

with edge set E(G)\E is denoted by G\E. Also let H be a subgraph of G, then G\H

denotes the spanning subgraph of G whose edge set is E(G) \ E(H). The star, path

and complete graph with n vertices will be denoted by Sn, Pn, and Kn, respectively.

Also the complete bipartite graph with the partitions of size r and s is denoted by

Kr,s.

Let A be any n by m matrix with real entries. The singular values of the matrix

A are the square roots of the eigenvalues of AAt, where At is the transpose of A. Also

the eigenvalues of the square matrix B of order n, are denoted by λ1(B), . . . , λn(B),

where are arranged in non-increasing order. If A is a symmetric matrix, then its

singular values are the absolute values of its eigenvalues. So the energy of a graph G

is indeed the sum of the singular values of its adjacency matrix [20]. Nikiforov in [20]

has extended the concept of graph energy for arbitrary matrices. More precisely for

any n × m matrix A, the energy of A is defined as the sum of its singular values.

Let σ1(G), . . . , σn(G) be the singular values of the incidence matrix of a graph G,

now we define IE(G) :=
n∑

i=1
σi(G), which is called the incidence energy of G. It is

clear that IE(G) ≥ 0 and the equality holds if and only if G has no edges. Also if the

graph G has components G1, . . . , Gc, then IE(G) =
c∑

i=1
IE(Gi).
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ELEMENTARY RESULTS

It is well-known that for a graph G, I(G)I(G)t = A(G) + diag(d1, . . . , dn), while

diag(d1, . . . , dn) is the diagonal valency matrix of G. Therefore
n∑

i=1
σi(G)2 = 2m.

Theorem 1 Let G be a graph, then IE(G) = E(Ĝ)
2

, in which Ĝ is the bipartite graph

with adjacency matrix [
0 I(G)

I(G)t 0

]
. (1)

Proof. Suppose X is the matrix that is obtained by adding some zero rows or

columns to I(G) in order to make a square matrix.

By [21, Problem 34.8] the eigenvalues of the matrix

[
0 X

X t 0

]
are σ1(G), . . . ,

σn(G), 0, . . . , 0,−σn(G), . . . ,−σ1(G). Also the matrix (1) has the same non-zero

eigenvalues. �

Therefore Theorem (1) gives a relation between the incidence energy of a graph

G and the energy of the graph Ĝ, where the graph Ĝ is the bipartite graph which is

obtained from G by adding a vertex on each edge of G.

Remark 2 If the energy of a graph is rational, then it must be an even number (see

[22]). So Theorem (1) and this property of the graph energy conclude that if the

incidence energy of a graph is rational, then it must be an integer number.

Proposition 3 The incidence energy of a graph cannot be an odd number.

Proof. According to the Theorem (1), σi(G) is an eigenvalue of the graph Ĝ. So by

[23, Lemma 1, 2, 3],
∑
i<j

σi(G) σj(G) is integer if it is a rational number. Therefore by

IE(G)2 =
∑

i

σ2
i (G) + 2

∑
i<j

σi(G) σj(G)

we are done. �

Theorem 4 Let G be a graph, then IE(G) ≥ rank(I(G)) .
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Proof. According to [24], E(G) ≥ rank(G), where rank(G) is the rank of the

adjacency matrix of G. By combining the Theorem (1) and this inequality, we have

IE(G) ≥ rank(Ĝ)
2

= rank(I(G)) . �

Let G be any connected graph. If G is bipartite, rank(I(G)) = n − 1 otherwise

rank(I(G)) = n (see [25]). Therefore for any connected graph G, IE(G) ≥ n − 1.

Moreover if G is not bipartite, IE(G) ≥ n .

UPPER AND LOWER BOUNDS FOR THE INCIDENCE ENERGY

It is easy to show that
√∑

i
σi(G)2 ≤ ∑

i
σi(G) and the equality holds if and only

if at most one of the σi(G) is non-zero.

Theorem 5 Let G be a graph of order n with m edges, then
√

2m ≤ IE(G) ≤
√

2mn.

Moreover, the left equality holds if and only if m ≤ 1. On the other hand the right

equality holds if and only if m = 0.

Proof. According to the above statement, the left inequality is obvious. Also for

the equality case, rank(I(G)I(G)t)) ≤ 1. So rank(I(G)I(G)t)) = rank(I(G)) which

leads to G must have at most one edge (if the graph G has more than one edge,

clearly rank(I(G)) > 1).

For the right side, by applying the Cauchy-Schwartz inequality, the following

would be obtained

IE(G) =
n∑

i=1

σi(G) ≤
√√√√n ·

n∑
i=1

σi(G)2 =
√

2mn,

and the equality is attained if and only if (σ1(G), . . . , σn(G)) and (1, . . . , 1) are linearly

dependent. So σi(G)2 = l for all i = 1, . . . , n, where l is a rational number and

nl = 2m. Thus there exists unitary matrix P such that PI(G)I(G)tP−1 = lI and

consequently I(G)I(G)t = lI. So A(G) = 0, diag(d1, . . . , dn) = lI, and finally we

have l = 0. �
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INCIDENCE ENERGY OF A GRAPH AND ITS SUBGRAPHS

In this part, the incidence energy of a graph and its subgraphs one are compared.

We start with some concepts of matrix theory.

Let A and B be complex matrices of order r and s, respectively (r ≥ s). The

eigenvalues of B interlace the eigenvalues of A, if λi(A) ≥ λi(B) ≥ λr−s+i(A) for

i = 1, . . . , s.

Theorem 6 [26, p.8] If A =

[
A11 A12

At
12 A22

]
is a symmetric matrix, then the eigen-

values of A11 interlace the eigenvalues of A.

Theorem 7 [27, p.51] If A and B are real symmetric matrices of order n and

C = A + B, then

λi+j+1(C) ≤ λi+1(A) + λj−1(B)

λn−i−j(C) ≥ λn−i(A) + λn−j(B)

for i, j = 0, . . . , n and i + j ≤ n − 1.

In particular, for all integer i (1 ≤ i ≤ n),

λi(C) ≥ λi(A) + λn(B) . (2)

The following theorem shows that the incidence energy of a graph is greater than its

proper subgraphs one.

Theorem 8 Let G be a graph and E be a non-empty subset of E(G), then IE(G) >

IE(G \ E).

Proof. Let H be the spanning subgraph of G such that E(H) = E. The incidence

matrix of G can be partitioned as I(G) =
[

I(H) I(G \ E)
]
, and so I(G)I(G)t =

I(H)I(H)t +I(G\E)I(G\E)t. Since I(H)I(H)t is positive semi-definite, by Eq. (2),

we have λi(I(G)I(G)t) ≥ λi(I(G \ E)I(G \ E)t) (i = 1, . . . , n) and it follows that

IE(G) ≥ IE(G \ E).

Moreover, λi(I(G)I(G)t) = λi(I(G \ E)I(G \ E)t) for all i (i = 1, . . . , n), if the

equality holds. Consequently, trace(I(G)I(G)t) = trace(I(G \ E)I(G \ E)t) and
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it implies that trace(I(H)I(H)t) = 0. Since I(H)I(H)t is positive semi-definite,

λi(I(H)I(H)t) = 0 (i = 1, . . . , n). It follows that I(H) = 0. �

According to IE(Kn) =
√

2(n − 1) + (n − 1)
√

n − 2, the following corollary is

obvious.

Corollary 9 Let G be a non-empty graph with clique number c. Then IE(G) ≥√
2(c − 1)+(c−1)

√
c − 2. In particular, if G has at least one edge then IE(G) ≥

√
2.

Corollary 10 Among all graphs with n vertices, the complete graph Kn is the only

graph with maximum incidence energy.

Proposition 11 Let G be any graph and e ∈ E(G), then

IE(G \ {e}) −
√

2 ≤ IE(G) ≤ IE(G \ {e}) +
√

2 .

Proof. Obviously ̂G \ {e} = Ĝ \ K1,2. In [28] it is shown that if H is an induced

subgraph of the graph G, then

E(G \ H) − E(H) ≤ E(G) ≤ E(G \ H) + E(H) .

Now let H = K1,2, by combination of this inequality and Theorem (1) we are

done. �

Note that the following theorem improves the left side of the inequality of the

Proposition (11).

Theorem 12 Let G be a connected graph and e be an edge of G. Then

IE(G) ≥
√

IE(G \ {e})2 + 2 . (3)

Moreover, the equality holds if and only if G = K2 .

Proof. If e ∈ E(G), the incidence matrix of the graph G can be represented in the

form of

I(G) =
[

I(G \ {e}) u
]
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where u is a vector of size n whose the first two components are 1 and the others are

0. Therefore

I(G)I(G)t = I(G \ {e})I(G \ {e})t +

[
J2 0
0 0

]

where J2 is the all ones matrix of order 2. This implies that

trace(I(G)I(G)t) = 2 + trace(I(G \ {e})I(G \ {e})t) . (4)

On the other hand Eq. (2) implies that σi(G) ≥ σi(G \ {e}) for all i (i = 1, . . . , n),

thus we have

IE(G)2 =
∑

i

σ2
i (G) + 2

∑
i<j

σi(G)σj(G)

= trace(I(G)I(G)t) + 2
∑
i<j

σi(G)σj(G)

= 2 + trace(I(G \ {e})I(G \ {e})t) + 2
∑
i<j

σi(G)σj(G)

= 2 +
∑

i

σ2
i (G \ {e}) + 2

∑
i<j

σi(G)σj(G) (by Eq. (4))

≥ 2 +
∑

i

σ2
i (G \ {e}) + 2

∑
i<j

σi(G \ {e})σj(G \ {e}) (by Eq. (2))

= 2 + IE(G \ {e})2 .

Moreover Eq. (4) implies that, there exists some i such that σi(G) > σi(G \ {e}). If

I(G) has at least two non-zero singular values and σk(G) > σk(G\{e}) for 1 ≤ k ≤ n,

then ∑
i<j

σi(G) σj(G) = σ1(G) σk(G) +
∑

i<j,(i,j)
=(1,k)

σi(G) σj(G) .

So σ1(G)σk(G) �= 0 which leads to

∑
i<j

σi(G) σj(G) >
∑
i<j

σi(G \ {e}) σj(G \ {e}) .

Therefore in Eq. (3) the equality does not occur, if the incidence matrix of the

graph G has more than one non-zero singular value. Because rank(I(G)I(G)t) =

rank(I(G)). So in the equality case, rank(I(G)) must be equal to 1. Finally, if the

graph G has more than one edge, rank(I(G)) > 1. �
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EXAMPLES

We are going to obtain singular values of Sn. The incidence matrix of Sn can be

represented in the form of

[
In−1

jt

]
where j is the all ones vector, and so

I(Sn)I(Sn)t =

[
In−1 j
jt n − 1

]
.

According to the Theorem (6), one can see that the eigenvalues of In−1 interlace

the eigenvalues of I(Sn)I(Sn)t, precisely λi(I(Sn)I(Sn)t) ≥ 1 ≥ λi+1(I(Sn)I(Sn)t)

for all i = 1, . . . , n − 1. Therefore λi(I(Sn)I(Sn)t) = 1 for every i, 2 ≤ i ≤ n − 1.

Since the rank of I(Sn)I(Sn)t is equal to n − 1, then λn(I(Sn)I(Sn)t) = 0. Also

trace(I(Sn)I(Sn)t) = 2n − 2 which implies that λ1(I(Sn)I(Sn)t) = n. Then we have

IE(Sn) =
√

n + n − 2.

Question 13 If T is a tree with n vertices which is not Sn, then is it true that

IE(T ) >
√

n + n − 2?

Theorem 14 Let T be a tree with n vertices, which is not Pn, then IE(T ) < IE(Pn).

Proof. By applying the statements of [6, P.202] and P̂n = P2n−1, we have

IE(T ) =
E(T̂ )

2
<

E(P̂n)

2

Because T̂ , is a tree of order 2n − 1 which is not P2n−1. �

The followings show that there exist some graphs whose incidence energy would

be equal to or less than their energy. Although almost for every graph the incidence

energy is greater than its energy.

Proposition 15 IE(C2k+1) = E(C2k+1), for k ≥ 1.

Proof. The spectrum of Cn is 2 cos(2πi
n

), where i = 1, . . . , n. Thus

IE(Cn) = 2
n∑

i=1

∣∣∣∣cos
(

πi

n

)∣∣∣∣ .
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Also for any odd number n = 2k + 1, we have

E(Cn) = 2
n∑

i=1

∣∣∣∣cos
(

2πi

n

)∣∣∣∣ = 2
k∑

i=1

∣∣∣∣cos
(

2πi

n

)∣∣∣∣+ 2
k+1∑
i=1

∣∣∣∣∣cos

(
π +

(2i − 1)π

n

)∣∣∣∣∣
= 2

n∑
i=1

∣∣∣∣cos
(

πi

n

)∣∣∣∣ .

So for odd n, IE(Cn) = E(Cn) . �

Question 16 If G is a connected graph. Then is it true that, if IE(G) = E(G) then

G is either an odd cycle or an empty graph?

Proposition 17 IE(C4k+2) < E(C4k+2), for k ≥ 1 .

Proof. According to the proof of the previous proposition we have

E(C4k+2) = 2
4k+2∑
i=1

∣∣∣∣cos
2πi

4k + 2

∣∣∣∣ = 4
2k+1∑
i=1

∣∣∣∣cos
πi

2k + 1

∣∣∣∣ = 2IE(C2k+1)

and we have

IE(C4k+2) = 2
4k+2∑
i=1

∣∣∣∣cos(
πi

4k + 2
)
∣∣∣∣ = 2 sin π

4k+2

1 − cos π
4k+2

also

IE(C2k+1) = 2
2k+1∑
i=1

∣∣∣∣cos
πi

2k + 1

∣∣∣∣ = 2

sin π
4k+2

.

Then it follows that IE(C4k+2) < 2IE(C2k+1) . �
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