Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs

María Robbiano* and Raúl Jiménez ${ }^{\dagger}$
Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile

(Received December 19, 2008)

Abstract

The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues to their average, which in turn is equal to the sum of singular values of a shift of Laplacian matrix of G. Let X, Y, and Z be matrices, such that $Z=X+Y$. Ky Fan has established an inequality between the sum of singular values of Z and the sum of the sum of singular values of X and Y respectively. We apply this inequality to obtain new results in the theory of Laplacian energy of a graph.

1 Preliminaries

Let $G=(V, \bar{E})$ be a simple graph, with nonempty vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\bar{E}=\left\{e_{1}, \ldots, e_{m}\right\}$. That is to say, G is a simple (n, m)-graph. For any of these graphs $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ corresponds to its vertex degree sequence. In particular $\Delta(G)$ stands for the largest vertex degree of G. The diagonal matrix of order n whose (i, i)-entry is d_{i} is the diagonal

[^0]vertex degree matrix of G and is denoted by $D(G)$. The (0,1)-adjacency ma$\operatorname{trix} A(G)=\left(a_{i j}\right)$ is defined by $a_{i j}=1$ if, and only if, vertices i and j are connected. Its eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ form the spectrum of G. The matrix $L(G)=D(G)-A(G)$ is the Laplacian matrix of G. The Laplacian spectrum of G corresponds to eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of $L(G)$. It is well known that for bipartite graphs, Laplacian matrix and the signless Laplacian matrix $Q(G)=A(G)+D(G)$ have equal spectra [2].

The notion of the energy $E(G)$ of an (n, m)-graph G was introduced by Gutman in connection with the π-molecular energy (cf. $[8,9,11,14]$). It is defined by

$$
E(G)=\sum_{j=1}^{n}\left|\lambda_{j}\right|
$$

whereas the Laplacian energy $L E(G)$ of an (n, m)-graph G (cf. $[1,4,10,12$, 21]) is defined by

$$
\begin{equation*}
L E(G)=\sum_{j=1}^{n}\left|\mu_{j}-(2 m / n)\right| \tag{1}
\end{equation*}
$$

The concept of matrix energy [16] was established by analogy with graph energy. For a matrix C, with singular values $s_{1}(C), s_{2}(C), \ldots$ its energy $\mathcal{E}(C)$ is equal to $s_{1}(C)+s_{2}(C)+\cdots$. Consequently, if $C \in \mathbb{R}^{n \times n}$ is symmetric with eigenvalues $\lambda_{1}(C), \lambda_{2}(C), \ldots, \lambda_{n}(C)$ its energy is given by

$$
\mathcal{E}(C)=\sum_{i=1}^{n}\left|\lambda_{i}(C)\right|
$$

Let $s \in \mathbb{N}$. Denote by I_{s} the corresponding identity matrix of order s. Evidently the energy of any graph G is the energy of its adjacency matrix
and its Laplacian energy is provided by

$$
\begin{equation*}
L E(G)=\mathcal{E}\left(L(G)-\frac{2 m}{n} I_{n}\right) . \tag{2}
\end{equation*}
$$

The following results are already known.
Theorem 1 Let A and B be two real square matrices of order n and let $C=A+B$. Then

$$
\begin{equation*}
\mathcal{E}(C) \leq \mathcal{E}(A)+\mathcal{E}(B) . \tag{3}
\end{equation*}
$$

Moreover equality holds if, and only if, there exists an orthogonal matrix P such that $P A$ and $P B$ are both positive semidefinite matrices.

Lemma 2 ([3]) If $A=\left(a_{i j}\right)_{i, j=1}^{n}$ is a positive semidefinite matrix and $a_{i i}=0$ for some i, then $a_{i j}=0=a_{j i}, j=1,2, \ldots, n$.

Theorem 1 was obtained by Ky Fan [5] using a variational principle. It also appears in Gohberg and Krein [7] and in Horn and Johnson [13]. No equality case is discussed in these references. Thompson [19, 20] employs polar decomposition theorem and inequalities due to Fan and Hoffman [6] to obtain its equality case. Day and So [3] give the details of a proof for the inequality and the case of equality.

For a matrix A, define $|A| \triangleq\left(A^{T} A\right)^{1 / 2}$. Here we present the following version of the polar decomposition theorem.

Theorem 3 ([15]) Let $A \in \mathbb{R}^{n \times n}$. Then there exist positive semidefinite matrices $X, Y \in \mathbb{R}^{n \times n}$ and orthogonal matrices $P, F \in \mathbb{R}^{n \times n}$ such that $A=$ $P X=Y F$. Moreover, the matrices X, Y are unique, $X=|A|, Y=\left(A A^{T}\right)^{1 / 2}$. The matrices P and F are uniquely determined if and only if A is nonsingular.

The aim of this paper is to study cases of equality.

2 Graphs G for which $L E(G)=E(G)+\mathcal{E}(D(G)-$ $\left.(2 m / n) I_{n}\right)$

Theorem 4 Let G be a connected (n, m)-graph. Then

$$
\begin{equation*}
E(G)+\sum_{i=1}^{n}\left|d_{i}-\frac{2 m}{n}\right| \geq L E(G) \tag{4}
\end{equation*}
$$

Moreover equality in (4) holds if, and only if, G is a regular graph.

Proof. The inequality in (4) is proved in [17]. If G is a regular graph then the equality in (4) holds (see [12]). Conversely, suppose the equality in (4) holds. In order to obtain a contradiction, we suppose that G is not regular. Therefore

$$
\begin{equation*}
\Delta(G)=d_{1}>\frac{2 m}{n} \tag{5}
\end{equation*}
$$

For $i=1, \ldots, n$, let $a_{i} \triangleq d_{i}-(2 m / n)$. We have $a_{1}>0$, via (5). Bearing in mind that $L(G)-(2 m / n) I_{n}=D(G)-(2 m / n) I_{n}-A(G)$ and the equality in (4), we see that Theorem 1 asserts that there exists an orthogonal matrix P such that $X=P\left(D-(2 m / n) I_{n}\right)$ and $Y=P(-A(G))$ are both positive semidefinite. Hence $P^{T} X$ and $P^{T} Y$ are polar decompositions of the matrices $D-\frac{2 m}{n} I_{n}$ and $-A(G)$, respectively. Here, using Theorem 3 we obtain $X=\left|D-\frac{2 m}{n} I_{n}\right|$ and $Y=|A(G)|$. Therefore $X=$
$\operatorname{diag}\left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n}\right|\right)$. Setting

$$
P^{T}=\left(\begin{array}{ccc}
q_{11} & \ldots & q_{1 n} \\
\vdots & \ddots & \vdots \\
q_{n 1} & \ldots & q_{n n}
\end{array}\right) \text { and } A(G)=\left(\begin{array}{cccc}
0 & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{n}} \\
\mathrm{a}_{12} & 0 & \ddots & \mathrm{a}_{2 \mathrm{n}} \\
\vdots & \ddots & \ddots & \vdots \\
\mathrm{a}_{1 \mathrm{n}} & \mathrm{a}_{2 \mathrm{n}} & \ldots & 0
\end{array}\right)
$$

$P^{T} X=D-(2 m / n) I_{n}$, implies

$$
\left(\begin{array}{ccc}
q_{11} & \ldots & q_{1 n} \\
\vdots & \ddots & \vdots \\
q_{n 1} & \cdots & q_{n n}
\end{array}\right)\left(\begin{array}{ccc}
\left|a_{1}\right| & & \\
& \ddots & \\
& & \left|a_{n}\right|
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right)
$$

Then,

$$
\left(\begin{array}{cccc}
\left|a_{1}\right| q_{11} & \left|a_{2}\right| q_{12} & \ldots & \left|a_{n}\right| q_{1 n} \\
\left|a_{1}\right| q_{21} & \left|a_{2}\right| q_{22} & & \left|a_{n}\right| q_{2 n} \\
\vdots & & \ddots & \vdots \\
\left|a_{1}\right| q_{n 1} & \left|a_{2}\right| q_{n 2} & \ldots & \left|a_{n}\right| q_{n n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right)
$$

Equality at first column imposes $q_{11}=1$ and, $q_{i 1}=0, i=2, \ldots, n$. It follows that

$$
P=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\mathrm{q}_{12} & \cdots & & \mathrm{q}_{\mathrm{n} 2} \\
\vdots & & \ddots & \vdots \\
\mathrm{q}_{1 \mathrm{n}} & \cdots & & \mathrm{q}_{\mathrm{nn}}
\end{array}\right) .
$$

We must then have

$$
\begin{gathered}
Y=-\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\mathrm{q}_{12} & \cdots & & \mathrm{q}_{\mathrm{n} 2} \\
\vdots & & \ddots & \vdots \\
\mathrm{q}_{1 \mathrm{n}} & \cdots & & \mathrm{q}_{\mathrm{nn}}
\end{array}\right)\left(\begin{array}{cccc}
0 & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{n}} \\
\mathrm{a}_{12} & 0 & \ddots & \mathrm{a}_{2 \mathrm{n}} \\
\vdots & \ddots & \ddots & \vdots \\
\mathrm{a}_{1 \mathrm{n}} & \mathrm{a}_{2 \mathrm{n}} & \cdots & 0
\end{array}\right) \\
\\
=-\left(\begin{array}{cccc}
0 & \mathrm{a}_{12} & \cdots & \mathrm{a}_{1 \mathrm{n}} \\
* & \ldots & & * \\
\vdots & & \ddots & \vdots \\
* & \ldots & & *
\end{array}\right) .
\end{gathered}
$$

The previous matrix is positive semidefinite and by Lemma 2, we obtain $\mathrm{a}_{1 j}=0, j=2, \ldots, n$. This contradicts our assumption that G is a connected graph and the result follows.

3 Graphs G for which $L E(G)=E(G)$

Gutman and Zhou [12] showed that if G is a regular graph then

$$
\begin{equation*}
L E(G)=E(G) \tag{6}
\end{equation*}
$$

In particular, if G is bipartite and regular, then the equality (6) holds. In this section we give conditions for the converse:

Theorem 5 Let G be a bipartite graph. Then the equality (6) holds if, and only if, G is a regular graph.

Proof. Let G be a regular graph. We must then have (6) [12]. Conversely, suppose the equality (6) holds. From definition of Laplacian and signless Laplacian matrices it is clear that

$$
\begin{equation*}
\left(Q(G)-\frac{2 m}{n} I_{n}\right)-\left(L(G)-\frac{2 m}{n} I_{n}\right)=2 A(G) . \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\mathcal{E}\left(Q(G)-\frac{2 m}{n} I_{n}-\left(L(G)-\frac{2 m}{n} I_{n}\right)\right) & =2 \mathcal{E}(A(G)) \\
& =E(G)+E(G) \\
& =L E(G)+L E(G)
\end{aligned}
$$

Bearing in mind that G is bipartite we obtain

$$
\begin{align*}
& \mathcal{E}\left(Q(G)-\frac{2 m}{n} I_{n}-\left(L(G)-\frac{2 m}{n} I_{n}\right)\right) \\
= & \mathcal{E}\left(Q(G)-\frac{2 m}{n} I_{n}\right)+\mathcal{E}\left(-\left(L(G)-\frac{2 m}{n} I_{n}\right)\right) . \tag{8}
\end{align*}
$$

Therefore, Theorem 1 asserts that there exists an orthogonal matrix P, such that

$$
\begin{equation*}
X=P\left(Q(G)-\frac{2 m}{n} I_{n}\right) \quad \text { and } \quad Y=P\left(-\left(L(G)-\frac{2 m}{n} I_{n}\right)\right) \tag{9}
\end{equation*}
$$

are both positive semidefinite matrices. Hence $P^{T} X$ and $P^{T} Y$ are polar decompositions of

$$
Q(G)-\frac{2 m}{n} I_{n} \quad \text { and } \quad-\left(L(G)-\frac{2 m}{n} I_{n}\right)
$$

respectively. By Theorem 3 we obtain

$$
X=\left|Q(G)-\frac{2 m}{n} I_{n}\right| \quad \text { and } \quad Y=\left|L(G)-\frac{2 m}{n} I_{n}\right| .
$$

In view of the fact that G is bipartite, we conclude that $X=Y$. By using Eq. (9) we arrive at

$$
Q(G)+L(G)=\frac{4 m}{n} I_{n}
$$

which implies the result.

4 A new upper bound on $L E(G)$

We shall be considering G with nonempty edge set \bar{E}. Let u, v be two vertices of G. The Laplacian matrix of the graph $G(u, v)$ with n vertices and just one
edge between vertices u and v, is determined via

$$
L(G(u, v))_{i, j}=\left\{\begin{array}{cc}
1 & \text { if }(i, j)=(u, u) \text { or }(i, j)=(v, v) \\
-1 & \text { if }(i, j)=(u, v) \text { or }(i, j)=(v, u) \\
0 & \text { otherwise } .
\end{array}\right.
$$

Spielman [18] expresses the Laplacian matrix of G in terms of $L(G(u, v))$ by

$$
\begin{equation*}
L(G)=\sum_{(u, v) \in \bar{E}} L(G(u, v)) \tag{10}
\end{equation*}
$$

We consider $\alpha \in \mathbb{R}$. The energy $\mathcal{E}\left(L(G(u, v))-\alpha I_{n}\right)$ can be computed directly as:

$$
\begin{equation*}
\mathcal{E}\left(L(G(u, v))-\alpha I_{n}\right)=(n-1)|\alpha|+|2-\alpha| . \tag{11}
\end{equation*}
$$

On the other hand, for $0<a<1$, let A, Q, P, and D be the following matrices:
$A=\left[\begin{array}{cc}a & -1 \\ -1 & a\end{array}\right], Q=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right], P=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right], D=\left[\begin{array}{cc}a-1 & 0 \\ 0 & a+1\end{array}\right]$
The proof of the next result is a matter of straightforward computation, and depends on the spectrum of A.

Lemma 6 Let A, Q, P and D be as above. Then $A=Q D Q^{-1}$. Moreover $A=P|A|$.

As an immediate consequence we have $|A|=Q|D| Q^{-1}$.
Theorem 7 Let G be an (n, m)-graph. Then

$$
\begin{equation*}
L E(G) \leq 4 m\left(1-\frac{1}{n}\right) \tag{12}
\end{equation*}
$$

Equalitiy holds if, and only if, $\bar{E}=\emptyset$ or G is the union of one edge and $n-2$ isolated vertices.

Proof. The description of $L(G)$ in (10) makes the next equality evident, that is:

$$
\begin{equation*}
L(G)-\frac{2 m}{n} I_{n}=\sum_{(u, v) \in \bar{E}(G)}\left(L(G(u, v))-\frac{2}{n} I_{n}\right) . \tag{13}
\end{equation*}
$$

The inequality in (12) is a consequence of Eqs. (2), (13), Theorem 1 and Eq. (11), by changing α to $2 / n$. On the equality case in (12), it is easily checked that (12) is an equality in the cases considered in the statement. Conversely, suppose that we have equality in (12), $\bar{E} \neq \emptyset$ and $m \geq 2$. Consider $\bar{E}=\left\{e_{1}, e_{2}, \ldots e_{m}\right\}$ where $e_{i}=\left\{u_{i}, v_{i}\right\}, i=1, \ldots, m$. Thus, the next equality is implied by equality in (12), (13) and (11).

$$
\begin{equation*}
\mathcal{E}\left(L(G)-\frac{2 m}{n} I_{n}\right)=\sum_{i=1}^{m} \mathcal{E}\left(L\left(G\left(e_{i}\right)\right)-\frac{2}{n} I_{n}\right) . \tag{14}
\end{equation*}
$$

Using (13) and Theorem 1 we obtain

$$
\begin{align*}
\mathcal{E}\left(L(G)-\frac{2 m}{n} I_{n}\right) & \leq \mathcal{E}\left(L\left(G\left(e_{1}\right)\right)-\frac{2}{n} I_{n}\right) \\
& +\mathcal{E}\left(\sum_{i=2}^{m}\left(L\left(G\left(e_{i}\right)\right)-\frac{2}{n} I_{n}\right)\right) . \tag{15}
\end{align*}
$$

Replacing (14) into (15) and apply Theorem 1 to obtain

$$
\begin{equation*}
\mathcal{E}\left(\sum_{i=2}^{m}\left(L\left(G\left(e_{i}\right)\right)-\frac{2}{n} I_{n}\right)\right)=\sum_{i=2}^{m} \mathcal{E}\left(L\left(G\left(e_{i}\right)\right)-\frac{2}{n} I_{n}\right) . \tag{16}
\end{equation*}
$$

By the same kind of reasoning, but this time considering (16) rather than (14), we obtain

$$
\mathcal{E}\left(\sum_{i=3}^{m}\left(L\left(G\left(e_{i}\right)\right)-\frac{2}{n} I_{n}\right)\right)=\sum_{i=3}^{m} \mathcal{E}\left(L\left(G\left(e_{i}\right)\right)-\frac{2}{n} I_{n}\right) .
$$

Using a reasoning analogous to that above, we arrive at

$$
\begin{align*}
& \mathcal{E}\left(\left(L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right)+\left(L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}\right)\right) \\
= & \mathcal{E}\left(L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right)+\mathcal{E}\left(L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}\right) . \tag{17}
\end{align*}
$$

Invoking again Theorem 1, there exists an orthogonal matrix P such that

$$
\begin{equation*}
X=P\left(L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right) \quad \text { and } \quad Y=P\left(L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}\right) \tag{18}
\end{equation*}
$$

are positive semidefinite matrices. Hence $P^{T} X$ and $P^{T} Y$ are polar decompositions of nonsingular matrices $L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}$ and $L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}$ respectively. By Theorem 3 we conclude that

$$
X=\left|L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right| \quad \text { and } \quad Y=\left|L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}\right|
$$

As

$$
L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n} \quad \text { and } \quad L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}
$$

are invertible matrices, P is the unique orthogonal matrix for which (18) is true. Let $b=1-2 / n$. Then the matrix $L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}$ can be expressed as

$$
\left(\begin{array}{cccccccc}
-\frac{2}{n} & & 0 & \ldots & & & & 0 \\
& \ddots & & & & & & \\
0 & & b & \ldots & 0 & -1 & & \vdots \\
\vdots & & 0 & -\frac{2}{n} & & \vdots & & \\
& & \vdots & & \ddots & 0 & & \\
0 & & -1 & 0 & \ldots & b & & \\
& & & & & & \ddots & \\
0 & & \ldots & & & 0 & & -\frac{2}{n}
\end{array}\right)
$$

By relatively straightforward means one can show that

$$
\begin{equation*}
L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}=F_{m} B F_{m}^{T} \tag{19}
\end{equation*}
$$

with F_{m} denoting a particular permutation matrix and B is the nonsingular matrix

$$
\left(\begin{array}{cccccc}
b & -1 & \cdots & & & 0 \\
-1 & b & \cdots & & & \vdots \\
\vdots & 0 & -\frac{2}{n} & & \vdots & \\
& \vdots & & \ddots & 0 & \\
& & & \cdots & & \\
0 & \cdots & & & 0 & -\frac{2}{n}
\end{array}\right)
$$

Now let Q be the matrix

$$
\left(\begin{array}{ccccc}
0 & -1 & & & \\
-1 & 0 & & & \\
& & -1 & & \\
& & & \ddots & \\
& & & & -1
\end{array}\right)
$$

By Lemma 6 and Theorem 3 we conclude that Q is the unique orthogonal matrix for which

$$
\begin{equation*}
B=Q|B| \tag{20}
\end{equation*}
$$

Therefore, Eq. (19) implies

$$
\begin{equation*}
\left|L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right|=F_{m}|B| F_{m}^{T}=F_{m} Q^{-1} B F_{m}^{T} \tag{21}
\end{equation*}
$$

Now we can replace (19) and (21) in

$$
L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}=P^{T}\left|L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right|
$$

to obtain

$$
F_{m} Q F_{m}^{T}=P^{T} .
$$

Then $P=F_{m} Q F_{m}^{T}$ is the unique orthogonal matrix such that

$$
P\left(L\left(G\left(e_{m}\right)\right)-\frac{2}{n} I_{n}\right)
$$

is positive definite and it is depending of edge e_{m}. We see that this contradicts to the requirement that

$$
Y=P\left(L\left(G\left(e_{m-1}\right)\right)-\frac{2}{n} I_{n}\right)
$$

is a positive definite matrix. This proves the assertion.

5 An upper bound on the Laplacian energy for the union of graphs

Here and throughout this section, \bigoplus denotes the block matrix direct sum [13].

Theorem 8 Let $k \in \mathbb{N}$. Let $\left\{G_{i}\right\}_{i=1}^{k}$ be a collection of $k,\left(n_{i}, m_{i}\right)$-graphs, $i=1, \ldots, k$. Consider $G=G_{1} \cup G_{2} \cup \ldots \cup G_{k}$ so that $n=\sum_{i=1}^{k} n_{i}$ is the order of G and $m=\sum_{i=1}^{k} m_{i}$ is the size of G. Then

$$
\begin{equation*}
L E(G) \leq \sum_{i=1}^{k} L E\left(G_{i}\right)+\sum_{i=1}^{k}\left|\frac{2 m_{i}}{n_{i}}-\frac{2 m}{n}\right| n_{i} . \tag{22}
\end{equation*}
$$

Equality holds if, and only if, $2 m_{i} / n_{i}=2 m / n$ for all $i=1, \ldots, k$.

Proof. The following equality follows immediately from the statement,

$$
\begin{equation*}
\frac{2 m}{n}=\left(1 / \sum_{j=1}^{k} n_{j}\right)\left(\sum_{i=1}^{k} 2 m_{i}\right)=\sum_{i=1}^{k} \frac{2 m_{i}}{n_{i}}\left(n_{i} / \sum_{j=1}^{k} n_{j}\right) . \tag{23}
\end{equation*}
$$

In other words $2 m / n$ is a convex combination of $2 m_{i} / n_{i}, i=1, \ldots, k$.

In order to simplify the writing and omit some subscripts, we take $I_{n_{i}} \equiv I_{i}$ and $2 m_{i} / n_{i}-2 m / n \equiv b_{i}$. It is clear that

$$
\begin{aligned}
L(G)-\frac{2 m}{n} I_{n} & =\bigoplus_{i=1}^{k}\left(L\left(G_{i}\right)-\frac{2 m}{n} I_{i}\right) \\
& =\bigoplus_{i=1}^{k}\left(L\left(G_{i}\right)-\frac{2 m_{i}}{n_{i}} I_{i}\right)+\bigoplus_{i=1}^{k} b_{i} I_{i}
\end{aligned}
$$

Therefore, as a consequence of Eq. (2) and Theorem 1, the inequality in (22) follows. On the equality case, the condition is sufficient [12]. Conversely we suppose the equality in (22) is true and suppose that, the equalities $2 m_{i} / n_{i}=$ $2 m / n$ for all $i=1, \ldots, k$, fail. Therefore, by (23) there exists ℓ such that $2 m_{\ell} / n_{\ell}>2 m / n$. We can assume that $\ell=1$. As a consequence of Theorem 1 and equality in (22), there exists an orthogonal matrix P such that

$$
X=P \bigoplus_{i=1}^{k}\left(L\left(G_{i}\right)-\frac{2 m_{i}}{n_{i}} I_{i}\right) \quad \text { and } \quad Y=P \bigoplus_{i=1}^{k} b_{i} I_{i}
$$

are both positive semidefinite. Hence $P^{T} X$ and $P^{T} Y$ are polar decompositions of the matrices

$$
\bigoplus_{i=1}^{k}\left(L\left(G_{i}\right)-\frac{2 m_{i}}{n_{i}} I_{i}\right) \quad \text { and } \quad \bigoplus_{i=1}^{k} b_{i} I_{i}
$$

respectively. By Theorem 3, we arrive at $Y=\bigoplus_{i=1}^{k}\left|b_{i}\right| I_{i}$. Thus

$$
\begin{equation*}
\bigoplus_{i=1}^{k}\left|b_{i}\right| I_{i}=P \bigoplus_{i=1}^{k} b_{i} I_{i} \tag{24}
\end{equation*}
$$

We can write the orthogonal matrix P as

$$
P=\left(\begin{array}{cccc}
P_{11} & P_{12} & \ldots & P_{1 k} \tag{25}\\
P_{21} & P_{22} & \ldots & P_{2 k} \\
\vdots & & \ddots & \vdots \\
P_{k 1} & \ldots & & P_{k k}
\end{array}\right)
$$

with the diagonal matrices $P_{j j}, j=1, \ldots, k$, of order n_{j} respectively. From (24) we have

$$
\left(\begin{array}{cccc}
\left|b_{1}\right| I_{1} & 0 & \ldots & 0 \\
0 & \left|b_{2}\right| I_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & \left|b_{k}\right| I_{k}
\end{array}\right)=\left(\begin{array}{cccc}
P_{11} & P_{12} & \ldots & P_{1 k} \\
P_{21} & P_{22} & \ldots & P_{2 k} \\
\vdots & & \ddots & \vdots \\
P_{k 1} & \ldots & & P_{k k}
\end{array}\right)\left(\begin{array}{cccc}
b_{1} I_{1} & 0 & \ldots & 0 \\
0 & b_{2} I_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & b_{k} I_{k}
\end{array}\right)
$$

and then

$$
\left(\begin{array}{cccc}
\left|b_{1}\right| I_{1} & 0 & \ldots & 0 \tag{26}\\
0 & \left|b_{2}\right| I_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & \left|b_{k}\right| I_{k}
\end{array}\right)=\left(\begin{array}{cccc}
b_{1} P_{11} & P_{12} & \ldots & P_{1 k} \\
b_{1} P_{21} & P_{22} & \ldots & P_{2 k} \\
\vdots & & \ddots & \vdots \\
b_{1} P_{k 1} & \ldots & & P_{k k}
\end{array}\right) .
$$

As $b_{1}=2 m_{1} / n_{1}-2 m / n>0$, via (26) we obtain $P_{11}=I_{1}$ and $P_{j 1}=$ $0, j=2, \ldots, k$. Substituting these $P_{j 1}$ into (25) and then replacing the matrix P in the equality $X=P \bigoplus_{i=1}^{k}\left(L\left(G_{i}\right)-\left(2 m_{i} / n_{i}\right) I_{i}\right)$, we conclude that $L\left(G_{1}\right)-\left(2 m_{1} / n_{1}\right) I_{1}$ is is a positive semidefinite matrix. Now we have the required contradiction since

$$
-\frac{2 m_{1}}{n_{1}} \in \sigma\left(L\left(G_{1}\right)-\frac{2 m_{1}}{n_{1}} I_{1}\right)
$$

Hence the assertion follows.

References

[1] T. Aleksić, Upper bounds for Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 435-439.
[2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[3] J. Day, W. So, Singular value inequality and graph energy change, El. J. Lin. Algebra 16 (2007) 291-297.
[4] N. N. M. de Abreu, C.T. M. Vinagre, A. S. Bonifácio, I. Gutman, The Laplacian energy of some Laplacian integral graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 447-460.
[5] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951) 760-766.
[6] K. Fan, A.J. Hoffman, Some metric inequalities in the space of matrices, Proc. Amer. Math. Soc. 6 (1955) 111-116.
[7] I. Gohber, M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, 1969.
[8] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[9] I. Gutman, The energy of a Graph: Old and New Results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[10] I. Gutman, N. M. M. de Abreu, C. T. M. Vinagre, A. S. Bonifacio, S. Radenković, Relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem. 59 (2008) 343-354.
[11] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435-442.
[12] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29-37.
[13] R. Horn, C. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1989.
[14] G. Indulal, A. Vijayakumar, A note on energy of some graphs, MATCH Commun. Math. Comput. Chem. 59 (2008) 269-274.
[15] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn \& Bacon, Boston, 1964.
[16] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.
[17] W. So, M. Robbiano, N. M. M. de Abreu, I. Gutman, Applications of the Ky Fan theorem in the theory of graph energy, Lin. Algebra Appl., in press.
[18] D. A. Spielman, Spectral Graph Theory and Its Applications, Lecture 2 (September 7, 2004).
[19] R. C. Thompson, Convex and concave functions of singular values of matrix sums, Pacific J. Math. 66 (1976) 285-290.
[20] R. C. Thompson, The case of equality in the matrix-valued triangle inequalitity, Pacific J. Math. 82 (1979) 279-280.
[21] B. Zhou, I. Gutman, T. Aleksić, A note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 441-446.

[^0]: *E-mail address: mariarobbiano@gmail.com
 ${ }^{\dagger}$ The authors were partially supported by Project Mecesup 2 UCN0605.

