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Abstract

The Laplacian energy of a graph G is equal to the sum of distances
of the Laplacian eigenvalues to their average, which in turn is equal
to the sum of singular values of a shift of Laplacian matrix of G. Let
X, Y, and Z be matrices, such that Z = X+Y. Ky Fan has established
an inequality between the sum of singular values of Z and the sum
of the sum of singular values of X and Y respectively. We apply this
inequality to obtain new results in the theory of Laplacian energy of
a graph.

1 Preliminaries

Let G =
(
V, E
)

be a simple graph, with nonempty vertex set V = {v1, . . . , vn}

and edge set E = {e1, . . . , em}. That is to say, G is a simple (n, m)-graph.

For any of these graphs d1 ≥ d2 ≥ . . . ≥ dn corresponds to its vertex de-

gree sequence. In particular Δ (G) stands for the largest vertex degree of

G. The diagonal matrix of order n whose (i, i)−entry is di is the diagonal
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vertex degree matrix of G and is denoted by D(G). The (0, 1)-adjacency ma-

trix A(G) = (aij) is defined by aij = 1 if, and only if, vertices i and j are

connected. Its eigenvalues λ1, λ2, . . . , λn form the spectrum of G. The matrix

L (G) = D (G) − A (G) is the Laplacian matrix of G . The Laplacian spec-

trum of G corresponds to eigenvalues μ1, μ2, . . . , μn of L(G). It is well known

that for bipartite graphs, Laplacian matrix and the signless Laplacian matrix

Q(G) = A (G) + D (G) have equal spectra [2].

The notion of the energy E (G) of an (n,m)-graph G was introduced by

Gutman in connection with the π-molecular energy (cf. [8, 9, 11, 14]). It is

defined by

E (G) =
n∑

j=1

|λj|

whereas the Laplacian energy LE(G) of an (n,m)-graph G (cf. [1, 4, 10, 12,

21]) is defined by

LE (G) =
n∑

j=1

∣∣μj − (2m/n)
∣∣ . (1)

The concept of matrix energy [16] was established by analogy with graph

energy. For a matrix C, with singular values s1(C), s2(C), . . . its energy

E (C) is equal to s1(C)+s2(C)+· · · . Consequently, if C ∈ R
n×n is symmetric

with eigenvalues λ1(C), λ2(C), . . . , λn(C) its energy is given by

E (C) =
n∑

i=1

|λi(C)| .

Let s ∈ N . Denote by Is the corresponding identity matrix of order s .

Evidently the energy of any graph G is the energy of its adjacency matrix
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and its Laplacian energy is provided by

LE (G) = E
(

L(G) − 2m

n
In

)
. (2)

The following results are already known.

Theorem 1 Let A and B be two real square matrices of order n and let

C = A + B. Then

E (C) ≤ E (A) + E (B) . (3)

Moreover equality holds if, and only if, there exists an orthogonal matrix P

such that PA and PB are both positive semidefinite matrices.

Lemma 2 ([3]) If A = (aij)
n
i,j=1 is a positive semidefinite matrix and aii = 0

for some i, then aij = 0 = aji, j = 1, 2, . . . , n.

Theorem 1 was obtained by Ky Fan [5] using a variational principle. It

also appears in Gohberg and Krein [7] and in Horn and Johnson [13]. No

equality case is discussed in these references. Thompson [19, 20] employs

polar decomposition theorem and inequalities due to Fan and Hoffman [6] to

obtain its equality case. Day and So [3] give the details of a proof for the

inequality and the case of equality.

For a matrix A, define |A| �
(
AT A

)1/2
. Here we present the following

version of the polar decomposition theorem.

Theorem 3 ([15]) Let A ∈ R
n×n. Then there exist positive semidefinite

matrices X,Y ∈ R
n×n and orthogonal matrices P, F ∈ R

n×n such that A =

PX = Y F. Moreover, the matrices X, Y are unique, X = |A| , Y =
(
AAT

)1/2
.

The matrices P and F are uniquely determined if and only if A is nonsingu-

lar.
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The aim of this paper is to study cases of equality.

2 Graphs G for which LE(G) = E(G)+E(D(G)−
(2m/n)In)

Theorem 4 Let G be a connected (n, m)-graph. Then

E(G) +
n∑

i=1

∣∣∣∣di −
2m

n

∣∣∣∣ ≥ LE (G) . (4)

Moreover equality in (4) holds if, and only if, G is a regular graph.

Proof. The inequality in (4) is proved in [17]. If G is a regular graph then

the equality in (4) holds (see [12]). Conversely, suppose the equality in (4)

holds. In order to obtain a contradiction, we suppose that G is not regular.

Therefore

Δ (G) = d1 >
2m

n
. (5)

For i = 1, . . . , n, let ai � di − (2m/n). We have a1 > 0, via (5). Bear-

ing in mind that L(G) − (2m/n)In = D(G) − (2m/n)In − A(G) and the

equality in (4) , we see that Theorem 1 asserts that there exists an orthogo-

nal matrix P such that X = P (D − (2m/n)In) and Y = P (−A(G)) are

both positive semidefinite. Hence P T X and P T Y are polar decomposi-

tions of the matrices D − 2m
n

In and −A (G) , respectively. Here, using

Theorem 3 we obtain X =
∣∣D − 2m

n
In

∣∣ and Y = |A(G)|. Therefore X =
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diag(|a1| , |a2| , . . . , |an|) . Setting

P T =

⎛
⎜⎝

q11 . . . q1n
...

. . .
...

qn1 . . . qnn

⎞
⎟⎠ and A(G) =

⎛
⎜⎜⎜⎝

0 a12 . . . a1n

a12 0
. . . a2n

...
. . . . . .

...
a1n a2n . . . 0

⎞
⎟⎟⎟⎠ ,

P T X = D − (2m/n)In, implies⎛
⎜⎝

q11 . . . q1n
...

. . .
...

qn1 . . . qnn

⎞
⎟⎠
⎛
⎜⎝
|a1|

. . .

|an|

⎞
⎟⎠ =

⎛
⎜⎝

a1

. . .

an

⎞
⎟⎠ .

Then, ⎛
⎜⎜⎜⎝
|a1| q11 |a2| q12 . . . |an| q1n

|a1| q21 |a2| q22 |an| q2n
...

. . .
...

|a1| qn1 |a2| qn2 . . . |an| qnn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1

a2

. . .

an

⎞
⎟⎟⎟⎠ .

Equality at first column imposes q11 = 1 and, qi1 = 0, i = 2, . . . , n . It follows

that

P =

⎛
⎜⎜⎜⎝

1 0 . . . 0
q12 . . . qn2
...

. . .
...

q1n . . . qnn

⎞
⎟⎟⎟⎠ .

We must then have

Y = −

⎛
⎜⎜⎜⎝

1 0 . . . 0
q12 . . . qn2
...

. . .
...

q1n . . . qnn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

0 a12 . . . a1n

a12 0
. . . a2n

...
. . . . . .

...
a1n a2n . . . 0

⎞
⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎝

0 a12 . . . a1n

* . . . *
...

. . .
...

* . . . *

⎞
⎟⎟⎟⎠ .
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The previous matrix is positive semidefinite and by Lemma 2, we obtain

a1j = 0, j = 2, . . . , n. This contradicts our assumption that G is a connected

graph and the result follows.

3 Graphs G for which LE(G) = E(G)

Gutman and Zhou [12] showed that if G is a regular graph then

LE(G) = E(G) . (6)

In particular, if G is bipartite and regular, then the equality (6) holds. In

this section we give conditions for the converse:

Theorem 5 Let G be a bipartite graph. Then the equality (6) holds if, and

only if, G is a regular graph.

Proof. Let G be a regular graph. We must then have (6) [12]. Conversely,

suppose the equality (6) holds. From definition of Laplacian and signless

Laplacian matrices it is clear that(
Q(G) − 2m

n
In

)
−
(

L(G) − 2m

n
In

)
= 2A (G) . (7)

Therefore,

E
(

Q(G) − 2m

n
In −

(
L(G) − 2m

n
In

))
= 2E (A(G))

= E(G) + E (G)

= LE(G) + LE(G) .
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Bearing in mind that G is bipartite we obtain

E
(

Q(G) − 2m

n
In −

(
L(G) − 2m

n
In

))

= E
(

Q(G) − 2m

n
In

)
+ E
(
−
(

L(G) − 2m

n
In

))
. (8)

Therefore, Theorem 1 asserts that there exists an orthogonal matrix P , such

that

X = P

(
Q(G) − 2m

n
In

)
and Y = P

(
−
(

L(G) − 2m

n
In

))
(9)

are both positive semidefinite matrices. Hence P T X and P T Y are polar

decompositions of

Q(G) − 2m

n
In and −

(
L(G) − 2m

n
In

)

respectively. By Theorem 3 we obtain

X =

∣∣∣∣Q(G) − 2m

n
In

∣∣∣∣ and Y =

∣∣∣∣L(G) − 2m

n
In

∣∣∣∣ .

In view of the fact that G is bipartite, we conclude that X = Y . By using

Eq. (9) we arrive at

Q(G) + L(G) =
4m

n
In

which implies the result.

4 A new upper bound on LE(G)

We shall be considering G with nonempty edge set E. Let u, v be two vertices

of G. The Laplacian matrix of the graph G(u, v) with n vertices and just one
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edge between vertices u and v , is determined via

L(G(u, v))i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if (i, j) = (u, u) or (i, j) = (v, v)

−1 if (i, j) = (u, v) or (i, j) = (v, u)

0 otherwise.

Spielman [18] expresses the Laplacian matrix of G in terms of L(G(u, v)) by

L (G) =
∑

(u,v)∈E

L (G(u, v)) . (10)

We consider α ∈ R. The energy E (L (G(u, v)) − αIn) can be computed

directly as:

E (L (G(u, v)) − αIn) = (n − 1) |α| + |2 − α| . (11)

On the other hand, for 0 < a < 1 , let A, Q, P , and D be the following

matrices:

A =

[
a −1
−1 a

]
, Q =

[
1 −1
1 1

]
, P =

[
0 −1
−1 0

]
, D =

[
a − 1 0

0 a + 1

]

The proof of the next result is a matter of straightforward computation, and

depends on the spectrum of A.

Lemma 6 Let A, Q, P and D be as above. Then A = QDQ−1. Moreover

A = P |A| .

As an immediate consequence we have |A| = Q |D|Q−1.

Theorem 7 Let G be an (n,m)-graph. Then

LE(G) ≤ 4m

(
1 − 1

n

)
. (12)

Equalitiy holds if, and only if, E = ∅ or G is the union of one edge and n−2

isolated vertices.
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Proof. The description of L(G) in (10) makes the next equality evident,

that is:

L (G) − 2m

n
In =

∑
(u,v)∈E(G)

(
L (G(u, v)) − 2

n
In

)
. (13)

The inequality in (12) is a consequence of Eqs. (2), (13) , Theorem 1 and

Eq. (11) , by changing α to 2/n. On the equality case in (12), it is easily

checked that (12) is an equality in the cases considered in the statement.

Conversely, suppose that we have equality in (12), E �= ∅ and m ≥ 2 .

Consider E = {e1, e2, . . . em} where ei = {ui, vi} , i = 1, . . . ,m. Thus, the

next equality is implied by equality in (12), (13) and (11) .

E
(

L (G) − 2m

n
In

)
=

m∑
i=1

E
(

L (G(ei)) −
2

n
In

)
. (14)

Using (13) and Theorem 1 we obtain

E
(

L (G) − 2m

n
In

)
≤ E

(
L (G(e1)) −

2

n
In

)

+ E
(

m∑
i=2

(
L (G(ei)) −

2

n
In

))
. (15)

Replacing (14) into (15) and apply Theorem 1 to obtain

E
(

m∑
i=2

(
L (G(ei)) −

2

n
In

))
=

m∑
i=2

E
(

L (G(ei)) −
2

n
In

)
. (16)

By the same kind of reasoning, but this time considering (16) rather than

(14), we obtain

E
(

m∑
i=3

(
L (G(ei)) −

2

n
In

))
=

m∑
i=3

E
(

L (G(ei)) −
2

n
In

)
.
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Using a reasoning analogous to that above, we arrive at

E
((

L (G(em)) − 2

n
In

)
+

(
L (G(em−1)) −

2

n
In

))

= E
(

L (G(em)) − 2

n
In

)
+ E
(

L (G(em−1)) −
2

n
In

)
. (17)

Invoking again Theorem 1, there exists an orthogonal matrix P such that

X = P

(
L (G(em)) − 2

n
In

)
and Y = P

(
L (G(em−1)) −

2

n
In

)
(18)

are positive semidefinite matrices. Hence P T X and P T Y are polar decom-

positions of nonsingular matrices L (G(em)) − 2
n
In and L (G(em−1)) − 2

n
In

respectively. By Theorem 3 we conclude that

X =

∣∣∣∣L (G(em)) − 2

n
In

∣∣∣∣ and Y =

∣∣∣∣L (G(em−1)) −
2

n
In

∣∣∣∣ .

As

L (G(em)) − 2

n
In and L (G(em−1)) −

2

n
In

are invertible matrices, P is the unique orthogonal matrix for which (18) is

true. Let b = 1 − 2/n . Then the matrix L (G(em)) − 2
n

In can be expressed

as ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2
n

0 . . . 0
. . .

0 b . . . 0 −1
...

... 0 − 2
n

...
...

. . . 0
0 −1 0 . . . b

. . .

0 . . . 0 − 2
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

- 546 -



By relatively straightforward means one can show that

L (G(em)) − 2

n
In = Fm B F T

m (19)

with Fm denoting a particular permutation matrix and B is the nonsingular

matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b −1 . . . 0

−1 b . . .
...

... 0 − 2
n

...
...

. . . 0

. . .
0 . . . 0 − 2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now let Q be the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
−1 0

−1
. . .

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By Lemma 6 and Theorem 3 we conclude that Q is the unique orthogonal

matrix for which

B = Q |B| . (20)

Therefore, Eq. (19) implies∣∣∣∣L (G(em)) − 2

n
In

∣∣∣∣ = Fm |B|F T
m = FmQ−1BF T

m . (21)

Now we can replace (19) and (21) in

L (G(em)) − 2

n
In = P T

∣∣∣∣L (G(em)) − 2

n
In

∣∣∣∣
to obtain

Fm QF T
m = P T .
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Then P = Fm QF T
m is the unique orthogonal matrix such that

P

(
L (G(em)) − 2

n
In

)

is positive definite and it is depending of edge em. We see that this contradicts

to the requirement that

Y = P

(
L (G(em−1)) −

2

n
In

)

is a positive definite matrix. This proves the assertion.

5 An upper bound on the Laplacian energy

for the union of graphs

Here and throughout this section,
⊕

denotes the block matrix direct sum

[13].

Theorem 8 Let k ∈ N. Let {Gi}k
i=1 be a collection of k, (ni,mi)-graphs,

i = 1, . . . , k . Consider G = G1∪G2∪ . . .∪ Gk so that n =
k∑

i=1

ni is the order

of G and m =
k∑

i=1

mi is the size of G . Then

LE(G) ≤
k∑

i=1

LE(Gi) +
k∑

i=1

∣∣∣∣2mi

ni

− 2m

n

∣∣∣∣ni. (22)

Equality holds if, and only if, 2mi/ni = 2m/n for all i = 1, . . . , k .

Proof. The following equality follows immediately from the statement,

2m

n
=

(
1/

k∑
j=1

nj

)(
k∑

i=1

2mi

)
=

k∑
i=1

2mi

ni

(
ni/

k∑
j=1

nj

)
. (23)

In other words 2m/n is a convex combination of 2mi/ni, i = 1, . . . , k .

- 548 -



In order to simplify the writing and omit some subscripts, we take Ini
≡ Ii

and 2mi/ni − 2m/n ≡ bi . It is clear that

L(G) − 2m

n
In =

k⊕
i=1

(
L(Gi) −

2m

n
Ii

)

=
k⊕

i=1

(
L(Gi) −

2mi

ni

Ii

)
+

k⊕
i=1

bi Ii .

Therefore, as a consequence of Eq. (2) and Theorem 1, the inequality in (22)

follows. On the equality case, the condition is sufficient [12]. Conversely we

suppose the equality in (22) is true and suppose that, the equalities 2mi/ni =

2m/n for all i = 1, . . . , k , fail. Therefore, by (23) there exists 
 such that

2m�/n� > 2m/n . We can assume that 
 = 1 . As a consequence of Theorem

1 and equality in (22), there exists an orthogonal matrix P such that

X = P

k⊕
i=1

(
L(Gi) −

2mi

ni

Ii

)
and Y = P

k⊕
i=1

bi Ii

are both positive semidefinite. Hence P T X and P T Y are polar decomposi-

tions of the matrices
k⊕

i=1

(
L(Gi) −

2mi

ni

Ii

)
and

k⊕
i=1

bi Ii

respectively. By Theorem 3, we arrive at Y =
k⊕

i=1

|bi| Ii. Thus

k⊕
i=1

|bi| Ii
= P

k⊕
i=1

biIi
. (24)

We can write the orthogonal matrix P as

P =

⎛
⎜⎜⎜⎝

P11 P12 . . . P1k

P21 P22 . . . P2k
...

. . .
...

Pk1 . . . Pkk

⎞
⎟⎟⎟⎠ , (25)
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with the diagonal matrices Pjj, j = 1, . . . , k, of order nj respectively. From

(24) we have⎛
⎜⎜⎜⎝
|b1| I1 0 . . . 0

0 |b2| I2 . . . 0
...

. . .
...

0 . . . 0 |bk| Ik

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P11 P12 . . . P1k

P21 P22 . . . P2k
...

. . .
...

Pk1 . . . Pkk

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

b1I1 0 . . . 0
0 b2I2 . . . 0
...

. . .
...

0 . . . 0 bkIk

⎞
⎟⎟⎟⎠

and then⎛
⎜⎜⎜⎝
|b1| I1 0 . . . 0

0 |b2| I2 . . . 0
...

. . .
...

0 . . . 0 |bk| Ik

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b1P11 P12 . . . P1k

b1P21 P22 . . . P2k
...

. . .
...

b1Pk1 . . . Pkk

⎞
⎟⎟⎟⎠ . (26)

As b1 = 2m1/n1 − 2m/n > 0 , via (26) we obtain P11 = I1 and Pj1 =

0, j = 2, . . . , k . Substituting these Pj1 into (25) and then replacing the

matrix P in the equality X = P
k⊕

i=1

(L(Gi) − (2mi/ni)Ii) , we conclude that

L(G1) − (2m1/n1)I1 is is a positive semidefinite matrix. Now we have the

required contradiction since

−2m1

n1

∈ σ

(
L(G1) −

2m1

n1

I1

)
.

Hence the assertion follows.
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