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Abstract

The Laplacian energy of a graph G is equal to the sum of distances
of the Laplacian eigenvalues to their average, which in turn is equal
to the sum of singular values of a shift of Laplacian matrix of G. Let
X, Y, and Z be matrices, such that Z = X +Y. Ky Fan has established
an inequality between the sum of singular values of Z and the sum
of the sum of singular values of X and Y respectively. We apply this
inequality to obtain new results in the theory of Laplacian energy of
a graph.

1 Preliminaries

Let G = (M E) be a simple graph, with nonempty vertexset V.= {v1,...,v,}
and edge set E = {ey,...,e,}. That is to say, G is a simple (n,m)-graph.
For any of these graphs d; > dy > ... > d, corresponds to its vertex de-
gree sequence. In particular A (G) stands for the largest vertex degree of

G. The diagonal matrix of order n whose (i,7)—entry is d; is the diagonal
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vertex degree matrix of G and is denoted by D(G). The (0, 1)-adjacency ma-
trix A(G) = (as;) is defined by a;; = 1 if, and only if, vertices i and j are
connected. Its eigenvalues A\, Ao, ..., A, form the spectrum of G. The matrix
L(G) = D(G) — A(G) is the Laplacian matrix of G . The Laplacian spec-

trum of G corresponds to eigenvalues fiy, fiy, . . ., f1,, of L(G). It is well known

that for bipartite graphs, Laplacian matrix and the signless Laplacian matrix
Q(G) = A(G) + D (G) have equal spectra [2].
The notion of the energy E (G) of an (n,m)-graph G was introduced by

Gutman in connection with the m-molecular energy (cf. [8, 9, 11, 14]). It is

defined by
EG) =) Al
j=1

whereas the Laplacian energy LE(G) of an (n, m)-graph G (cf. [1, 4, 10, 12,
21]) is defined by

LE(G) =Y |p;— (2m/n)| . (1)

j=1

The concept of matrix energy [16] was established by analogy with graph
energy. For a matrix C, with singular values s;(C), s2(C), ... its energy

& (C) isequal to s1(C)+s52(C)+- - . Consequently, if C' € R™" is symmetric
with eigenvalues A;(C'), Ao(C), ..., A, (C) its energy is given by

E(0)= Y INO -

Let s € N. Denote by I, the corresponding identity matrix of order s.

Evidently the energy of any graph G is the energy of its adjacency matrix
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and its Laplacian energy is provided by
2
LE(G)=¢& (L(G) - In) . 2)
n
The following results are already known.

Theorem 1 Let A and B be two real square matrices of order n and let
C=A+ B. Then

E(C)<E(A)+E(B). (3)
Moreover equality holds if, and only if, there exists an orthogonal matriz P

such that PA and PB are both positive semidefinite matrices.

Lemma 2 ([3]) IfA= (aij)zjzl is a positive semidefinite matriz and a; = 0

for some i, then a;; =0 =aj, j=1,2,....n.

Theorem 1 was obtained by Ky Fan [5] using a variational principle. It
also appears in Gohberg and Krein [7] and in Horn and Johnson [13]. No
equality case is discussed in these references. Thompson [19, 20] employs
polar decomposition theorem and inequalities due to Fan and Hoffman [6] to
obtain its equality case. Day and So [3] give the details of a proof for the
inequality and the case of equality.

For a matrix A, define |[A] £ (ATA)l/ ? . Here we present the following

version of the polar decomposition theorem.

Theorem 3 ([15]) Let A € R™ ™. Then there exist positive semidefinite
matrices X, Y € R™™ and orthogonal matrices P, F' € R"*™ such that A =
PX =YF. Moreover, the matrices X, Y are unique, X = |A|,Y = (AAT) vz,
The matrices P and F are uniquely determined if and only if A is nonsingu-

lar.
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The aim of this paper is to study cases of equality.

2 Graphs G for which LE(G) = E(G)+&(D(G)—
(2m/n)1,)

Theorem 4 Let G be a connected (n, m)-graph. Then

2m

di— | > LE(G). (4)

Moreover equality in (4) holds if, and only if, G is a regular graph.

Proof. The inequality in (4) is proved in [17]. If G is a regular graph then
the equality in (4) holds (see [12]). Conversely, suppose the equality in (4)

holds. In order to obtain a contradiction, we suppose that G is not regular.
Therefore

A(G)=d; > - (5)
For i = 1,...,n, let ¢; & d; — (2m/n). We have a; > 0, via (5). Bear-
ing in mind that L(G) — (2m/n)I, = D(G) — (2m/n)l, — A(G) and the
equality in (4), we see that Theorem 1 asserts that there exists an orthogo-

nal matrix P such that X = P (D — (2m/n)I,,) and ¥ = P (—A(Q)) are

both positive semidefinite. Hence PTX and PTY are polar decomposi-

tions of the matrices D — 277?1” and —A(G), respectively. Here, using

Theorem 3 we obtain X = |D — 22| and Y = |A(G)|. Therefore X =
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diag(|ay], |as|, ..., |a,|) . Setting

0 a2 ... aip
qir -+ qin 0 .
a1s LAy
Pr=|: - i |andA@G)=|"" ~
1 - S
nl nn 81 fgg ... 0
PTX = D — (2m/n)I,, implies
qi1 --- Qin |CL1| ay
dn1 -+ Qnn |an| ap
Then,
\(L1| q11 \(LQ| qi2 .- |an| qin ay
\@1| q21 \a2| q22 |an| G2n . 4]
|(1,1‘ qn1 |112‘ 4n2 .- ‘a’n‘ Gnn ap

Equality at first column imposes ¢;; = 1 and, ¢;; =0, i = 2,...,n . It follows

that
1 0 0
pP— QIQ qn?
Qin Unn
We must then have
1 0 . 0 0 a12 ... An
y — _ Q2 - - In2 aig 0 . Ao
Qin - - Ynn alp A2 ... 0
0 ajg ... aip

* *
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The previous matrix is positive semidefinite and by Lemma 2, we obtain
a;; =0, 7 =2,...,n. This contradicts our assumption that G is a connected

graph and the result follows. m

3 Graphs G for which LE(G) = E(G)
Gutman and Zhou [12] showed that if G is a regular graph then
LE(G) = E(G) . (6)

In particular, if G is bipartite and regular, then the equality (6) holds. In

this section we give conditions for the converse:

Theorem 5 Let G be a bipartite graph. Then the equality (6) holds if, and

only if, G is a reqular graph.

Proof. Let G be a regular graph. We must then have (6) [12]. Conversely,
suppose the equality (6) holds. From definition of Laplacian and signless

Laplacian matrices it is clear that

(Q(G) - 27’” In) - <L(G) _m 1") —24(G). (7)

Therefore,

28 (A(G))

tn
7N
o
Q
|
)
3
=
|
N
=
Q
|
‘1\9
3
&
S~
~——
Il

E(G) + E(G)
— LE(G)+ LE(G) .
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Bearing in mind that G is bipartite we obtain

¢ (Q(G) - %m I — (L(G) - 277” In)>

- ¢ (Q(G) - %m In> e (f <L(G) - %m 1)> . (8)

Therefore, Theorem 1 asserts that there exists an orthogonal matrix P, such

that

X=pP (Q(G) - 27’” 1n> and Y =P (f (L(G) - %m 1)) )

are both positive semidefinite matrices. Hence PTX and PTY are polar

decompositions of

oG -1 and - (L(G) _2m ]n)
n n
respectively. By Theorem 3 we obtain
2 2
X = ‘Q(G)——mfn and Y = ’L(G)——mln
n

In view of the fact that G is bipartite, we conclude that X =Y . By using
Eq. (9) we arrive at

QG +1G) =,

which implies the result. m
4 A new upper bound on LE(G)

We shall be considering G with nonempty edge set E. Let u, v be two vertices

of G. The Laplacian matrix of the graph G(u,v) with n vertices and just one
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edge between vertices u and v, is determined via
1 if (4,7) = (u,u) or (i,7) = (v,v)
L(G(u,v))ij = § =1 if (i,5) = (w,0) or (i,7) = (v, u)
0 otherwise.
Spielman [18] expresses the Laplacian matrix of G in terms of L(G(u,v)) by
L(G)= Y L(G(uv)) . (10)
(uv)eE
We consider a € R. The energy € (L (G(u,v)) —al,) can be computed

directly as:
E(L(G(u,v)) —al,)=n—-1)]al+2—af . (11)
On the other hand, for 0 < a < 1, let A, @, P, and D be the following
matrices:
a —1 1 -1 0 -1 a—1 0
e Rl FE e PR I FR-E ey
The proof of the next result is a matter of straightforward computation, and

depends on the spectrum of A.

Lemma 6 Let A, Q, P and D be as above. Then A = QDQ™'. Moreover
A=P|A|.

As an immediate consequence we have |4| = Q |D| QL.
Theorem 7 Let G be an (n,m)-graph. Then

LE(G) < 4m <1 - 3) . (12)

n
Equalitiy holds if, and only if, E = ) or G is the union of one edge and n —2

isolated vertices.
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Proof. The description of L(G) in (10) makes the next equality evident,

that is:

L@ — 2Ln L= Y (L (G, v)) — %In) . (13)

(u0)€E(G)
The inequality in (12) is a consequence of Egs. (2), (13), Theorem 1 and
Eq. (11), by changing a to 2/n. On the equality case in (12), it is easily
checked that (12) is an equality in the cases considered in the statement.
Conversely, suppose that we have equality in (12), £ # 0 and m > 2.
Consider E = {ey,eq,...¢,} where e; = {u;,v;}, i = 1,...,m. Thus, the

next equality is implied by equality in (12), (13) and (11).

E(L(G —@1) Zs( —31) (14)

Using (13) and Theorem 1 we obtain

£ (L (@) — %’”1) < € <L (Gle)) — %1)

+ € <zm: (L (Gler)) — 21)> . (15)

i=2
Replacing (14) into (15) and apply Theorem 1 to obtain
m 2
S(Z(L(G(el) —1)> Ze( - 1) (16)
i=2
By the same kind of reasoning, but this time considering (16) rather than

(14), we obtain

£ (i (L (Gler)) — %In)

=3
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Using a reasoning analogous to that above, we arrive at

((r@em-21)+ (L -21))

- ¢ (L (Glem)) — % In) e <L (Glem-1)) — %[n) .an

Invoking again Theorem 1, there exists an orthogonal matrix P such that

2 2
X=pr (L (Glem)) =~ In> and Y =P (L (Glem-1)) =~ In) (18)
are positive semidefinite matrices. Hence PTX and PTY are polar decom-
positions of nonsingular matrices L (G(e;,)) — 21, and L (G(em-1)) — 21,

respectively. By Theorem 3 we conclude that
2
X = |L(G(en)) — HI" and Y = |L(G(em1)) — gln

As

L(G(en)) — %In and L(G(em-1)) — %In

are invertible matrices, P is the unique orthogonal matrix for which (18) is
true. Let b = 1 —2/n. Then the matrix L (G(en)) — 2 I, can be expressed

as

~2 0 .. 0
0 b 0 -1

0 -2

: 0
0 -1 0 b
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By relatively straightforward means one can show that
2 T
L(G(em))_i-[n:FmBFm (19)
n

with £}, denoting a particular permutation matrix and B is the nonsingular

matrix

Now let () be the matrix

-1
By Lemma 6 and Theorem 3 we conclude that @ is the unique orthogonal

matrix for which

B=Q|B| (20)
Therefore, Eq. (19) implies

2
L(G(en)) — - I.,|=F,|B|Ff = F,Q 'BF" . (21)

Now we can replace (19) and (21) in

L(Glen) = = I = PT|L(Glen)) = 2 Iy

to obtain

F,QFT =pT.

m
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Then P = F,, Q FL is the unique orthogonal matrix such that

P(L(Gten) - 21)

is positive definite and it is depending of edge e,,. We see that this contradicts

to the requirement that

y—rp <L (Clem 1)) — %In)

is a positive definite matrix. This proves the assertion. m

5 An upper bound on the Laplacian energy
for the union of graphs

Here and throughout this section, € denotes the block matrix direct sum

13].

Theorem 8 Let k € N. Let {Gi}r_, be a collection of k, (ns,m;)-graphs,
k
i=1,...,k. Consider G = GiUGyU...U Gy so that n = > n; is the order

i=1
k
of G and m =Y m; is the size of G. Then
i=1
u "2ms 2m
LE(G) < LE(G; - n, 22
(@)= D LB(G) + 30T -S| (22

Equality holds if, and only if, 2m;/n; =2m/n for alli=1,... k.

Proof. The following equality follows immediately from the statement,

k

% = <1/ Zm) <Z 2m,;> = Z 2::1 (n,;/Zn]-) . (23)

i=1

In other words 2m/n is a convex combination of 2m;/n;, i =1,..., k.
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In order to simplify the writing and omit some subscripts, we take I,,, = I;

and 2m;/n; — 2m/n = b; . It is clear that
k
2m 2m
ve) -1 = @ (e -
@2 = @(ne)- )

k

k
- P (L(GZ-) - 2;’“ 12-) + Pl .
i i=1

i=1

Therefore, as a consequence of Eq. (2) and Theorem 1, the inequality in (22)
follows. On the equality case, the condition is sufficient [12]. Conversely we
suppose the equality in (22) is true and suppose that, the equalities 2m;/n; =
2m/n for all i = 1,...,k, fail. Therefore, by (23) there exists ¢ such that
2my/ny > 2m/n. We can assume that ¢ = 1. As a consequence of Theorem

1 and equality in (22), there exists an orthogonal matrix P such that

k k
2777/7;
X:P@(L(Gi)— — Ii) and Y =PI,
i=1 ! i=1

are both positive semidefinite. Hence PTX and PTY are polar decomposi-

tions of the matrices
k

k
fan (L(Gi) - 2;7 Ii) and Pl
v i=1

i=1

k
respectively. By Theorem 3, we arrive at Y = € |b;] I;. Thus
i=1

k k
Blvl 1 =PPu . (24)
i=1 i=1

We can write the orthogonal matrix P as

Pll P12 Plk

P P.Ql P22 P.Zk 7 (25)

Py Py,
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with the diagonal matrices Pj;, j = 1,...,k, of order n; respectively. From

(24) we have

by, 0 ... 0 Py Po ... Py\ (W 0O ... 0
0 fpo|y .. 0 | [Pu Pn ... Px 0 by ... 0

and then

‘bl|11 0 0 b]PH Plg Plk
0 |b2‘]2 0 b]PQ] P22 ng
. ‘ =] . L (26)
0 ... 0 |k b Py ... Pi,

As by = 2my/ny — 2m/n > 0, via (26) we obtain Py = I, and Pj; =
0, j = 2,...,k. Substituting these P;; into (25) and then replacing the
matrix P in the equality X = P @ (L(G;) — (2m;/n;)I;) , we conclude that
L(Gy) — (2my/ny)I; is is a p031tlve semidefinite matrix. Now we have the

required contradiction since

Hence the assertion follows. m
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