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Abstract

A graph is said to be triregular if its vertex degrees assume exactly three different values.
The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of
G . Conditions are established under which the inequality E(G) > n is obeyed for connected
n-vertex acyclic, unicyclic, and bicyclic triregular graphs.
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INTRODUCTION

In the preceding paper [1] we established necessary and sufficient conditions for

the validity of the inequality √
M2(G)3

M4(G)
≥ n (1)

where M2(G) and M4(G) are the second and fourth spectral moments, respectively, of

the n-vertex graph G . In view of the relation E(G) ≥
√

M2(G)3/M4(G) , whenever

(1) is obeyed, the energy E(G) of the graph G exceeds the number of vertices.

Our notation and basic terminology is same as in [1] and will not be described

here once again. This, in particular, applies to the graph–energy concept. In [1] a

detailed account of the history and current research of the problem of characterizing

(molecular) graphs for which E(G) ≥ n is given.

In order to avoid any misunderstand, we point our the following: The inequality

(1) is a sufficient, but not a necessary condition for the validity of E(G) ≥ n . In

other words, if (1) is satisfied, then the respective graph energy necessarily exceeds

the number of vertices. If, however, the inequality (1) is not obeyed, then the relation

E(G) ≥ n may still hold, but also may be violated.

It is known [2–4] that the equality E(G) =
√

M2(G)3/M4(G) holds if and only if

the components of the graph G are isolated vertices and/or complete bipartite graphs

Kp1,q1 , . . . , Kpk,qk
for some k ≥ 1 , such that p1 q1 = · · · = pk qk . If G is connected

and has at least two vertices, then the above equality holds only if G is a complete

bipartite graph. Graphs with such special structure are of no relevance for the present

considerations (in particular, the above equality cannot hold for a connected triregular

graph). Therefore, whenever the relation (1) is satisfied, the energy of the underlying

graph G strictly exceeds the number of vertices, i. e., E(G) > n .

In the preceding paper [1] we considered acyclic, unicyclic, and bicyclic biregular

graphs. Here we extend our analysis to triregular graphs.

Let G be an n-vertex graph whose vertices have degrees d1, d2, . . . , dn . Let x ,

a , and b be three positive integers, 1 ≤ x < a < b ≤ n − 1 . Then G is said to be

triregular if for i = 1, 2, . . . , n , either di = x or di = a or di = b , and there exists at

least one vertex of degree x , at least one vertex of degree a , and at least one vertex
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of degree b . If so, then G is a triregular graph of degrees x , a , and b or, for brevity,

an (x, a, b)-triregular graph.

Throughout this paper all graphs are understood to be connected.

GENERAL TRIREGULAR GRAPHS

In this section we consider (x, a, b)-triregular graphs, where 1 ≤ x < a < b

and x, a, b are integers. We know that for any graph with n vertices, m edges, q

quadrangles, and vertex degrees d1, d2, . . . , dn ,

M2 = 2m

M4 = 2
n∑

i=1

(di)
2 − 2m + 8q .

For a triregular graph,

nx + na + nb = n (2)

and

xnx + a na + b nb = 2m (3)

where nx is the number of vertices of degree x , na is the number of vertices of degree

a , and nb is the number of vertices of degree b . From (2) and (3) follows

na =
nx(x − b) + (bn − 2m)

b − a
, nb =

nx(a − x) − (an − 2m)

b − a

and

n∑
i=1

(di)
2 = x2 · nx + a2 · na + b2 · nb

= nx(a − x)(b − x) + 2m(a + b) − abn .

From this,

M4 = 2[nx(a − x)(b − x) + m(2a + 2b − 1) − abn + 4q] . (4)

Substituting (4) and M2 = 2m back into (1) we get√
4m3

nx(a − x)(b − x) + m(2a + 2b − 1) − abn + 4q
≥ n.
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from which,

nx ≤ 4m3 + n2[abn − 4q − m(2a + 2b − 1)]

n2(a − x)(b − x)
. (5)

Theorem 1. Let G be an (x, a, b)-triregular graph with n vertices, m edges, and q

quadrangles. Let nx be the number of vertices degree x . Then (1) holds if and only

if condition (5) is satisfied.

TRIREGULAR TREES

Let T be a triregular n-vertex tree with vertex degrees 1 , a , and b , 1 < a < b ≤
n − 2 . The number of its edges is m = n − 1 . For such a tree, n ≥ 5 . By applying

Theorem 1 we get

n1 ≤
(5 + ab − 2a − 2b)n3 + (2a + 2b − 13)n2 + 12n − 4

n2(a − 1)(b − 1)
.

where n1 is the number of pendent vertices.

Since for every triregular tree, n1 ≥ a + b − 2 , the right–hand side of the latter

inequality must be greater than a + b − 2 . Thus, we require

(5 + ab − 2a − 2b)n3 + (2a + 2b − 13)n2 + 12n − 4

n2(a − 1)(b − 1)
≥ a + b − 2 . (6)

For a (1, 2, 3)-triregular tree the relation (6) yields (n3−3n2 +12n−4)/(2n2) ≥ 3 ,

which implies n3 − 9n2 + 12n − 4 ≥ 0 . This latter inequality holds for every n ≥ 8 .

Theorem 2.1. Let T be a (1, a, b)-triregular tree, 1 < a < b , and let n be the

number of its vertices. Then (1) holds if and only if relation (6) is satisfied.

Corollary 2.2. Let T be a (1, 2, 3)-triregular tree and let n be the number of its

vertices. Then (1) holds if and only if n ≥ 8 .

Recall that (1, 2, 3)-triregular graphs are of particular importance in chemical

applications, since these are molecular graphs of conjugated π-electron systems [5–7].

Another noteworthy special case of Theorem 2.1 is for (1, 3, 4)-triregular trees, for

which (6) reduces to 3n3 − 29n2 + 12n − 4 ≥ 0 . This inequality holds for n ≥ 10 .

Since the smallest such tree has exactly 7 vertices, we conclude that (1) is not true
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for such trees with n = 7, 9, 11 . In the same way for a (1, 3, 5)-triregular tree we have

4n3 − 45n2 + 12n− 4 ≥ 0 and this is true for n ≥ 11 . Again, we conclude that (1) is

violated for such trees with n = 8, 10 .

Inequality (1) holds for (1, 4, 5)–, (1, 4, 6)–, (1, 4, 7)–, and (1, 5, 6)-triregular trees

for n ≥ 12 , n ≥ 13 , n ≥ 14 , and n ≥ 14 , respectively.

UNICYCLIC TRIREGULAR GRAPHS

For unicyclic (x, a, b)-triregular graphs it must be x = 1 , m = n , and the number

of quadrangles q is either 0 or 1.

Inequality (5) together with the conditions m = n and x = 1 yields

n1 ≤
n(5 + ab − 2a − 2b) − 4q

(a − 1)(b − 1)
. (7)

Now, in order to proceed, we will need a lower bound for n1 in any unicyclic

triregular graph.

Lemma 3.1. Let G be a unicyclic (1, a, b)-triregular graph with n vertices and n1

pendent vertices. Then

n1 ≥ b − a + N(a − 2)

where N is the number of vertices of the (unique) cycle of G .

Notice that for a = 2 the lower bound for n1 does not depend on N .

Proof. Consider first the case a = 2 , b ≥ 3 . We construct such a graph with

minimal number of pendent vertices. Start with the N -vertex cycle, in which each

vertex is of degree 2. Choose only one vertex in the cycle and connect it with b − 2

vertices, each of degree 1. By this we obtain a unicyclic (1, 2, b)-triregular graph with

minimal number of pendent vertices, equal to b − 2 .

For a > 2 , to each vertex in the cycle we must add another a−2 pendent vertices,

so at the moment we have N(a − 2) pendent vertices and each vertex in the cycle

is of degree a . Then, we choose only one vertex in the cycle and connect it with

additional b − a pendent vertices. This vertex is of degree b and any other vertex in
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the cycle is of degree a . By this we constructed a graph with minimal number of

pendent vertices, equal to b − a + N(a − 2) . �

If q = 0 , then (7) becomes

n1 ≤
n(5 + ab − 2a − 2b)

(a − 1)(b − 1)

and by Lemma 3.1,

n(5 + ab − 2a − 2b)

(a − 1)(b − 1)
≥ b − a + N(a − 2), N �= 4,

that is

n ≥ [b − a + N(a − 2)]
(a − 1)(b − 1)

(5 + ab − 2a − 2b)
. (8)

Theorem 3.2. Let G be an n-vertex unicyclic (1, a, b)-triregular graph, 2 ≤ a < b .

Let G be quadrangle–free and its cycle be of size N , N �= 4 . Then (1) holds if and

only if condition (8) is satisfied.

If a = 2 , then (8) reduces to n ≥ (b − 2)(b − 1) .

Corollary 3.3. Let G be an n-vertex unicyclic (1, 2, b)-triregular graph, b ≥ 3 . Let

G be quadrangle–free and its cycle be of size N , N �= 4 . Then (1) holds if and only

if n ≥ (b − 1)(b − 2) .

For example, for the (unique) unicyclic (1, 2, 4)-triregular graph with n = 5 the

inequality stated in Corollary 3.3 does not hold, but it is obeyed by every unicyclic

quadrangle–free (1, 2, 3)-triregular graph.

For q = 1 from (7) it follows

n1 ≤
n(5 + ab − 2a − 2b) − 4

(a − 1)(b − 1)
.

We have N = 4 and, by Lemma 3.1, n1 ≥ 3a + b − 8 . Thus the right–hand side of

the above inequality must be at least 3a + b − 8 . In view of this,

n(5 + ab − 2a − 2b) − 4

(a − 1)(b − 1)
≥ 3a + b − 8

resulting in

n ≥ (a − 1)(b − 1)(3a + b − 8) + 4

(a − 1)(b − 1) + 4 − (a + b)
. (9)
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Theorem 3.4. Let G be an n-vertex unicyclic (1, a, b)-triregular graph, 2 ≤ a < b ,

whose cycle is of size 4. Then (1) holds if and only if condition (9) is satisfied.

If a = 2 then (9) is simplified as n ≥ (b − 1)(b − 2) + 4 , leading to

Corollary 3.5. Let G be an n-vertex unicyclic (1, 2, b)-triregular graph, b ≥ 3 , whose

cycle is of size 4. Then (1) holds if and only if n ≥ (b − 1)(b − 2) + 4 .

Corollary 3.6. Let G be an n-vertex unicyclic (1, 2, 3)-triregular graph, whose cycle

is of size 4. Then (1) holds for every n ≥ 6 .

BICYCLIC TRIREGULAR GRAPHS

In the case of bicyclic (x, a, b)-triregular graphs it must be x = 1 . Then the

inequality (5), together with the condition m = n + 1 , yields

n1 ≤
(5 + ab − 2a − 2b)n3 + (13 − 2a − 2b − 4q)n2 + 12n + 4

n2(a − 1)(b − 1)
. (10)

Note that here q may assume the values 0, 1, 2, or 3.

As outlined already in [1], there are three types of bicyclic graphs:

(a) the cycles are disjoint (they have no common vertices),

(b) the cycles have a single common vertex,

(c) the cycles have two or more common vertices.

Each of these types will be considered separately. In cases (a) and (b), q ∈ {0, 1, 2}
whereas in case (c), q ∈ {0, 1, 2, 3} .

Case (a): Bicyclic triregular graphs with disjoint cycles

Lemma 4.1. Let G be a bicyclic (1, a, b)-triregular graph, 2 ≤ a < b , with disjoint

cycles and with n1 pendent vertices. Then

n1 ≥

⎧⎪⎨
⎪⎩

1 if a = 2 , b = 3

2(b − 3) if a = 2 , b > 3

(a − 2)(N1 + N2 − 2) + (b − 3) + (a − 3) otherwise

where Ni is the number of vertices of the i-th cycle of G , i = 1, 2 .
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Proof. In order to construct a graph G with disjoint cycles and minimal number of

pendent vertices, we first connect cycles with just one edge, so that all vertices lie on

the cycles.

For a = 2 and b = 3 we choose one vertex of degree 2 and attach to it one pendent

vertex.

For a = 2 and b > 3 we attach b − 3 pendent vertices to the vertices of degree 3.

Since there are exactly two such vertices, we will have 2(b − 3) pendent vertices.

For 2 < a < b we have to connect each vertex of degree 2 with a − 2 pendent

vertices. There are N1+N2−2 vertices of degree 2 so we arrive at (a−2)(N1+N2−2)

pendent vertices. Then, we have to look at the vertices of degree 3. At the beginning,

there are two such vertices. So, if a = 3 we leave one vertex alone and connect the

other one with b − 3 pendent vertices in order to obtain one vertex of degree b > 3 .

If a > 3 , again, we connect each vertex of degree 2 with a − 2 pendent vertices, and

to the remaining two vertices of degree 3 we attach a− 3 and b− 3 pendent vertices.

In this way we obtain the (1, a, b)-triregular graph with minimal number of pendent

vertices, equal to (a − 2)(N1 + N2 − 2) + (b − 3) + (a − 3) . �

Consider first (1, 2, 3)-triregular graphs. From (10) it follows that

n1 ≤
n3 + (3 − 4q)n2 + 12n + 4

2n2
.

By Lemma 4.1, the right–hand side of this inequality must be at least 1. Therefore,

n3 + (3 − 4q)n2 + 12n + 4

2n2
≥ 1

i. e., n3 + (1 − 4q)n2 + 12n + 4 ≥ 0 . For q = 0, 1, 2 this yields

n3 + n2 + 12n + 4 ≥ 0

n3 − 3n2 + 12n + 4 ≥ 0

n3 − 7n2 + 12n + 4 ≥ 0

respectively, and all these inequalities hold for arbitrary n ∈ N . Thus we obtain:

Theorem 4.2. Inequality (1) is obeyed by all bicyclic (1, 2, 3)-triregular graphs with

disjoint cycles.
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Next we consider the case a = 2 , b ≥ 4 . From (10) it follows that

n1 ≤
n3 + (9 − 2b − 4q)n2 + 12n + 4

n2(b − 1)
.

From Lemma 4.1 we get that the right–hand side of the above inequality must be at

least 2(b − 3) , which implies

n3 + (9 − 2b − 4q)n2 + 12n + 4

n2(b − 1)
≥ 2(b − 3)

i. e., n3 + (3 + 6b − 2b2 − 4q)n2 + 12n + 4 ≥ 0 . For q = 0, 1, 2 we then obtain

2b2 − 6b − 3 ≤ n3 + 12n + 4

n2
(11)

2b2 − 6b + 1 ≤ n3 + 12n + 4

n2
(12)

2b2 − 6b + 5 ≤ n3 + 12n + 4

n2
(13)

respectively, which results in:

Theorem 4.3. Let G be a bicyclic (1, 2, b)-triregular graph with disjoint cycles,

b ≥ 4 . Let n be the number of its vertices and q the number of its quadrangles. Then

(1) holds if and only if for q = 0 , q = 1 , and q = 2 , the inequalities (11), (12), and

(13), respectively, are satisfied.

For example, for any bicyclic (1, 2, 4)-triregular graph, (11) and (12) hold for all

values of n (for which such graphs exist), whereas (13) is not true only for n = 10 .

In the case 2 < a < b , from (10) and Lemma 4.1 it follows that

(5 + ab − 2a − 2b)n3 + (13 − 2a − 2b − 4q)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a−2)(N1+N2)+b−a−2

which for q = 0 (that is, N1, N2 �= 4) , for q = 1 (that is, N1 = 4 , N2 �= 4) , and for

q = 2 (that is, N1 = N2 = 4) gives
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(5 + ab − 2a − 2b)n3 + (13 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a−2)(N1+N2)+b−a−2

(14)

(5 + ab − 2a − 2b)n3 + (9 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a−2)(4+N2)+b−a−2

(15)

(5 + ab − 2a − 2b)n3 + (5 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ 7a + b − 18 (16)

respectively.

Theorem 4.4. Let G be a bicyclic (1, a, b)-triregular graph with disjoint cycles,

2 < a < b . Let n be the number of its vertices, and N1 , N2 the size of its cycles, of

which q cycles are quadrangles. Then (1) holds if and only if for q = 0 , q = 1 , and

q = 2 , the inequalities (14), (15), and (16), respectively, are satisfied.

Consider now two special cases of Theorem 4.4, that may be of interest in chemical

applications.

If a = 3 , b = 4 , and N1 = N2 = 3 , then

3n3 − n2 + 12n + 4

6n2
≥ 5

that is 3n3 − 31n2 + 12n + 4 ≥ 0 . This condition holds for n ≥ 10 . On the other

hand, the smallest such graphs have 14 vertices, implying that (1) is satisfied for all

such graphs.

If a = 3 , b = 4 , and N1 = N2 = 4 , then

3n3 − 9n2 + 12n + 4

6n2
≥ 7

that is 3n3 − 51n2 + 12n + 4 ≥ 0 . This condition holds for n ≥ 17 whereas the

smallest such graph has 16 vertices. Thus (1) is violated for the (unique) such graph

with n = 16 .
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Case (b): Bicyclic triregular graphs with cycles sharing a single vertex

In analogy to Lemma 4.1 we can prove:

Lemma 4.5. Let G be a bicyclic (1, a, b)-triregular graph, 2 ≤ a < b , in which the

cycles share a single vertex. Let n1 be the number of its pendent vertices. Then

n1 ≥
{

2 if a = 2 , b = 4

(a − 2)(N1 + N2 − 2) + b − 4 otherwise

where Ni is the number of vertices in the i-th cycle, i = 1, 2 .

Bearing in mind that for any triregular graph considered in this section it must

be b ≥ 4 , the simplest case will be the bicyclic (1, 2, 4)-triregular graphs. For such

graphs relation (10) reduces to

n1 ≤
n3 + (1 − 4q)n2 + 12n + 4

3n2
.

By Lemma 4.5, its right–hand side must be at least 2, and so we have

n3 + (1 − 4q)n2 + 12n + 4

3n2
≥ 2

from which n3 − (5 + 4q)n2 + 12n + 4 ≥ 0 . Then, an analysis analogous to what was

used for obtaining Theorems 4.3 and 4.4 results in:

Theorem 4.6a. Let G be a bicyclic (1, 2, 4)-triregular graph with cycles sharing a

single vertex. Let n be the number of its vertices, and N1 , N2 the size of its cycles,

of which q cycles are quadrangles. Then (1) holds if and only if , the inequalities

n3 − 5n2 + 12n + 4 ≥ 0 (17)

n3 − 9n2 + 12n + 4 ≥ 0 (18)

n3 − 13n2 + 12n + 4 ≥ 0 (19)

are satisfied for q = 0 , q = 1 , and q = 2 , respectively.

Inequalities (17) and (18) hold for all bicyclic (1, 2, 4)-triregular graphs with q = 0

and q = 1 . Inequality (19) is satisfied for n ≥ 12 , whereas there exists bicyclic

(1, 2, 4)-triregular graphs with q = 2 and n = 9 and n = 11 . In view of this, we have:
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Theorem 4.6b. Relation (1) holds for all graphs specified in Theorem 4.6a, for

which q = 0 and q = 1 , and for all graphs with q = 2 and n ≥ 13 . In case q = 2 it is

violated for graphs with n = 9 and n = 11 .

If the graph G is bicyclic (1, a, b)-triregular, 2 < a < b , an analogous reasoning

leads to:

Theorem 4.7. Let G be a bicyclic (1, a, b)-triregular graph with cycles sharing a

single vertex, 2 < a < b . Let n be the number of its vertices, and N1 , N2 the size

of its cycles, of which q cycles are quadrangles. Then (1) holds if and only if the

inequalities

(5 + ab − 2a − 2b)n3 + (13 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a − 2)(N1 + N2) − 2a + b

(20)

(5 + ab − 2a − 2b)n3 + (9 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a − 2)(4 + N2) − 2a + b

(21)

(5 + ab − 2a − 2b)n3 + (5 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ 6a + b − 16 (22)

are satisfied for q = 0 , q = 1 , and q = 2 , respectively. In (20) N1, N2 �= 4 ; in (21)

N2 �= 4 .

We elaborate now a few special cases of Theorem 4.7.

If a = 3 , b = 4 , and N1 = N2 = 3 , then q = 0 and we have

3n3 − n2 + 12n + 4

6n2
≥ 4

that is 3n3 − 25n2 + 12n + 4 ≥ 0 and this holds for n ≥ 8 . Since the smallest such

graph has 9 vertices, the above relation is satisfied for all such graphs, and therefore

(1) holds for all such graphs.

If a = 3 , b = 5 , and N1 = N2 = 3 , then 4n3 − 43n2 + 12n + 4 ≥ 0 , and this

holds for n ≥ 11 . Thus this condition is not obeyed by the unique such graph with

10 vertices.

If q = 1 , a = 3 , b = 4 , and N2 = 3 , then

3n3 − 5n2 + 12n + 4

6n2
≥ 5
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i. e., 3n3 − 35n2 + 12n + 4 ≥ 0 , which holds for n ≥ 12 . The unique such graph with

11 vertices violates the condition.

For q = 1 , a = 3 , b = 5 , and N2 = 3 the condition (21) reduces to 4n3 − 55n2 +

12n + 4 ≥ 0 , which holds for n ≥ 14 . The unique such graph with n = 12 does not

obey this requirement, and therefore (1) is violated by only a single such graph.

If q = 2 , a = 3 , and b = 4 , relation (22) gives 3n3−45n2 +12n+4 ≥ 0 , implying

that it must be n ≥ 15 . The graphs with n = 13, 14 fail to satisfy (22) and thus for

them (1) does not hold.

If q = 2 , a = 3 , and b = 5 , then 4n3 − 67n2 + 12n + 4 ≥ 0 , from which n ≥ 17 .

The graphs with n = 14 and n = 16 provide exceptions for which (1) is not satisfied.

Case (c): Bicyclic triregular graphs with cycles sharing two or more ver-

tices

In this case, in analogy to Lemma 4.1 we have:

Lemma 4.8. Let G be a bicyclic (1, a, b)-triregular graph, 2 ≤ a < b , in which

the cycles have two or more common vertices. Let n1 be the number of its pendent

vertices. Then

n1 ≥

⎧⎪⎪⎨
⎪⎪⎩

1 if a = 2 , b = 3

2(b − 3) if a = 2 , b ≥ 4

(a − 2)(N1 + N2 − 4) + (b − 3) + (a − 3) otherwise

where Ni is the number of vertices in the i-th cycle, i = 1, 2 .

The analysis of the graphs encountered in Case (c) is analogous as in the previous

two cases, and proceeds by pertinently combining inequality (10) and Lemma 4.8. Its

details are skipped. The main difference is that in Case (c) the graphs contain three

cycles (of which, of course, only two are independent). As a consequence, the number

q of quadrangles may assume also the value 3.

Any two of the three cycles of the graphs considered in Case (c) may be chosen as

independent. We will always choose those having the smallest size. These cycle sizes

will be denoted by N1 and N2 .

From a chemical point of view Case (c) is the least interesting one because there

are hardly any molecular graphs of this kind.
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For (1, 2, 3)– , (1,2,b)– , and (1,a,b)-triregular graphs, 2 < a < b ≥ 4 , we get

analogous results as in Cases (a) and (b), except that we must consider also the

possibility q = 3 .

Theorem 4.9. Inequality (1) is obeyed by all bicyclic (1, 2, 3)-triregular graphs

having cycles that share two or more vertices.

Theorem 4.10. Let G be an n-vertex bicyclic (1, 2, b)-triregular graph with cycles

sharing two or more vertices, b ≥ 4 . Let q be the number of its quadrangles. Then

(1) holds if and only if the inequalities

2b2 − 6b − 3 ≤ n3 + 12n + 4

n2

2b2 − 6b + 1 ≤ n3 + 12n + 4

n2

2b2 − 6b + 5 ≤ n3 + 12n + 4

n2

2b2 − 6b + 9 ≤ n3 + 12n + 4

n2

are satisfied for q = 0 , q = 1 , q = 2 , and q = 3 , respectively.

Theorem 4.11. Let G be an n-vertex bicyclic (1, a, b)-triregular graph with cycles

sharing two or more vertices, 2 < a < b . Let N1 and N2 be the sizes of its two cycles.

Let q be the number of its quadrangles. Then (1) holds if and only if

(5 + ab − 2a − 2b)n3 + (13 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a − 2)(N1 + N2) + b − 3a + 2

for q = 0 and N1, N2 �= 4 ,

(5 + ab − 2a − 2b)n3 + (9 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ (a − 2)(4 + N2) + b − 3a + 2

for q = 1 , N1 = 4 , and N2 �= 4 ,

(5 + ab − 2a − 2b)n3 + (9 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ 3a + b − 10

for q = 1 and N1 = N2 = 3 ,

(5 + ab − 2a − 2b)n3 + (5 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ 5a + b − 14
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for q = 2 and N1 = N2 = 4 , and

(5 + ab − 2a − 2b)n3 + (1 − 2a − 2b)n2 + 12n + 4

n2(a − 1)(b − 1)
≥ 5a + b − 14

for q = 3 and N1 = N2 = 4 .

CONCLUDING REMARKS

In this and the preceding paper [1] we have completed the research of the domain

of validity of the inequality (1) for acyclic, unicyclic, and bicyclic biregular and trireg-

ular graphs. Researches of this kind were first done in [4] (by solving the problem

for general regular graphs), whereas some incomplete results were communicated in

[8] (for acyclic and unicyclic biregular graphs), and in [9] (for acyclic and unicyclic

triregular graphs).

The obvious question at this point is if the considerations can be extended to

tetraregular, pentaregular, etc. graphs. In principle, this would be possible, although

the difficulties anticipated would be significant. Namely, if one knows only the number

of vertices (n) and edges (m), then only two “book–keeping” equations, such as (2)

and (3), can be established. These suffice for biregular graphs and (as shown in this

paper) with some pertinent tricks can be used also for triregular graphs. In graphs

with four, five, etc. different vertex degrees, two equations would not be enough for

any reasonable analysis.

The other way of extending our considerations would be towards tricyclic, tetra-

cyclic, etc. graphs. Here the difficulties are seen in the prohibitively large number of

cases and subcases, that need to be taken into account and separately examined.

For these reasons we do not intend to continue our studies in either of these

directions. However, some other colleagues may try and may succeed.

Acknowledgements: One author (I.G.) thanks the Serbian Ministry of Science for

partial support of this work, through Grant no. 144015G.

- 523 -



References
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