BIREGULAR GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES

Ivan Gutman, ${ }^{a}$ Antoaneta Klobučar, ${ }^{b}$
Snježana Majstorović ${ }^{b}$ and Chandrashekar Adiga ${ }^{c}$
${ }^{a}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia e-mail: gutman@kg.ac.yu
${ }^{b}$ Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia e-mail: antoaneta.klobucar@os.htnet.hr , smajstor@mathos.hr
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore-570006, India e-mail: adiga_c@yahoo.com

(Received July 19, 2008)

Abstract

A graph is said to be biregular if its vertex degrees assume exactly two different values. The energy $E(G)$ of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Conditions are established under which the inequality $E(G)>n$ is obeyed for connected n-vertex acyclic, unicyclic, and bicyclic biregular graphs.

INTRODUCTION

In their seminal paper [1] England and Ruedenberg posed the question "Why is the delocalization energy negative?". Translated into the language of contemporary chemical graph theory [2-4], this question reads "Why is the total π-electron energy (as computed within the Hückel molecular orbital approximation and expressed in the units of the carbon-carbon resonance integral β) greater than the number of vertices of the underlying molecular graph?". In view of the recently very popular concept of graph energy E (see the reviews [5-7] and the references cited therein) one may reformulate the same question as "Why is the energy of an n-vertex graph greater than n ?".

By asking "why" England and Ruedenberg were aiming at some physical (quantum chemical) explanation of this phenomenon, which they indeed were able to offer [1]. From a mathematical point of view it is better to consider the problem which (molecular) graphs have the mentioned property. Namely, simple examples show [8] that the condition $E>n$ is not always obeyed.

The graph energy is defined as follows [5-7]: Let G be an n-vertex graph and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues [9]. Then the energy of G is

$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Recall [4] that in the vast majority of cases $E(G)$ coincides with the HMO total π-electron energy of the conjugated system whose molecular graph is G.

In this work we are concerned with finding conditions under which the inequality

$$
\begin{equation*}
E(G) \geq n \tag{1}
\end{equation*}
$$

is satisfied for certain, below specified, classes of (molecular) graphs.
The main earlier results along these lines are the following:

- Inequality (1) is satisfied by graphs whose all eigenvalues are non-zero [10].
- Inequality (1) is satisfied by all r-regular graphs, $r>0$, [11].
- Inequality (1) is satisfied by all benzenoid graphs [12].
- For almost all graphs $E(G)=[4 /(3 \pi)+O(1)] n^{3 / 2}$ and therefore almost all graphs satisfy (1) [13].
- Additional results can be found in the papers $[12,14]$.

A closely analogous problem was also studied, namely the characterization of graphs for which $E<n$, the so-called hypoenergetic graphs [8,15-17].

PRELIMINARIES

If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of the graph G, then the k-th spectral moment of G is

$$
M_{k}=M_{k}(G)=\sum_{i=1}^{n}\left(\lambda_{i}\right)^{k} .
$$

For what follows we need the well known expressions:

$$
\begin{aligned}
& M_{2}=2 m \\
& M_{4}=2 \sum_{i=1}^{n}\left(d_{i}\right)^{2}-2 m+8 q
\end{aligned}
$$

where m is the number of edges, q the number of quadrangles, and d_{i} the degree of the i-th vertex, $i=1,2, \ldots, n$.

It is known [18-20] that the energy of any graph is bounded from below as

$$
\begin{equation*}
E(G) \geq \sqrt{\frac{\left(M_{2}\right)^{3}}{M_{4}}} \tag{2}
\end{equation*}
$$

In view of this, whenever the condition

$$
\begin{equation*}
\sqrt{\frac{\left(M_{2}\right)^{3}}{M_{4}}} \geq n \tag{3}
\end{equation*}
$$

is satisfied, also the inequality (1) will be satisfied.
In what follows we will examine the expression $\sqrt{\left(M_{2}\right)^{3} / M_{4}}$ and search for necessary and sufficient conditions under which the inequality (3) holds.

Let G be an n-vertex graph whose vertices have degrees $d_{1}, d_{2}, \ldots, d_{n}$. Let a and b be two positive integers, $1 \leq a<b \leq n-1$. Then G is said to be biregular if for $i=1,2, \ldots, n$, either $d_{i}=a$ or $d_{i}=b$, and there exists at least one vertex of degree a and at least one vertex of degree b. If so, then G is a biregular graph of degrees a and b or, for brevity, an (a, b)-biregular graph.

An alternative name for a biregular graph is "bidegreed graph" [21].

Throughout this paper all graphs are understood to be connected.

BIREGULAR TREES

Trees necessarily possess vertices of degree 1 (pendent vertices). Therefore for biregular trees it must be $a=1$.

Let b be an integer, $1<b \leq n-1$. Let T be a ($1, b$)-biregular tree with $n \geq 3$ vertices, and let k be the number of its pendent vertices. This tree has $m=n-1$ edges.

We begin with the equalities

$$
\begin{equation*}
k+n_{b}=n \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \cdot k+b \cdot n_{b}=2 m=2(n-1) \tag{5}
\end{equation*}
$$

where n_{b} is the number of vertices of T of degree b. From (4) and (5) we have

$$
k=\frac{2+n(b-2)}{b-1} \quad ; \quad n_{b}=\frac{n-2}{b-1} .
$$

Let d_{i} denote the degree of the i-th vertex in T. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left(d_{i}\right)^{2} & =1^{2} \cdot k+b^{2} \cdot n_{b}=\frac{2+n(b-2)}{b-1}+b^{2} \frac{n-2}{b-1} \\
& =\frac{n(b-1)(b+2)-2\left(b^{2}-1\right)}{b-1}=n(b+2)-2(b+1)
\end{aligned}
$$

For the considered biregular tree T we have

$$
\begin{equation*}
M_{2}=2(n-1) \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
M_{4} & =2 \sum_{i=1}^{n}\left(d_{i}\right)^{2}-2(n-1)=2 n(b+2)-4(b+1)-2(n-1) \\
& =2 b(n-2)+2(n-1) \tag{7}
\end{align*}
$$

Substituting the identities (6) and (7) back into (3) we get

$$
\begin{equation*}
\sqrt{\frac{4(n-1)^{3}}{b(n-2)+(n-1)}} \geq n \tag{8}
\end{equation*}
$$

From (8) we obtain

$$
\begin{equation*}
b \leq \frac{3 n^{2}-5 n+2}{n^{2}} \tag{9}
\end{equation*}
$$

Bearing in mind that $b \geq 2$, the right-hand side of the inequality (9) must be at least 2 , so $n \geq 5$. If we examine the function

$$
f(x)=\frac{3 x^{2}-5 x+2}{x^{2}} \quad, \quad f:[5,+\infty>\rightarrow \mathbb{R}
$$

we see that $f^{\prime}(x)>0 \quad \forall x \in[5,+\infty>$, so f is a monotonically increasing function. Further, the upper bound for f is 3 because $\lim _{x \rightarrow+\infty} f(x)=3$, and the lower bound for f is $f(5)=52 / 25=2.08$.

The inequality (9) holds if and only if $b=2$ and $n \geq 5$. We thus arrive at:
Theorem 1. Let T be a ($1, b$)-biregular tree with n vertices. Then (3) holds if and only if $b=2$ and $n \geq 5$. Consequently, (1) holds if $b=2$ and $n \geq 5$.

Of course, the tree specified in Theorem 1 is just the n-vertex path.

UNICYCLIC BIREGULAR GRAPHS

For unicyclic graphs we have $m=n$. If a unicyclic graph is biregular, then $a=1$ and $b \geq 3$. Further, $M_{2}=2 n$ whereas M_{4} we obtain in the following way. We have

$$
k+n_{b}=n \quad \text { and } \quad 1 \cdot k+b \cdot n_{b}=2 n .
$$

Therefrom,

$$
k=\frac{n(b-2)}{b-1} \quad ; \quad n_{b}=\frac{n}{b-1}
$$

and

$$
\sum_{i=1}^{n}\left(d_{i}\right)^{2}=1^{2} \cdot k+b^{2} \cdot n_{b}=\frac{n(b-2)}{b-1}+b^{2} \frac{n}{b-1}=n(b+2)
$$

It follows that

$$
M_{4}=2 \sum_{i=1}^{n}\left(d_{i}\right)^{2}-2 n+8 q=2 n(b+2)-2 n+8 q=2 n(b+1)+8 q .
$$

Now, the inequality (3) becomes

$$
\sqrt{\frac{8 n^{3}}{2 n(1+b)+8 q}} \geq n
$$

and we obtain $b \leq 3-4 q / n$.
Because the graph considered is unicyclic, the number of quadrangles q can be either 0 or 1 . For $q=0$ we obtain $b \leq 3$, and with condition $b \geq 3$ we conclude that $b=3$. For $q=1$ we obtain $b \leq 3-4 / n$. Bearing in mind that $n \geq 8$ (since the smallest unicyclic biregular graph with $q=1$ has exactly 8 vertices), we obtain $b<3$. We conclude that there is no unicyclic biregular graph with $q=1$, for which the inequality (3) holds.

Theorem 2. Let G be a connected unicyclic (a, b)-biregular graph. Then (3) holds if and only if $a=1, b=3$, and $q=0$. Consequently, (1) holds if $a=1, b=3$, and $q=0$.

BICYCLIC BIREGULAR GRAPHS

For bicyclic (a, b)-biregular graphs we have $m=n+1$, and the inequality (3) becomes

$$
\sqrt{\frac{4(n+1)^{3}}{(2 a+2 b-1)(n+1)-a b n+4 q}} \geq n
$$

There are three possible cases:
(a) the cycles are disjoint (they have no common vertices),
(b) the cycles have a single common vertex,
(c) the cycles have two or more common vertices.

Case (a): Bicyclic biregular graphs with disjoint cycles

If we have a bicyclic (a, b)-biregular graph with disjoint cycles, then there are two types of such graphs: with $a=1, b \geq 3$ and with $a=2, b=3$.

If $a=1, b \geq 3$ then inequality (3) becomes

$$
\sqrt{\frac{4(n+1)^{3}}{b(n+2)+n+1+4 q}} \geq n
$$

from which

$$
\begin{equation*}
b \leq \frac{3 n^{3}+(11-4 q) n^{2}+12 n+4}{n^{3}+2 n^{2}} \tag{10}
\end{equation*}
$$

For $q=0$ we obtain

$$
\begin{equation*}
b \leq \frac{3 n^{2}+5 n+2}{n^{2}} \tag{11}
\end{equation*}
$$

With $b \geq 3$, the right-hand side of the inequality (11) must be at least 3. Another condition is $n \geq 10$, since the smallest bicyclic $(1, b)$-biregular graph with disjoint cycles has exactly 10 vertices.

If we examine the function

$$
f(x)=\frac{3 x^{2}+5 x+2}{x^{2}} \quad, \quad f:[10,+\infty>\rightarrow \mathbb{R}
$$

we get $f^{\prime}(x)<0 \quad \forall x \in[10,+\infty>$. Thus f is a monotonically decreasing function. The lower bound for f is 3 because $\lim _{x \rightarrow+\infty} f(x)=3$, and the upper bound for f is $f(10)=88 / 25=3.52$. We conclude that it must be $b=3$.

For $q=1$ we have

$$
\begin{equation*}
b \leq \frac{3 n^{3}+7 n^{2}+12 n+4}{n^{3}+2 n^{2}} \tag{12}
\end{equation*}
$$

Analogously, and by taking into account that $n \geq 12$, we conclude that $b=3$.
For $q=2$ we have

$$
\begin{equation*}
b \leq \frac{3 n^{3}+3 n^{2}+12 n+4}{n^{3}+2 n^{2}} \tag{13}
\end{equation*}
$$

For $n \geq 14$ the right-hand side of the inequality (13) is less than 3 and thus there is no bicyclic ($1, b$)-biregular graph with $q=2$, such that the inequality (3) holds.

For bicyclic (2,3)-biregular graphs

$$
\sqrt{\frac{4(n+1)^{3}}{3 n+9+4 q}} \geq n
$$

which implies $n^{3}+(3-4 q) n^{2}+12 n+4 \geq 0$. For $q=0,1,2$ we have

$$
\begin{aligned}
& n^{3}+3 n^{2}+12 n+4 \geq 0 \\
& n^{3}-n^{2}+12 n+4 \geq 0 \\
& n^{3}-5 n^{2}+12 n+4 \geq 0
\end{aligned}
$$

respectively. Each of these three inequalities holds for arbitrary $n \in \mathbb{N}$.

Theorem 3.1. Let G be a connected bicyclic (a, b)-biregular graph with disjoint cycles. Then (3) holds if and only if $a=1, b=3$, and $q=0,1$, or if $a=2, b=3$, and $q=0,1,2$. Consequently, (1) holds if $a=1, b=3$ and $q=0,1$, or if $a=2$, $b=3$, and $q=0,1,2$.

Case (b): Bicyclic biregular graphs with cycles sharing a single vertex
If in a bicyclic (a, b)-biregular graph the cycles have a single common vertex, then we have two types of such graphs: with $a=1, b \geq 4$ and with $a=2, b=4$.

For the graphs of the first type the inequalities (11), (12), and (13) hold. These, in view of the condition $b \geq 4$, are not satisfied by any value of n.

For bicyclic (2, 4)-biregular graphs we have

$$
\sqrt{\frac{4(n+1)^{3}}{3 n+11+4 q}} \geq n
$$

which is equivalent to $n^{3}+(1-4 q) n^{2}+12 n+4 \geq 0$. Setting $q=0,1,2$ we arrive at inequalities which are fulfilled for arbitrary $n \in \mathbb{N}$.

Theorem 3.2. Let G be a connected bicyclic (a, b)-biregular graph in which the cycles share a single common vertex. Then (3) holds if and only if $a=2$ and $b=4$. Consequently, (1) holds if $a=2$ and $b=4$.

Case (c): Bicyclic biregular graphs with cycles sharing two or more vertices
If in a bicyclic (a, b)-biregular graph the cycles possess two or more common vertices, then we have two types of such graphs: with $a=1, b \geq 3$ and with $a=$ $2, b=3$. For these we obtain the same result as for bicyclic graphs with disjoint cycles.

Theorem 3.3. Let G be a connected bicyclic (a, b)-biregular graph with cycles sharing two or more vertices. Then (3) holds if and only if $a=1, b=3$, and $q=0,1$, or if $a=2, b=3$, and $q=0,1,2$. Consequently, (1) holds if $a=1, b=3$ and $q=0,1$, or if $a=2, b=3$, and $q=0,1,2$.

Acknowledgements: One author (I.G.) thanks the Serbian Ministry of Science for partial support of this work, through Grant no. 144015G.

References

[1] W. England, K. Ruedenberg, Why is the delocalization energy negative and why is it proportional to the number of π electrons?, J. Am. Chem. Soc. 95 (1973) 8769-8775.
[2] A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Springer-Verlag, Berlin, 1977.
[3] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[4] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441-456.
[5] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[6] I. Gutman, Chemical graph theory - The mathematical connection, in: J. R. Sabin, E. J. Brändas (Eds.), Advances in Quantum Chemistry 51, Elsevier, Amsterdam, 2006, pp. 125-138.
[7] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley-VCH, Weinheim, in press.
[8] I. Gutman, S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem. 46A (2007) 1733-1736.
[9] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986, p. 148.
[11] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435-442.
[12] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl., in press.
[13] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.
[14] C. Adiga, Z. Khoshbakht, I. Gutman, More graphs whose energy exceeds the number of vertices, Iranian J. Math. Sci. Inf. 2(2) (2007) 13-19.
[15] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem. 60 (2008) 415-426.
[16] V. Nikiforov, The energy of C_{4}-free graphs of bounded degree, Lin. Algebra Appl. 428 (2008) 2569-2573.
[17] Z. You, B. Liu, On hypoenergetic unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 479-486.
[18] J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446-455.
[19] J. A. de la Peña, L. Mendoza, J. Rada, Comparing momenta and π-electron energy of benzenoid molecules, Discr. Math. 302 (2005) 77-84.
[20] B. Zhou, I. Gutman, J. A. de la Peña, J. Rada, L. Mendoza, On spectral moments and energy of graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 183191.
[21] F. Belardo, E. M. Li Marzi, S. K. Simić, Bidegreed trees with small index, MATCH Commun. Math. Comput. Chem. 61 (2009) 503-515.

