MATCH Communications in Mathematical and in Computer Chemistry

BIREGULAR GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES

Ivan Gutman,^a Antoaneta Klobučar,^b

Snježana Majstorović^b and Chandrashekar Adiga^c

 ^a Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
 e-mail: gutman@kg.ac.yu

^bDepartment of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia e-mail: antoaneta.klobucar@os.htnet.hr , smajstor@mathos.hr

Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore-570006, India e-mail: adiga_c@yahoo.com

(Received July 19, 2008)

Abstract

A graph is said to be biregular if its vertex degrees assume exactly two different values. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Conditions are established under which the inequality E(G) > n is obeyed for connected *n*-vertex acyclic, unicyclic, and bicyclic biregular graphs.

INTRODUCTION

In their seminal paper [1] England and Ruedenberg posed the question "Why is the delocalization energy negative?". Translated into the language of contemporary chemical graph theory [2–4], this question reads "Why is the total π -electron energy (as computed within the Hückel molecular orbital approximation and expressed in the units of the carbon–carbon resonance integral β) greater than the number of vertices of the underlying molecular graph?". In view of the recently very popular concept of graph energy E (see the reviews [5–7] and the references cited therein) one may reformulate the same question as "Why is the energy of an n-vertex graph greater than n?".

By asking "why" England and Ruedenberg were aiming at some physical (quantum chemical) explanation of this phenomenon, which they indeed were able to offer [1]. From a mathematical point of view it is better to consider the problem which (molecular) graphs have the mentioned property. Namely, simple examples show [8] that the condition E > n is not always obeyed.

The graph energy is defined as follows [5–7]: Let G be an n-vertex graph and $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues [9]. Then the energy of G is

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i| .$$

Recall [4] that in the vast majority of cases E(G) coincides with the HMO total π -electron energy of the conjugated system whose molecular graph is G.

In this work we are concerned with finding conditions under which the inequality

$$E(G) \ge n$$
 (1)

is satisfied for certain, below specified, classes of (molecular) graphs.

The main earlier results along these lines are the following:

- Inequality (1) is satisfied by graphs whose all eigenvalues are non-zero [10].
- Inequality (1) is satisfied by all r-regular graphs, r > 0, [11].
- Inequality (1) is satisfied by all benzenoid graphs [12].

- For almost all graphs $E(G) = [4/(3\pi) + O(1)] n^{3/2}$ and therefore almost all graphs satisfy (1) [13].
- Additional results can be found in the papers [12, 14].

A closely analogous problem was also studied, namely the characterization of graphs for which E < n, the so-called hypoenergetic graphs [8,15–17].

PRELIMINARIES

If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the graph G, then the k-th spectral moment of G is

$$M_k = M_k(G) = \sum_{i=1}^n (\lambda_i)^k .$$

For what follows we need the well known expressions:

$$M_2 = 2m$$

$$M_4 = 2\sum_{i=1}^n (d_i)^2 - 2m + 8q$$

where m is the number of edges, q the number of quadrangles, and d_i the degree of the *i*-th vertex, i = 1, 2, ..., n.

It is known [18–20] that the energy of any graph is bounded from below as

$$E(G) \ge \sqrt{\frac{(M_2)^3}{M_4}}$$
 (2)

In view of this, whenever the condition

$$\sqrt{\frac{(M_2)^3}{M_4}} \ge n \tag{3}$$

is satisfied, also the inequality (1) will be satisfied.

In what follows we will examine the expression $\sqrt{(M_2)^3/M_4}$ and search for necessary and sufficient conditions under which the inequality (3) holds.

Let G be an n-vertex graph whose vertices have degrees d_1, d_2, \ldots, d_n . Let a and b be two positive integers, $1 \le a < b \le n-1$. Then G is said to be *biregular* if for $i = 1, 2, \ldots, n$, either $d_i = a$ or $d_i = b$, and there exists at least one vertex of degree a and at least one vertex of degree b. If so, then G is a *biregular graph of degrees a* and b or, for brevity, an (a, b)-biregular graph.

An alternative name for a biregular graph is "bidegreed graph" [21].

* * * * *

Throughout this paper all graphs are understood to be connected.

BIREGULAR TREES

Trees necessarily possess vertices of degree 1 (pendent vertices). Therefore for biregular trees it must be a = 1.

Let b be an integer, $1 < b \le n - 1$. Let T be a (1, b)-biregular tree with $n \ge 3$ vertices, and let k be the number of its pendent vertices. This tree has m = n - 1 edges.

We begin with the equalities

$$k + n_b = n \tag{4}$$

and

$$1 \cdot k + b \cdot n_b = 2m = 2(n-1) \tag{5}$$

where n_b is the number of vertices of T of degree b. From (4) and (5) we have

$$k = \frac{2 + n(b - 2)}{b - 1}$$
; $n_b = \frac{n - 2}{b - 1}$

Let d_i denote the degree of the *i*-th vertex in T. Then

$$\sum_{i=1}^{n} (d_i)^2 = 1^2 \cdot k + b^2 \cdot n_b = \frac{2 + n(b-2)}{b-1} + b^2 \frac{n-2}{b-1}$$
$$= \frac{n(b-1)(b+2) - 2(b^2-1)}{b-1} = n(b+2) - 2(b+1)$$

For the considered biregular tree T we have

$$M_2 = 2(n-1) \tag{6}$$

and

$$M_4 = 2\sum_{i=1}^n (d_i)^2 - 2(n-1) = 2n(b+2) - 4(b+1) - 2(n-1)$$

= $2b(n-2) + 2(n-1)$. (7)

Substituting the identities (6) and (7) back into (3) we get

$$\sqrt{\frac{4(n-1)^3}{b(n-2)+(n-1)}} \ge n .$$
(8)

From (8) we obtain

$$b \le \frac{3n^2 - 5n + 2}{n^2} \ . \tag{9}$$

Bearing in mind that $b \ge 2$, the right-hand side of the inequality (9) must be at least 2, so $n \ge 5$. If we examine the function

$$f(x) = \frac{3x^2 - 5x + 2}{x^2} \quad , \quad f: [5, +\infty) \to \mathbb{R}$$

we see that $f'(x) > 0 \quad \forall x \in [5, +\infty >)$, so f is a monotonically increasing function. Further, the upper bound for f is 3 because $\lim_{x \to +\infty} f(x) = 3$, and the lower bound for f is f(5) = 52/25 = 2.08.

The inequality (9) holds if and only if b = 2 and $n \ge 5$. We thus arrive at:

Theorem 1. Let T be a (1, b)-biregular tree with n vertices. Then (3) holds if and only if b = 2 and $n \ge 5$. Consequently, (1) holds if b = 2 and $n \ge 5$.

Of course, the tree specified in Theorem 1 is just the *n*-vertex path.

UNICYCLIC BIREGULAR GRAPHS

For unicyclic graphs we have m = n. If a unicyclic graph is biregular, then a = 1and $b \ge 3$. Further, $M_2 = 2n$ whereas M_4 we obtain in the following way. We have

$$k + n_b = n$$
 and $1 \cdot k + b \cdot n_b = 2n$

Therefrom,

$$k = \frac{n(b-2)}{b-1}$$
; $n_b = \frac{n}{b-1}$

and

$$\sum_{i=1}^{n} (d_i)^2 = 1^2 \cdot k + b^2 \cdot n_b = \frac{n(b-2)}{b-1} + b^2 \frac{n}{b-1} = n(b+2) \cdot \frac{n}{b-1}$$

It follows that

$$M_4 = 2\sum_{i=1}^n (d_i)^2 - 2n + 8q = 2n(b+2) - 2n + 8q = 2n(b+1) + 8q .$$

Now, the inequality (3) becomes

$$\sqrt{\frac{8n^3}{2n(1+b)+8q}} \ge n$$

and we obtain $b \leq 3 - 4q/n$.

Because the graph considered is unicyclic, the number of quadrangles q can be either 0 or 1. For q = 0 we obtain $b \leq 3$, and with condition $b \geq 3$ we conclude that b = 3. For q = 1 we obtain $b \leq 3 - 4/n$. Bearing in mind that $n \geq 8$ (since the smallest unicyclic biregular graph with q = 1 has exactly 8 vertices), we obtain b < 3. We conclude that there is no unicyclic biregular graph with q = 1, for which the inequality (3) holds.

Theorem 2. Let G be a connected unicyclic (a, b)-biregular graph. Then (3) holds if and only if a = 1, b = 3, and q = 0. Consequently, (1) holds if a = 1, b = 3, and q = 0.

BICYCLIC BIREGULAR GRAPHS

For bicyclic (a, b)-biregular graphs we have m = n + 1, and the inequality (3) becomes

$$\sqrt{\frac{4(n+1)^3}{(2a+2b-1)(n+1)-abn+4q}} \ge n \ .$$

There are three possible cases:

- (a) the cycles are disjoint (they have no common vertices),
- (b) the cycles have a single common vertex,
- (c) the cycles have two or more common vertices.

Case (a): Bicyclic biregular graphs with disjoint cycles

If we have a bicyclic (a, b)-biregular graph with disjoint cycles, then there are two types of such graphs: with a = 1, $b \ge 3$ and with a = 2, b = 3.

If $a = 1, b \ge 3$ then inequality (3) becomes

$$\sqrt{\frac{4(n+1)^3}{b(n+2)+n+1+4q}} \ge n$$

from which

$$b \le \frac{3n^3 + (11 - 4q)n^2 + 12n + 4}{n^3 + 2n^2} \,. \tag{10}$$

For q = 0 we obtain

$$b \le \frac{3n^2 + 5n + 2}{n^2} \,. \tag{11}$$

With $b \ge 3$, the right-hand side of the inequality (11) must be at least 3. Another condition is $n \ge 10$, since the smallest bicyclic (1, b)-biregular graph with disjoint cycles has exactly 10 vertices.

If we examine the function

$$f(x) = \frac{3x^2 + 5x + 2}{x^2} \quad , \quad f: [10, +\infty) \to \mathbb{R}$$

we get $f'(x) < 0 \quad \forall x \in [10, +\infty > .$ Thus f is a monotonically decreasing function. The lower bound for f is 3 because $\lim_{x \to +\infty} f(x) = 3$, and the upper bound for f is f(10) = 88/25 = 3.52. We conclude that it must be b = 3.

For q = 1 we have

$$b \le \frac{3n^3 + 7n^2 + 12n + 4}{n^3 + 2n^2} . \tag{12}$$

Analogously, and by taking into account that $n \ge 12$, we conclude that b = 3.

For q = 2 we have

$$b \le \frac{3n^3 + 3n^2 + 12n + 4}{n^3 + 2n^2} \,. \tag{13}$$

For $n \ge 14$ the right-hand side of the inequality (13) is less than 3 and thus there is no bicyclic (1, b)-biregular graph with q = 2, such that the inequality (3) holds.

For bicyclic (2,3)-biregular graphs

$$\sqrt{\frac{4(n+1)^3}{3n+9+4q}} \ge n$$

which implies $n^3 + (3 - 4q)n^2 + 12n + 4 \ge 0$. For q = 0, 1, 2 we have

$$n^{3} + 3n^{2} + 12n + 4 \ge 0$$

$$n^{3} - n^{2} + 12n + 4 \ge 0$$

$$n^{3} - 5n^{2} + 12n + 4 \ge 0$$

respectively. Each of these three inequalities holds for arbitrary $n \in \mathbb{N}$.

Theorem 3.1. Let G be a connected bicyclic (a, b)-biregular graph with disjoint cycles. Then (3) holds if and only if a = 1, b = 3, and q = 0, 1, or if a = 2, b = 3, and q = 0, 1, 2. Consequently, (1) holds if a = 1, b = 3 and q = 0, 1, or if a = 2, b = 3, b = 3, and q = 0, 1, 2.

Case (b): Bicyclic biregular graphs with cycles sharing a single vertex

If in a bicyclic (a, b)-biregular graph the cycles have a single common vertex, then we have two types of such graphs: with $a = 1, b \ge 4$ and with a = 2, b = 4.

For the graphs of the first type the inequalities (11), (12), and (13) hold. These, in view of the condition $b \ge 4$, are not satisfied by any value of n.

For bicyclic (2, 4)-biregular graphs we have

$$\sqrt{\frac{4(n+1)^3}{3n+11+4q}} \ge n$$

which is equivalent to $n^3 + (1 - 4q)n^2 + 12n + 4 \ge 0$. Setting q = 0, 1, 2 we arrive at inequalities which are fulfilled for arbitrary $n \in \mathbb{N}$.

Theorem 3.2. Let G be a connected bicyclic (a, b)-biregular graph in which the cycles share a single common vertex. Then (3) holds if and only if a = 2 and b = 4. Consequently, (1) holds if a = 2 and b = 4.

Case (c): Bicyclic biregular graphs with cycles sharing two or more vertices

If in a bicyclic (a, b)-biregular graph the cycles possess two or more common vertices, then we have two types of such graphs: with $a = 1, b \ge 3$ and with a = 2, b = 3. For these we obtain the same result as for bicyclic graphs with disjoint cycles. **Theorem 3.3.** Let G be a connected bicyclic (a, b)-biregular graph with cycles sharing two or more vertices. Then (3) holds if and only if a = 1, b = 3, and q = 0, 1, or if a = 2, b = 3, and q = 0, 1, 2. Consequently, (1) holds if a = 1, b = 3 and q = 0, 1, or if a = 2, b = 3, and q = 0, 1, 2.

Acknowledgements: One author (I.G.) thanks the Serbian Ministry of Science for partial support of this work, through Grant no. 144015G.

References

- [1] W. England, K. Ruedenberg, Why is the delocalization energy negative and why is it proportional to the number of π electrons?, J. Am. Chem. Soc. 95 (1973) 8769–8775.
- [2] A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Springer-Verlag, Berlin, 1977.
- [3] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
- [4] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441–456.
- [5] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), *Algebraic Combinatorics and Applications*, Springer-Verlag, Berlin, 2001, pp. 196–211.
- [6] I. Gutman, Chemical graph theory The mathematical connection, in: J. R. Sabin, E. J. Brändas (Eds.), Advances in Quantum Chemistry 51, Elsevier, Amsterdam, 2006, pp. 125–138.
- [7] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert–Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley–VCH, Weinheim, in press.
- [8] I. Gutman, S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem. 46A (2007) 1733–1736.
- [9] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.

- [10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986, p. 148.
- [11] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435–442.
- [12] I. Gutman, On graphs whose energy exceeds the number of vertices, *Lin. Algebra Appl.*, in press.
- [13] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472–1475.
- [14] C. Adiga, Z. Khoshbakht, I. Gutman, More graphs whose energy exceeds the number of vertices, *Iranian J. Math. Sci. Inf.* 2(2) (2007) 13–19.
- [15] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem. 60 (2008) 415–426.
- [16] V. Nikiforov, The energy of C₄-free graphs of bounded degree, *Lin. Algebra Appl.* 428 (2008) 2569–2573.
- [17] Z. You, B. Liu, On hypoenergetic unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 479–486.
- [18] J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446–455.
- [19] J. A. de la Peña, L. Mendoza, J. Rada, Comparing momenta and π-electron energy of benzenoid molecules, *Discr. Math.* **302** (2005) 77–84.
- [20] B. Zhou, I. Gutman, J. A. de la Peña, J. Rada, L. Mendoza, On spectral moments and energy of graphs, *MATCH Commun. Math. Comput. Chem.* 57 (2007) 183– 191.
- [21] F. Belardo, E. M. Li Marzi, S. K. Simić, Bidegreed trees with small index, MATCH Commun. Math. Comput. Chem. 61 (2009) 503–515.