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Abstract

A graph is said to be biregular if its vertex degrees assume exactly two different values.
The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of
G . Conditions are established under which the inequality E(G) > n is obeyed for connected
n-vertex acyclic, unicyclic, and bicyclic biregular graphs.
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INTRODUCTION

In their seminal paper [1] England and Ruedenberg posed the question “Why is

the delocalization energy negative?”. Translated into the language of contemporary

chemical graph theory [2–4], this question reads “Why is the total π-electron energy

(as computed within the Hückel molecular orbital approximation and expressed in the

units of the carbon–carbon resonance integral β) greater than the number of vertices

of the underlying molecular graph?”. In view of the recently very popular concept

of graph energy E (see the reviews [5–7] and the references cited therein) one may

reformulate the same question as “Why is the energy of an n-vertex graph greater

than n ?”.

By asking “why” England and Ruedenberg were aiming at some physical (quan-

tum chemical) explanation of this phenomenon, which they indeed were able to offer

[1]. From a mathematical point of view it is better to consider the problem which

(molecular) graphs have the mentioned property. Namely, simple examples show [8]

that the condition E > n is not always obeyed.

The graph energy is defined as follows [5–7]: Let G be an n-vertex graph and

λ1, λ2, . . . , λn be its eigenvalues [9]. Then the energy of G is

E = E(G) =
n∑

i=1

|λi| .

Recall [4] that in the vast majority of cases E(G) coincides with the HMO total

π-electron energy of the conjugated system whose molecular graph is G .

In this work we are concerned with finding conditions under which the inequality

E(G) ≥ n (1)

is satisfied for certain, below specified, classes of (molecular) graphs.

The main earlier results along these lines are the following:

• Inequality (1) is satisfied by graphs whose all eigenvalues are non-zero [10].

• Inequality (1) is satisfied by all r-regular graphs, r > 0 , [11].

• Inequality (1) is satisfied by all benzenoid graphs [12].
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• For almost all graphs E(G) = [4/(3π) + O(1)] n3/2 and therefore almost all

graphs satisfy (1) [13].

• Additional results can be found in the papers [12, 14].

A closely analogous problem was also studied, namely the characterization of

graphs for which E < n , the so-called hypoenergetic graphs [8,15–17].

PRELIMINARIES

If λ1, λ2, . . . , λn are the eigenvalues of the graph G , then the k-th spectral moment

of G is

Mk = Mk(G) =
n∑

i=1

(λi)
k .

For what follows we need the well known expressions:

M2 = 2m

M4 = 2
n∑

i=1

(di)
2 − 2m + 8q

where m is the number of edges, q the number of quadrangles, and di the degree of

the i-th vertex, i = 1, 2, . . . , n .

It is known [18–20] that the energy of any graph is bounded from below as

E(G) ≥
√

(M2)3

M4

. (2)

In view of this, whenever the condition√
(M2)3

M4

≥ n (3)

is satisfied, also the inequality (1) will be satisfied.

In what follows we will examine the expression
√

(M2)3/M4 and search for neces-

sary and sufficient conditions under which the inequality (3) holds.

* * * * *
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Let G be an n-vertex graph whose vertices have degrees d1, d2, . . . , dn . Let a and

b be two positive integers, 1 ≤ a < b ≤ n − 1 . Then G is said to be biregular if for

i = 1, 2, . . . , n , either di = a or di = b , and there exists at least one vertex of degree

a and at least one vertex of degree b . If so, then G is a biregular graph of degrees a

and b or, for brevity, an (a, b)-biregular graph.

An alternative name for a biregular graph is “bidegreed graph”[21].

* * * * *

Throughout this paper all graphs are understood to be connected.

BIREGULAR TREES

Trees necessarily possess vertices of degree 1 (pendent vertices). Therefore for

biregular trees it must be a = 1 .

Let b be an integer, 1 < b ≤ n − 1 . Let T be a (1, b)-biregular tree with n ≥ 3

vertices, and let k be the number of its pendent vertices. This tree has m = n − 1

edges.

We begin with the equalities

k + nb = n (4)

and

1 · k + b · nb = 2m = 2(n − 1) (5)

where nb is the number of vertices of T of degree b . From (4) and (5) we have

k =
2 + n(b − 2)

b − 1
; nb =

n − 2

b − 1
.

Let di denote the degree of the i-th vertex in T . Then

n∑
i=1

(di)
2 = 12 · k + b2 · nb =

2 + n(b − 2)

b − 1
+ b2 n − 2

b − 1

=
n(b − 1)(b + 2) − 2(b2 − 1)

b − 1
= n(b + 2) − 2(b + 1) .

For the considered biregular tree T we have

M2 = 2(n − 1) (6)
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and

M4 = 2
n∑

i=1

(di)
2 − 2(n − 1) = 2n(b + 2) − 4(b + 1) − 2(n − 1)

= 2b(n − 2) + 2(n − 1) . (7)

Substituting the identities (6) and (7) back into (3) we get√
4(n − 1)3

b(n − 2) + (n − 1)
≥ n . (8)

From (8) we obtain

b ≤ 3n2 − 5n + 2

n2
. (9)

Bearing in mind that b ≥ 2 , the right–hand side of the inequality (9) must be at

least 2, so n ≥ 5 . If we examine the function

f(x) =
3x2 − 5x + 2

x2
, f : [5, +∞ >→ R

we see that f ′(x) > 0 ∀x ∈ [5, +∞ > , so f is a monotonically increasing function.

Further, the upper bound for f is 3 because lim
x→+∞

f(x) = 3 , and the lower bound for

f is f(5) = 52/25 = 2.08 .

The inequality (9) holds if and only if b = 2 and n ≥ 5 . We thus arrive at:

Theorem 1. Let T be a (1, b)-biregular tree with n vertices. Then (3) holds if and

only if b = 2 and n ≥ 5 . Consequently, (1) holds if b = 2 and n ≥ 5 .

Of course, the tree specified in Theorem 1 is just the n-vertex path.

UNICYCLIC BIREGULAR GRAPHS

For unicyclic graphs we have m = n . If a unicyclic graph is biregular, then a = 1

and b ≥ 3 . Further, M2 = 2n whereas M4 we obtain in the following way. We have

k + nb = n and 1 · k + b · nb = 2n .

Therefrom,

k =
n(b − 2)

b − 1
; nb =

n

b − 1
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and
n∑

i=1

(di)
2 = 12 · k + b2 · nb =

n(b − 2)

b − 1
+ b2 n

b − 1
= n(b + 2) .

It follows that

M4 = 2
n∑

i=1

(di)
2 − 2n + 8q = 2n(b + 2) − 2n + 8q = 2n(b + 1) + 8q .

Now, the inequality (3) becomes√
8n3

2n(1 + b) + 8q
≥ n

and we obtain b ≤ 3 − 4q/n .

Because the graph considered is unicyclic, the number of quadrangles q can be

either 0 or 1. For q = 0 we obtain b ≤ 3 , and with condition b ≥ 3 we conclude

that b = 3 . For q = 1 we obtain b ≤ 3 − 4/n . Bearing in mind that n ≥ 8 (since

the smallest unicyclic biregular graph with q = 1 has exactly 8 vertices), we obtain

b < 3 . We conclude that there is no unicyclic biregular graph with q = 1 , for which

the inequality (3) holds.

Theorem 2. Let G be a connected unicyclic (a, b)-biregular graph. Then (3) holds

if and only if a = 1 , b = 3 , and q = 0 . Consequently, (1) holds if a = 1 , b = 3 , and

q = 0 .

BICYCLIC BIREGULAR GRAPHS

For bicyclic (a, b)-biregular graphs we have m = n + 1 , and the inequality (3)

becomes √
4(n + 1)3

(2a + 2b − 1)(n + 1) − abn + 4q
≥ n .

There are three possible cases:

(a) the cycles are disjoint (they have no common vertices),

(b) the cycles have a single common vertex,

(c) the cycles have two or more common vertices.
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Case (a): Bicyclic biregular graphs with disjoint cycles

If we have a bicyclic (a, b)-biregular graph with disjoint cycles, then there are two

types of such graphs: with a = 1 , b ≥ 3 and with a = 2 , b = 3 .

If a = 1 , b ≥ 3 then inequality (3) becomes√
4(n + 1)3

b(n + 2) + n + 1 + 4q
≥ n

from which

b ≤ 3n3 + (11 − 4q)n2 + 12n + 4

n3 + 2n2
. (10)

For q = 0 we obtain

b ≤ 3n2 + 5n + 2

n2
. (11)

With b ≥ 3 , the right–hand side of the inequality (11) must be at least 3. Another

condition is n ≥ 10 , since the smallest bicyclic (1, b)-biregular graph with disjoint

cycles has exactly 10 vertices.

If we examine the function

f(x) =
3x2 + 5x + 2

x2
, f : [10, +∞ >→ R

we get f ′(x) < 0 ∀x ∈ [10, +∞ > . Thus f is a monotonically decreasing function.

The lower bound for f is 3 because lim
x→+∞

f(x) = 3 , and the upper bound for f is

f(10) = 88/25 = 3.52 . We conclude that it must be b = 3 .

For q = 1 we have

b ≤ 3n3 + 7n2 + 12n + 4

n3 + 2n2
. (12)

Analogously, and by taking into account that n ≥ 12 , we conclude that b = 3 .

For q = 2 we have

b ≤ 3n3 + 3n2 + 12n + 4

n3 + 2n2
. (13)

For n ≥ 14 the right–hand side of the inequality (13) is less than 3 and thus there is

no bicyclic (1, b)-biregular graph with q = 2 , such that the inequality (3) holds.

For bicyclic (2, 3)-biregular graphs√
4(n + 1)3

3n + 9 + 4q
≥ n
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which implies n3 + (3 − 4q)n2 + 12n + 4 ≥ 0 . For q = 0, 1, 2 we have

n3 + 3n2 + 12n + 4 ≥ 0

n3 − n2 + 12n + 4 ≥ 0

n3 − 5n2 + 12n + 4 ≥ 0

respectively. Each of these three inequalities holds for arbitrary n ∈ N .

Theorem 3.1. Let G be a connected bicyclic (a, b)-biregular graph with disjoint

cycles. Then (3) holds if and only if a = 1 , b = 3 , and q = 0, 1 , or if a = 2 , b = 3 ,

and q = 0, 1, 2 . Consequently, (1) holds if a = 1 , b = 3 and q = 0, 1 , or if a = 2 ,

b = 3 , and q = 0, 1, 2 .

Case (b): Bicyclic biregular graphs with cycles sharing a single vertex

If in a bicyclic (a, b)-biregular graph the cycles have a single common vertex, then

we have two types of such graphs: with a = 1 , b ≥ 4 and with a = 2 , b = 4 .

For the graphs of the first type the inequalities (11), (12), and (13) hold. These,

in view of the condition b ≥ 4 , are not satisfied by any value of n .

For bicyclic (2, 4)-biregular graphs we have√
4(n + 1)3

3n + 11 + 4q
≥ n

which is equivalent to n3 + (1 − 4q)n2 + 12n + 4 ≥ 0 . Setting q = 0, 1, 2 we arrive at

inequalities which are fulfilled for arbitrary n ∈ N .

Theorem 3.2. Let G be a connected bicyclic (a, b)-biregular graph in which the

cycles share a single common vertex. Then (3) holds if and only if a = 2 and b = 4 .

Consequently, (1) holds if a = 2 and b = 4 .

Case (c): Bicyclic biregular graphs with cycles sharing two or more vertices

If in a bicyclic (a, b)-biregular graph the cycles possess two or more common

vertices, then we have two types of such graphs: with a = 1 , b ≥ 3 and with a =

2 , b = 3 . For these we obtain the same result as for bicyclic graphs with disjoint

cycles.
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Theorem 3.3. Let G be a connected bicyclic (a, b)-biregular graph with cycles

sharing two or more vertices. Then (3) holds if and only if a = 1 , b = 3 , and

q = 0, 1 , or if a = 2 , b = 3 , and q = 0, 1, 2 . Consequently, (1) holds if a = 1 , b = 3

and q = 0, 1 , or if a = 2 , b = 3 , and q = 0, 1, 2 .
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