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Abstract

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of
G . An n-vertex graph G is said to be hypoenergetic if E(G) < n . Earlier were reported
results on hypoenergetic trees, unicyclic, and bicyclic graphs. In this paper we show that
there exist n-vertex hypoenergetic tricyclic graphs with maximum vertex degree Δ for
�(n + 3)/2� ≤ Δ ≤ n − 1 . Some complete bipartite graphs and complete bipartite graphs
with attached pendent vertices are hypoenergetic. A general construction of hypoenergetic
graphs is provided, implying that there exist hypoenergetic k-cyclic graphs for any k .

1. INTRODUCTION

Let G be a simple graph with n vertices and m edges. The cyclomatic number of

a connected graph is defined as c(G) = m − n + 1 . A graph G with c(G) = k is said

to be k-cyclic. Denote by Δ the maximum degree of a graph. The eigenvalues λ1 ,

λ2 , . . . , λn of the adjacency matrix of the graph G are said to be the eigenvalues of

G and form its spectrum [1]. The nullity of the graph G , denoted by η(G) , is the

multiplicity of zero in the spectrum.
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The energy of G is defined as [2]

E = E(G) =
n∑

i=1

|λi| .

For details on graph energy see the reviews [3, 4], the recent papers [5–16] and the

references cited therein.

In [5] Nikiforov showed that for almost all graphs,

E =

(
4

3π
+ o(1)

)
n3/2 .

Thus the number of graphs satisfying the condition E < n is relatively small. In 2007

one of the present authors and Radenković [9] proposed the definition of hypoenergetic

graphs, i. e., the graphs whose energy is less than the number of vertices. Recently,

the present author et al. [14] obtained results about hypoenergetic trees. Two of

the present authors [15] showed that there exist hypoenergetic unicyclic graphs for

all n ≥ 7 and bicyclic graphs for all n ≥ 8 . In this paper we demonstrate that

there exist hypoenergetic tricyclic, complete bipartite graphs, and complete bipartite

graphs with attached pendent vertices. Finally we offer constructions of hypoenergetic

k-cyclic graphs for any k .

2. HYPOENERGETIC TRICYCLIC GRAPHS

Lemma 2.1. [17] If G is a connected tricyclic n-vertex graph, then for sufficiently

large n , η(G) ≤ n − 4 .

The equality η(G) = n − 4 in Lemma 2.1 is attained for graphs whose structure

is determined in [17]. Among these are TG1 and TG2 , depicted below:
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By Lemma 2.1, the maximum nullity of a connected n-vertex tricyclic graph is

n − 4 .
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Lemma 2.2. [18] If the nullity of G is n0 , then E(G) ≤
√

2m(n − n0) .

Theorem 2.3. If n = 6 or n ≥ 8 , then there exist n-vertex hypoenergetic connected

tricyclic graphs.

Proof. We consider four cases:

Case 1. n = 6 .

The graph G6 is a connected tricyclic graph with n = 6 . By direct calculation,

E(G6) = 5.65685 < 6 .
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Case 2. n = 8 .

The graph G8 is a connected tricyclic graph with n = 8 . By direct calculation,

E(G8) = 7.91375 < 8 .
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Case 3. n = 9 .

The graph G9 is a connected tricyclic graph with n = 9 . By direct calculation,

E(G9) = 8.46834 < 9 .
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Case 4. n ≥ 10 .

By Lemma 2.2, E(G) ≤
√

2(n + 2)(n − n0) . Now, if
√

2(n + 2)(n − n0) < n ,

then η(G) > n− n2/[2(n + 2)] . By Lemma 2.1, the maximum nullity is n− 4 . Thus

n− 4 > n− n2/[2(n + 2)] implying n2 − 8n− 16 > 0 . The latter inequality is obeyed

by all n ≥ 10 . �

Theorem 2.4. If n = 4, 5, 7 , then there exist no hypoenergetic tricyclic graphs.
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Proof. In the books [1, 19] all connected graphs with n = 4, 5, 7 are listed. Theorem

2.4 is obtained by systematic examination of their energies. �

In the next theorem we consider hypoenergetic tricyclic graphs with specified

values of Δ .

Theorem 2.5. For �(n + 3)/2� ≤ Δ ≤ n − 1 , there exist connected hypoenergetic

tricyclic graphs with n vertices and maximum vertex degree Δ .

Proof. If n is even and Δ ∈
[n
2

+ 1, n − 2
]
, let G ∼= TG2 with n1 = Δ− 4 and n2 =

n−Δ−2 . By Lemma 2.1, then η(G) = n0 = n−4 and E(G) ≤
√

2(n + 2)(n − n0) =√
2(n + 2) × 4 < n (n ≥ 10).

If n is even and Δ = n− 1 , let G ∼= TG1 with n1 = n− 5 and n2 = 0 . By Lemma

2.1, then n0 = n− 4 and E(G) ≤
√

2(n + 2)(n − n0) =
√

2(n + 2) × 4 < n (n ≥ 10).

If n is odd, the proof is fully analogous. �

3. HYPOENERGETIC k-CYCLIC GRAPHS

As usual, by Kn1,n2 we denote the complete bipartite graph on n1 + n2 vertices.

Lemma 3.1. [20] Suppose that G is a graph on n vertices and G has no isolated

vertices. Then η(G) = n − 2 if and only if G ∼= Kn1,n2 , where n1 + n2 = n and

n1, n2 > 0 .

Theorem 3.2. Let G ∼= Kn1,n2 , n1 �= n2 . Then G is hypoenergetic.

Proof. The spectrum of Kn1,n2 consists of ±√
n1 n2 and n1 +n2 − 2 zeros [1]. Hence,

E(Kn1,n2) = 2
√

n1 n2 . Therefore E(Kn1,n2) < n1 + n2 because of

E(Kn1,n2) − (n1 + n2) = −(
√

n1 −
√

n2)
2 < 0 .

�
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Let G∗
rst be the complete bipartite graph with attached pendent vertices, having

the following structure:

Kr,s︷ ︸︸ ︷
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From Theorem 1 in [17] we have the following:

Lemma 3.3. [17] For r, s, t ≥ 1 , η(G∗
rst) = n − 4 .

Theorem 3.4 Among the complete bipartite graphs with pendent vertices attached,

some are hypoenergetic.

Proof. Let G ∼= G∗
rst and t ≥ r > s ≥ 5 . By Lemma 3.3, η(G) = n − 4 . By Lemma

2.2,

E(G) ≤
√

2m(n − n0) =
√

2(rs + t) × [n − (n − 4)] =
√

8(rs + t) .

Now, if
√

8(rs + t) < n = r + s + t , then

r2 + s2 − 6rs + 2rt + 2st + t2 − 8t > 0 . (1)

The inequality (1) can be transformed into

r2 + s2 − 6rs + 2t(r + s) + t2 − 8t ≥ r2 + s2 − 6rs + 2r(2s + 1) + t2 − 8t

= (r − s)2 + 2r + t2 − 8t

≥ t2 − 8t + 2r + 1 > 0

which is obeyed by all t ≥ r ≥ 6 .

Thus G∗
rst is hypoenergetic for t ≥ r > s ≥ 5 . �

Remark. The condition s ≥ 5 is not necessary. For example, for r = 3 , s = 2 , t ≥
3 , we have E(G∗

rst) < n . But if t < r or t < s , then G∗
rst needs not be hypoenergetic.

For instance, for r = 3 , s = 4 , t = 2 , E(G∗
rst) = 9.48373 > n = 3 + 4 + 2 .
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Theorem 3.5. There exist hypoenergetic k-cyclic graphs for any k ≥ 0 .

Proof. Let G be an arbitrary graph on n vertices and with at least one edge. Let

v be a non-isolated vertex of G . Construct the graph Gp by attaching p pendent

vertices to v . Evidently, if G is k-cyclic, then also Gp is k-cyclic. Since G may be

arbitrary, k may be equal to zero or to any positive integer. Theorem 3.5 is now an

immediate corollary of the following:

Theorem 3.6. If p ≥
[
1 +

√
n

2

(√
n − 1

)
+ 1

]2
, then Gp is hypoenergetic.

Proof. Let X and Y be two graphs with disjoint vertex sets. Let x be a vertex of X

and y a vertex of Y . The graph X ◦ Y is obtained from X and Y by identifying the

vertices x and y . In [16] it was shown that

E(X ◦ Y ) ≤ E(X) + E(Y ) (2)

and that this inequality is strict provided x is not an isolated vertex of X and y is

not an isolated vertex of Y .

Applying (2) to the graph Gp we get

E(Gp) < E(G) + E(Sp+1) (3)

where Sp+1 is the (p + 1)-vertex star. As well known,

E(Sp+1) = 2
√

p . (4)

An upper bound for the energy of any n-vertex graph G is [21]

E(G) ≤ n

2

(√
n + 1

)
. (5)

Substituting (4) and (5) back into (3) we obtain

E(Gp) <
n

2

(√
n + 1

)
+ 2

√
p .

Therefore, a sufficient condition for Gp being hypoenergetic is

n

2

(√
n + 1

)
+ 2

√
p ≤ n + p
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from which Theorem 3.6 immediately follows. �

Remark. From (2) follows that if X is hypoenergetic, and if the energy of Y is by

one less than the number of vertices of Y , then X ◦ Y is also hypoenergetic. From

this observation, and the fact that the energy of S5 is by one less than its number

of vertices, one can construct arbitrarily many hypoenergetic chemical trees, whose

number of vertices belongs to any congruence class modulo 4.
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