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Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues.

A tree is non-starlike if it has at least two vertices of degree greater than two. For

4 ≤ k ≤ n − 2, we determine, in the class of non-starlike trees with n vertices and k

pendent vertices, the trees with minimal energy if n ≥ 6 and the trees with second–

minimal energy if n ≥ 8.

1. INTRODUCTION

Let G be a graph with n vertices, and and let λ1, λ2, . . . , λn be its eigenvalues [1].

Then the energy of G is defined as [2, 3]

E(G) =
n∑

i=1

|λi|.

For a survey of the mathematical properties and chemical applications of E(G), see

the recent reviews [4, 5].
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Gutman [6] determined the n-vertex trees with minimal, second–minimal, third–

minimal, and fourth–minimal energy, as well as the n-vertex trees with maximal and

second–maximal energy. Recently, these results were extended in [7, 8]. Minimal or

maximal energies have been determined within various subclasses of trees, see [9–15].

Related results on the energy of trees may be found in [16, 17].

Let G be an acyclic graph with n vertices. Then E(G) can be expressed as the

Coulson integral formula [3]

E(G) =
2

π

∫ +∞

0

log

⎡
⎣ �n

2
�∑

i=0

m(G, i)x2i

⎤
⎦ dx

where m(G, i) denotes the number of i-matchings in G, and in convention, m(G, 0) =

1, and it is obvious that m(G, i) = 0 for i > �n
2
�. This formula led Gutman [6] to

introduce a quasi-order relation over the class of all acyclic graphs: if G1 and G2 are

two acyclic graphs, then

G1 � G2 ⇔ m(G1, i) ≥ m(G2, i) for i ≥ 1.

If G1 � G2 and there exists a j such that m(G1, j) > m(G2, j), then we write G1 � G2.

For acyclic graphs G1 and G2,

G1 � G2 ⇒ E(G1) > E(G2).

A tree in which exactly one vertex has degree (i.e., number of first neighbors)

greater than two is said to be starlike. Otherwise, it is non-starlike.

The starlike trees (with a given number of vertices), extremal with respect to the

relation “�”, have been characterized in [18], from which properties on the ordering

of starlike trees respect to their energies can be deduced.

A pendent vertex is a vertex of degree one. Obviously, the number of pendent

vertices in a non-starlike tree with n vertices is at least 4 and at most n − 2. Let

Tn,k be the class of non-starlike trees in with n vertices and k pendent vertices, where

4 ≤ k ≤ n − 2.

For integers n and k with 4 ≤ k ≤ n−2, let P r,s
n,k(a, b) be the tree formed from the

path Pn−k+2 whose vertices are labelled consecutively as v1, . . . , vn−k+2 by attaching

a pendent vertices to vertex vr and b pendent vertices to vs, where 2 ≤ r < s ≤
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n − k + 1, a, b ≥ 1 and a + b = k − 2. Let Sn(a + 1, b + 1) = P 2,n−k+1
n,k (a, b), i.e.,

Sn(a + 1, b + 1) is the tree obtained from the path with n − a − b − 2 vertices by

attaching a + 1 and b + 1 pendent vertices to its two end vertices respectively. Let

An,k = P 2,n−k+1
n,k (k − 3, 1) = Sn(k − 2, 2) and Bn,k = P 2,4

n,k(k − 3, 1).

In this paper, we determine the trees in Tn,k with minimal energy for 4 ≤ k ≤ n−2

and trees in Tn,k with second–minimal energy for 4 ≤ k ≤ n − 2 and n ≥ 8. More

precisely, we show

• An,k is the unique tree with minimal energy in Tn,k for 4 ≤ k ≤ n − 2;

• Sn(n−5, 3) is the unique tree with second–minimal energy in Tn,n−2, P 2,3
n,n−3(n−

6, 1) if n = 8, P 2,4
n,n−3(n − 7, 2) if n ≥ 9 is the unique tree with second–minimal

energy in Tn,n−3, and Bn,k is the unique tree with second–minimal energy in

Tn,k for 4 ≤ k ≤ n − 4.

2. PRELIMINARIES

For convenience, let m(G, i) = 0 for a graph G if i < 0. Let T be a tree with

vertex set V (T ). For u ∈ V (T ), du denotes the degree of u in T .

Lemma 1. [3] Let T be a tree, and let uv be an edge of T . Then

m(T, i) = m(T − uv, i) + m(T − u − v, i − 1).

Moreover, if u is a pendent vertex, then

m(T, i) = m(T − u, i) + m(T − u − v, i − 1).

Let T be a tree of the form in Fig. 1, where T1 and T2 are subtrees of T with at

least two vertices, ul ∈ V (T1), ul+1 ∈ V (T2) and l ≥ 3. Let T ′ be the tree formed

from T by deleting edge ulu and adding edge u2u for every neighbor u of ul in V (T1).

We say that T ′ is obtained from T by Operation I.

��
��

��
��	

u1

	
u2

	
u3

	
ul


 
 
 	 	
ul+1

��
��

��
��	

ul

	
u1

	
u2

	
u3


 
 
 	 	
ul+1

�

Operation IT1 T1

T2 T2

T T ′

Fig. 1. Trees T and T ′ in Operation I.
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Let T be a tree of of diameter at least 3 which is of the form in Fig. 2, where u1

and w1 are end vertices of a diametrical path, l, q ≥ 2, T1 is a tree with v ∈ V (T1).

Let T ′ be the tree formed from T by deleting edge uui and adding edge vui for the

pendent neighbor ui of u with i = 2, . . . , l. We say that T ′ is obtained from T by

Operation II.

��
��

��
��

��
��

�����
ul

�
u
� �

����� ��
��

��
��

�
u1

�
u
� �

�w1

v �
��
�

} }
q l + q − 1�Operation II

u1 w1

v

T T ′

T1 T1

Fig. 2. Trees T and T ′ in Operation II.

Lemma 2. [14] If T ′ is obtained from T by Operation I or II, then T � T ′.

Lemma 3. [13] For integers i and l with 2 ≤ i ≤ � l
2
�, i �= 3, and l ≥ 6, Pi ∪ Pl−i �

P3 ∪ Pl−3 � P1 ∪ Pl−1.

Lemma 4. [6] Let T be a tree on n vertices. If T is different from the path Pn and

the star Sn, then Pn � T � Sn.

Lemma 5. For n ≥ 9, E
(
P 2,3

n,n−3(n − 6, 1)
)

> E
(
P 2,4

n,n−3(n − 7, 2)
)
.

Proof. Let T1 = P 2,3
n,n−3(n− 6, 1) and T2 = P 2,4

n,n−3(n− 7, 2). It can be easily seen that

m (T1, 2) = 3n − 13, m (T1, 3) = n − 5, m(T1, i) = 0 for i ≥ 4,

m (T2, 2) = 4n − 21, m (T2, i) = 0 for i ≥ 3.

Note that the eigenvalues of a tree T with n vertices are the n roots of its characteristic

polynomial, which may be written as [3]

φ(T, x) =

�n
2
�∑

i=0

(−1)im(T, i)xn−2i.

Thus,

φ(T1, x) = xn−6
[
x6 − (n − 1)x4 + (3n − 13)x2 − (n − 5)

]
,

φ(T2, x) = xn−4
[
x4 − (n − 1)x2 + (4n − 21)

]
.
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Let
√

a1,
√

a2,
√

a3 be the positive eigenvalues of T1, and
√

b1,
√

b2 be the positive

eigenvalues of T2. Then a1 + a2 + a3 = b1 + b2 = n− 1, a1a2 + a2a3 + a3a1 = 3n− 13,

a1a2a3 = n − 5 and b1b2 = 4n − 21. We have[
E(T1)

2

]2
= (

√
a1 +

√
a2 +

√
a3)

2

= a1 + a2 + a3 + 2 (
√

a1a2 +
√

a2a3 +
√

a3a1)

= n − 1 + 2
√

a1a2 + a2a3 + a3a1 + 2
√

a1a2a3 (
√

a1 +
√

a2 +
√

a3)

= n − 1 + 2

√
3n − 13 +

√
n − 5 E(T1),[

E(T2)

2

]2
=
(√

b1 +
√

b2

)2

= b1 + b2 + 2
√

b1b2 = n − 1 + 2
√

4n − 21.

Now it is easily seen that E(T1) > E(T2) is equivalent to n − 8 <
√

n − 5 E(T1),

i.e., E(T1) > n−8√
n−5

, which is obviously true, because by Lemma 4, E(T1) > E(Sn) =

2
√

n − 1 > n−8√
n−5

.

Let T be a tree. Let l(T ) denote the number of vertices of degree at least 3 in T .

If v0v1 . . . vt is a path (of length t) in T such that dv0 ≥ 3, dvt = 1 and dvi
= 2 for

i = 2, . . . , t− 1, where t ≥ 1, then it is called a pendent path of T . If t = 1, then it is

a pendent edge. Let p(T ) be the number of pendent paths of length at least 2 in T .

For integers n and k with 3 ≤ k ≤ n − 2, let P r
n,k be the tree formed from the

path Pn−k+2 labelled as v1, . . . , vn−k+2 by attaching k − 2 pendent vertices to vertex

vr, where 2 ≤ r ≤ �n−k+2
2

�.

3. RESULTS

Note that Operations I and II do not change the number of pendent paths and

hence the number of pendent vertices, and that Operation II reduces the number of

vertices of degree at least 3 by one. For a tree T of diameter at least 3, if Operation I

can not be applied to T then Operation II may be applied to get a tree T ′ and when

the diameter is at least 4 and l(T ′) ≥ 2, Operation II may be applied to T ′.

Now we are ready to prove our results.
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Theorem 1. For integer n and k with 4 ≤ k ≤ n − 2, An,k is the unique tree with

minimal energy in Tn,k.

Proof. Let T ∈ Tn,k with T �∼= An,k. We will prove that T � An,k.

Note that l(T ) ≥ 2. If l(T ) ≥ 3, or l(T ) = 2 and p(T ) ≥ 1, then applying

Operations I and II to T , and by Lemma 2, we get a tree T ′ ∈ Tn,k such that

l(T ′) = 2, p(T ′) = 0 and T � T ′. Assume that l(T ) = 2 and p(T ) = 0. Then T is a

tree Sn(a, b) with a ≥ b ≥ 3 and a + b = k.

Claim. Sn(a, b) � Sn(a + 1, b − 1) for a ≥ b ≥ 3.

If a + b = n − 2, then this follows easily. Suppose that a + b ≤ n − 3. By Lemma

1, we have

m (Sn(a, b), i) = m (Sn−1(a, b − 1), i) + m
(
P 2

n−b−1,a+1, i − 1
)
,

m (Sn(a + 1, b − 1), i) = m (Sn−1(a, b − 1), i) + m
(
P 2

n−a−2,b, i − 1
)
.

Since P 2
n−a−2,b is a proper subgraph of P 2

n−b−1,a+1 for a ≥ b, we have

m
(
P 2

n−b−1,a+1, i − 1
)
≥ m

(
P 2

n−a−2,b, i − 1
)

and then m (Sn(a, b), i) ≥ m (Sn(a + 1, b − 1), i) for all i ≥ 0 and it is strict for i = 2.

This proves the Claim.

By the Claim, T � Sn(k − 2, 2) ∼= An,k. �

It is easily checked that |Tn,k| ≥ 2 if and only if either 4 ≤ k ≤ n−2 and n ≥ 8 or

n = 7 and k = 4. Obviously, T7,4 = {A7,4, P
2,3
7,4 (1, 1)}, and E (A7,4) < E

(
P 2,3

7,4 (1, 1)
)
.

Thus, for the graphs with second–minimal energy in Tn,k with 4 ≤ k ≤ n−2, we may

assume that n ≥ 8.

Theorem 2. For integers n and k with 4 ≤ k ≤ n − 2 and n ≥ 8, we have

(i) Sn(n − 5, 3) is the unique tree with the second–minimal energy in Tn,n−2;

(ii) P 2,3
n,n−3(n − 6, 1) if n = 8, P 2,4

n,n−3(n − 7, 2) if n ≥ 9 is the unique tree with

second–minimal energy in Tn,n−3;

(iii) If 4 ≤ k ≤ n − 4, then Bn,k is the unique tree with second–minimal energy in

Tn,k.
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Proof. Any tree T ∈ Tn,n−2 is of the form Sn(n−2−c, c) with 2 ≤ c ≤ n−2
2

. By direct

check or by the Claim in the proof of Theorem 1, if T �∼= Sn(n − 5, 3), Sn(n − 4, 2),

then T � Sn(n − 5, 3) � Sn(n − 4, 2). Thus Sn(n − 5, 3) is the unique tree with the

second–minimal energy in Tn,n−2. This proves (i).

Let T ∈ Tn,n−3 with T �∼= An,n−3, P 2,4
n,n−3(n− 7, 2), P 2,3

n,n−3(n− 6, 1). Then l(T ) ≥ 2

and T must be of the form obtained from the path P5 = v1v2v3v4v5 by attaching x, y

and z pendent vertices to vertices v2, v3 and v4, respectively, where x+ y + z = n−5,

x ≥ z, (x, y, z) �= (n − 6, 0, 1), (n − 7, 0, 2), (n − 6, 1, 0). If y = 0, then n ≥ 9 and by

the argument of Theorem 1, T � P 2,4
n,n−3(n− 7, 2). If y ≥ 1, then applying Operation

II and by Lemma 2, we may easily have T � P 2,3
n,n−3(n− 6, 1). By Lemma 5, we have

the result in (ii).

In the following we prove (iii). Let T ∈ Tn,k with T �∼= An,k, Bn,k, where 4 ≤ k ≤
n − 4.

Note that l(T ) ≥ 2. If l(T ) ≥ 3, then by making use of Operation II and if

necessary Operation I to T , and by Lemma 2, we get a tree T ′ ∈ Tn,k such that

l(T ′) = 2 and T � T ′. By the definition of Operation II, T ′ �∼= An,k. Assume that

l(T ) = 2 and T �∼= An,k. Let u, v be the two vertices in T with du ≥ dv ≥ 3.

Suppose that du ≥ dv ≥ 4. Applying Operation I, and by Lemma 2, we find

T � Sn(du + 1, dv − 1). By the proof of Theorem 1, we have T � Sn(k − 3, 3).

Claim 1. Sn(a, 3) � Bn,a+3, where a ≥ 3.

Let d = n − a − 3. Since m(Pn, i) =
(

n−i
i

)
, we have

m (Sn(3, 3), i) = 3 · 3 ·
(

d−2−i+2
i−2

)
+ 3 ·

(
d−1−i+1

i−1

)
+ 3 ·

(
d−1−i+1

i−1

)
+
(

d−i
i

)
= 9

(
d−i
i−2

)
+ 6
(

d−i
i−1

)
+
(

d−i
i

)
,

m (Bn,3+3, i) = 4 · 2 ·
(

d−2−i+2
i−2

)
+ 4 ·

(
d−1−i+1

i−1

)
+
(

d+1−i
i

)
+
(

d−2−i+1
i−1

)
+
(

d−2−i+2
i−2

)
= 9

(
d−i
i−2

)
+ 4
(

d−i
i−1

)
+
(

d−i+1
i

)
+
(

d−i−1
i−1

)
,

and thus

m (Sn(3, 3), i) − m (Bn,3+3, i) =
(

d−i
i−1

)
−
(

d−i−1
i−1

)
.

It follows that m (Sn(3, 3), i) ≥ m (Bn,3+3, i) for all i ≥ 0 and it is strict for i = 2.
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Thus the claim is true for a = 3. Suppose that a ≥ 4 and it is true for a − 1. By

Lemma 1 we have

m (Sn(a, 3), i) = m (Sn−1(a − 1, 3), i) + m
(
P 2

d+2,4, i − 1
)
,

m (Bn,a+3, i) = m (Bn−1,a+2, i) + m
(
P 2

d+1,3, i − 1
)
.

Since P 2
d+1,3 is a proper subgraph of P 2

d+2,4, we have m (Sn(a, 3), i) ≥ m (Bn,a+3, i)

for all i ≥ 1 and it is strict for i = 2. Now Claim 1 follows. By Claim 1, T �
Sn(k − 3, 3) � Bn,k.

Now suppose that du ≥ dv = 3. If p(T ) ≥ 2, then applying Operation I to T we

may get a tree T ′ such that T ′ with p(T ′) = 1, and by Lemma 2, T � T ′. Suppose

that T ′ �∼= Bn,k. Then we have either T ′ ∼= P 2,s
n,k(k − 3, 1) with 3 ≤ s ≤ n − k and

s �= 4, or k ≥ 4 and T ′ ∼= P 2,s
n,k(1, k − 3) with 3 ≤ s ≤ n − k.

Suppose that 3 ≤ s ≤ c and s �= 4. We have by Lemma 3 that Ps−1 ∪ Pc+2−s �
P3 ∪ Pc−2, and thus by Lemma 1, P s

c+3,3 � P 4
c+3,3. If s = 3, then by Lemmas 1 and

4, P 2,s
c+4,4(1, 1) � P 2,4

c+4,4(1, 1) ∼= Bc+4,4. If 5 ≤ s ≤ c, then by Lemma 3, we have

Ps−3 ∪ Pc+2−s � P1 ∪ Pc−2, and by Lemma 1, we have P
(s−2)
c+1,3 � P 2

c+1,3, and thus

P 2,s
c+4,4(1, 1) � P 2,4

c+4,4(1, 1) ∼= Bc+4,4. We have shown that P 2,s
c+4,4(1, 1) � Bc+4,4 for

3 ≤ s ≤ c and s �= 4, which will be the starting point of Claims 2 and 3.

Claim 2. P 2,s
c+x+3,x+3(x, 1) � Bc+x+3,x+3, where x ≥ 1, 3 ≤ s ≤ c, s �= 4.

If x = 1, then the claim follows. Suppose that x ≥ 2 and it is true for x − 1. By

Lemma 1,

m
(
P 2,s

c+x+3,x+3(x, 1), i
)

= m
(
P 2,s

c+x+2,x+2(x − 1, 1), i
)

+m
(
P 2,s

c+x+3,x+3(x, 1) − v1 − v2, i − 1
)
,

m (Bc+x+3,x+3, i) = m (Bc+x+2,x+2, i) + m
(
xP1 ∪ P 2

c+1,3, i − 1
)
.

If s �= 3, then c ≥ 5, P s−2
c+1,3 � P 2

c+1,3, and thus P 2,s
c+x+3,x+3(x, 1)−v1−v2 = xP1∪P s−2

c+1,3 �
xP1 ∪P 2

c+1,3. If s = 3, then c ≥ 3, Pc+1 � P 2
c+1,3, and thus P 2,s

c+x+3,x+3(x, 1)− v1 − v2 =

xP1 ∪ Pc+1 � xP1 ∪ P 2
c+1,3. Thus Claim 2 follows.

Claim 3. P 2,s
c+x+3,x+3(1, x) � Bc+x+3,x+3, where x ≥ 2 and 3 ≤ s ≤ c.

If x = 1 and s �= 4, then P 2,s
c+x+3,x+3(1, x) � Bc+x+3,x+3. If x = 1 and s = 4, then
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P 2,s
c+x+3,x+3(1, x) ∼= Bc+x+3,x+3. Suppose that x ≥ 2. By Lemma 1, we have

m
(
P 2,s

c+x+3,x+3(1, x), i
)

= m
(
P 2,s

c+x+2,x+2(1, x − 1), i
)

+m
(
(x − 1)P1 ∪ P 2

s,3 ∪ Pc+2−s, i − 1
)
,

m (Bc+x+3,x+3, i) = m (Bc+x+2,x+2, i) + m
(
xP1 ∪ P 2

c+1,3, i − 1
)
.

Obviously, m
(
(x − 1)P1 ∪ P 2

s,3 ∪ Pc+2−s, i − 1
)

≥ m
(
xP1 ∪ P 2

c+1,3, i − 1
)

and then

m
(
P 2,s

c+x+3,x+3(1, x), i
)
≥ m (Bc+x+3,x+3, i) for all i ≥ 1 and it is strict for i = 2.

Thus Claim 3 follows.

Setting x = k − 3 and c = n − k in Claims 2 and 3, we have T � T ′ � Bn,k. �
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[16] I. Gutman, S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem.

46A (2007) 1733–1736.

[17] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun.

Comput. Chem. 60 (2008) 415–426.

[18] I. Gutman, O. Araujo, J. Rada, Matchings in starlike trees, Appl. Math. Lett.

14 (2001) 843–848.

- 490 -


