ON MINIMAL ENERGIES OF NON-STARLIKE TREES WITH GIVEN NUMBER OF PENDENT VERTICES

Jianbin Zhang and Bo Zhou*
Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

(Received August 6, 2008)

Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues. A tree is non-starlike if it has at least two vertices of degree greater than two. For $4 \leq k \leq n-2$, we determine, in the class of non-starlike trees with n vertices and k pendent vertices, the trees with minimal energy if $n \geq 6$ and the trees with secondminimal energy if $n \geq 8$.

1. INTRODUCTION

Let G be a graph with n vertices, and and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues [1]. Then the energy of G is defined as $[2,3]$

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

For a survey of the mathematical properties and chemical applications of $E(G)$, see the recent reviews $[4,5]$.

[^0]Gutman [6] determined the n-vertex trees with minimal, second-minimal, thirdminimal, and fourth-minimal energy, as well as the n-vertex trees with maximal and second-maximal energy. Recently, these results were extended in [7, 8]. Minimal or maximal energies have been determined within various subclasses of trees, see [9-15]. Related results on the energy of trees may be found in $[16,17]$.

Let G be an acyclic graph with n vertices. Then $E(G)$ can be expressed as the Coulson integral formula [3]

$$
E(G)=\frac{2}{\pi} \int_{0}^{+\infty} \log \left[\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m(G, i) x^{2 i}\right] d x
$$

where $m(G, i)$ denotes the number of i-matchings in G, and in convention, $m(G, 0)=$ 1 , and it is obvious that $m(G, i)=0$ for $i>\left\lfloor\frac{n}{2}\right\rfloor$. This formula led Gutman [6] to introduce a quasi-order relation over the class of all acyclic graphs: if G_{1} and G_{2} are two acyclic graphs, then

$$
G_{1} \succeq G_{2} \Leftrightarrow m\left(G_{1}, i\right) \geq m\left(G_{2}, i\right) \text { for } i \geq 1
$$

If $G_{1} \succeq G_{2}$ and there exists a j such that $m\left(G_{1}, j\right)>m\left(G_{2}, j\right)$, then we write $G_{1} \succ G_{2}$. For acyclic graphs G_{1} and G_{2},

$$
G_{1} \succ G_{2} \Rightarrow E\left(G_{1}\right)>E\left(G_{2}\right) .
$$

A tree in which exactly one vertex has degree (i.e., number of first neighbors) greater than two is said to be starlike. Otherwise, it is non-starlike.

The starlike trees (with a given number of vertices), extremal with respect to the relation " \succeq ", have been characterized in [18], from which properties on the ordering of starlike trees respect to their energies can be deduced.

A pendent vertex is a vertex of degree one. Obviously, the number of pendent vertices in a non-starlike tree with n vertices is at least 4 and at most $n-2$. Let $\mathbb{T}_{n, k}$ be the class of non-starlike trees in with n vertices and k pendent vertices, where $4 \leq k \leq n-2$.

For integers n and k with $4 \leq k \leq n-2$, let $P_{n, k}^{r, s}(a, b)$ be the tree formed from the path P_{n-k+2} whose vertices are labelled consecutively as v_{1}, \ldots, v_{n-k+2} by attaching a pendent vertices to vertex v_{r} and b pendent vertices to v_{s}, where $2 \leq r<s \leq$
$n-k+1, a, b \geq 1$ and $a+b=k-2$. Let $S_{n}(a+1, b+1)=P_{n, k}^{2, n-k+1}(a, b)$, i.e., $S_{n}(a+1, b+1)$ is the tree obtained from the path with $n-a-b-2$ vertices by attaching $a+1$ and $b+1$ pendent vertices to its two end vertices respectively. Let $A_{n, k}=P_{n, k}^{2, n-k+1}(k-3,1)=S_{n}(k-2,2)$ and $B_{n, k}=P_{n, k}^{2,4}(k-3,1)$.

In this paper, we determine the trees in $\mathbb{T}_{n, k}$ with minimal energy for $4 \leq k \leq n-2$ and trees in $\mathbb{T}_{n, k}$ with second-minimal energy for $4 \leq k \leq n-2$ and $n \geq 8$. More precisely, we show

- $A_{n, k}$ is the unique tree with minimal energy in $\mathbb{T}_{n, k}$ for $4 \leq k \leq n-2$;
- $S_{n}(n-5,3)$ is the unique tree with second-minimal energy in $\mathbb{T}_{n, n-2}, P_{n, n-3}^{2,3}(n-$ $6,1)$ if $n=8, P_{n, n-3}^{2,4}(n-7,2)$ if $n \geq 9$ is the unique tree with second-minimal energy in $\mathbb{T}_{n, n-3}$, and $B_{n, k}$ is the unique tree with second-minimal energy in $\mathbb{T}_{n, k}$ for $4 \leq k \leq n-4$.

2. PRELIMINARIES

For convenience, let $m(G, i)=0$ for a graph G if $i<0$. Let T be a tree with vertex set $V(T)$. For $u \in V(T), d_{u}$ denotes the degree of u in T.

Lemma 1. [3] Let T be a tree, and let uv be an edge of T. Then

$$
m(T, i)=m(T-u v, i)+m(T-u-v, i-1)
$$

Moreover, if u is a pendent vertex, then

$$
m(T, i)=m(T-u, i)+m(T-u-v, i-1) .
$$

Let T be a tree of the form in Fig. 1, where T_{1} and T_{2} are subtrees of T with at least two vertices, $u_{l} \in V\left(T_{1}\right), u_{l+1} \in V\left(T_{2}\right)$ and $l \geq 3$. Let T^{\prime} be the tree formed from T by deleting edge $u_{l} u$ and adding edge $u_{2} u$ for every neighbor u of u_{l} in $V\left(T_{1}\right)$. We say that T^{\prime} is obtained from T by Operation I.

Fig. 1. Trees T and T^{\prime} in Operation I.

Let T be a tree of of diameter at least 3 which is of the form in Fig. 2, where u_{1} and w_{1} are end vertices of a diametrical path, $l, q \geq 2, T_{1}$ is a tree with $v \in V\left(T_{1}\right)$. Let T^{\prime} be the tree formed from T by deleting edge $u u_{i}$ and adding edge $v u_{i}$ for the pendent neighbor u_{i} of u with $i=2, \ldots, l$. We say that T^{\prime} is obtained from T by Operation II.

Fig. 2. Trees T and T^{\prime} in Operation II.
Lemma 2. [14] If T^{\prime} is obtained from T by Operation I or II, then $T \succ T^{\prime}$.
Lemma 3. [13] For integers i and l with $2 \leq i \leq\left\lfloor\frac{l}{2}\right\rfloor, i \neq 3$, and $l \geq 6, P_{i} \cup P_{l-i} \succ$ $P_{3} \cup P_{l-3} \succ P_{1} \cup P_{l-1}$.

Lemma 4. [6] Let T be a tree on n vertices. If T is different from the path P_{n} and the star S_{n}, then $P_{n} \succ T \succ S_{n}$.

Lemma 5. For $n \geq 9, E\left(P_{n, n-3}^{2,3}(n-6,1)\right)>E\left(P_{n, n-3}^{2,4}(n-7,2)\right)$.
Proof. Let $T_{1}=P_{n, n-3}^{2,3}(n-6,1)$ and $T_{2}=P_{n, n-3}^{2,4}(n-7,2)$. It can be easily seen that

$$
\begin{aligned}
& m\left(T_{1}, 2\right)=3 n-13, \quad m\left(T_{1}, 3\right)=n-5, \quad m\left(T_{1}, i\right)=0 \text { for } i \geq 4 \\
& m\left(T_{2}, 2\right)=4 n-21, \quad m\left(T_{2}, i\right)=0 \text { for } i \geq 3
\end{aligned}
$$

Note that the eigenvalues of a tree T with n vertices are the n roots of its characteristic polynomial, which may be written as [3]

$$
\phi(T, x)=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i} m(T, i) x^{n-2 i}
$$

Thus,

$$
\begin{aligned}
& \phi\left(T_{1}, x\right)=x^{n-6}\left[x^{6}-(n-1) x^{4}+(3 n-13) x^{2}-(n-5)\right] \\
& \phi\left(T_{2}, x\right)=x^{n-4}\left[x^{4}-(n-1) x^{2}+(4 n-21)\right]
\end{aligned}
$$

Let $\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}$ be the positive eigenvalues of T_{1}, and $\sqrt{b_{1}}, \sqrt{b_{2}}$ be the positive eigenvalues of T_{2}. Then $a_{1}+a_{2}+a_{3}=b_{1}+b_{2}=n-1, a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}=3 n-13$, $a_{1} a_{2} a_{3}=n-5$ and $b_{1} b_{2}=4 n-21$. We have

$$
\begin{aligned}
{\left[\frac{E\left(T_{1}\right)}{2}\right]^{2} } & =\left(\sqrt{a_{1}}+\sqrt{a_{2}}+\sqrt{a_{3}}\right)^{2} \\
& =a_{1}+a_{2}+a_{3}+2\left(\sqrt{a_{1} a_{2}}+\sqrt{a_{2} a_{3}}+\sqrt{a_{3} a_{1}}\right) \\
& =n-1+2 \sqrt{a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}+2 \sqrt{a_{1} a_{2} a_{3}}\left(\sqrt{a_{1}}+\sqrt{a_{2}}+\sqrt{a_{3}}\right)} \\
& =n-1+2 \sqrt{3 n-13+\sqrt{n-5} E\left(T_{1}\right)}, \\
{\left[\frac{E\left(T_{2}\right)}{2}\right]^{2} } & =\left(\sqrt{b_{1}}+\sqrt{b_{2}}\right)^{2} \\
& =b_{1}+b_{2}+2 \sqrt{b_{1} b_{2}}=n-1+2 \sqrt{4 n-21} .
\end{aligned}
$$

Now it is easily seen that $E\left(T_{1}\right)>E\left(T_{2}\right)$ is equivalent to $n-8<\sqrt{n-5} E\left(T_{1}\right)$, i.e., $E\left(T_{1}\right)>\frac{n-8}{\sqrt{n-5}}$, which is obviously true, because by Lemma $4, E\left(T_{1}\right)>E\left(S_{n}\right)=$ $2 \sqrt{n-1}>\frac{n-8}{\sqrt{n-5}}$.

Let T be a tree. Let $l(T)$ denote the number of vertices of degree at least 3 in T. If $v_{0} v_{1} \ldots v_{t}$ is a path (of length t) in T such that $d_{v_{0}} \geq 3, d_{v_{t}}=1$ and $d_{v_{i}}=2$ for $i=2, \ldots, t-1$, where $t \geq 1$, then it is called a pendent path of T. If $t=1$, then it is a pendent edge. Let $p(T)$ be the number of pendent paths of length at least 2 in T.

For integers n and k with $3 \leq k \leq n-2$, let $P_{n, k}^{r}$ be the tree formed from the path P_{n-k+2} labelled as v_{1}, \ldots, v_{n-k+2} by attaching $k-2$ pendent vertices to vertex v_{r}, where $2 \leq r \leq\left\lfloor\frac{n-k+2}{2}\right\rfloor$.

3. RESULTS

Note that Operations I and II do not change the number of pendent paths and hence the number of pendent vertices, and that Operation II reduces the number of vertices of degree at least 3 by one. For a tree T of diameter at least 3 , if Operation I can not be applied to T then Operation II may be applied to get a tree T^{\prime} and when the diameter is at least 4 and $l\left(T^{\prime}\right) \geq 2$, Operation II may be applied to T^{\prime}.

Now we are ready to prove our results.

Theorem 1. For integer n and k with $4 \leq k \leq n-2, A_{n, k}$ is the unique tree with minimal energy in $\mathbb{T}_{n, k}$.

Proof. Let $T \in \mathbb{T}_{n, k}$ with $T \not \approx A_{n, k}$. We will prove that $T \succ A_{n, k}$.
Note that $l(T) \geq 2$. If $l(T) \geq 3$, or $l(T)=2$ and $p(T) \geq 1$, then applying Operations I and II to T, and by Lemma 2, we get a tree $T^{\prime} \in \mathbb{T}_{n, k}$ such that $l\left(T^{\prime}\right)=2, p\left(T^{\prime}\right)=0$ and $T \succ T^{\prime}$. Assume that $l(T)=2$ and $p(T)=0$. Then T is a tree $S_{n}(a, b)$ with $a \geq b \geq 3$ and $a+b=k$.

Claim. $S_{n}(a, b) \succ S_{n}(a+1, b-1)$ for $a \geq b \geq 3$.
If $a+b=n-2$, then this follows easily. Suppose that $a+b \leq n-3$. By Lemma 1 , we have

$$
\begin{aligned}
m\left(S_{n}(a, b), i\right) & =m\left(S_{n-1}(a, b-1), i\right)+m\left(P_{n-b-1, a+1}^{2}, i-1\right), \\
m\left(S_{n}(a+1, b-1), i\right) & =m\left(S_{n-1}(a, b-1), i\right)+m\left(P_{n-a-2, b}^{2}, i-1\right) .
\end{aligned}
$$

Since $P_{n-a-2, b}^{2}$ is a proper subgraph of $P_{n-b-1, a+1}^{2}$ for $a \geq b$, we have

$$
m\left(P_{n-b-1, a+1}^{2}, i-1\right) \geq m\left(P_{n-a-2, b}^{2}, i-1\right)
$$

and then $m\left(S_{n}(a, b), i\right) \geq m\left(S_{n}(a+1, b-1), i\right)$ for all $i \geq 0$ and it is strict for $i=2$. This proves the Claim.

By the Claim, $T \succ S_{n}(k-2,2) \cong A_{n, k}$.

It is easily checked that $\left|\mathbb{T}_{n, k}\right| \geq 2$ if and only if either $4 \leq k \leq n-2$ and $n \geq 8$ or $n=7$ and $k=4$. Obviously, $\mathbb{T}_{7,4}=\left\{A_{7,4}, P_{7,4}^{2,3}(1,1)\right\}$, and $E\left(A_{7,4}\right)<E\left(P_{7,4}^{2,3}(1,1)\right)$. Thus, for the graphs with second-minimal energy in $\mathbb{T}_{n, k}$ with $4 \leq k \leq n-2$, we may assume that $n \geq 8$.

Theorem 2. For integers n and k with $4 \leq k \leq n-2$ and $n \geq 8$, we have
(i) $S_{n}(n-5,3)$ is the unique tree with the second-minimal energy in $\mathbb{T}_{n, n-2}$;
(ii) $P_{n, n-3}^{2,3}(n-6,1)$ if $n=8, P_{n, n-3}^{2,4}(n-7,2)$ if $n \geq 9$ is the unique tree with second-minimal energy in $\mathbb{T}_{n, n-3}$;
(iii) If $4 \leq k \leq n-4$, then $B_{n, k}$ is the unique tree with second-minimal energy in $\mathbb{T}_{n, k}$.

Proof. Any tree $T \in \mathbb{T}_{n, n-2}$ is of the form $S_{n}(n-2-c, c)$ with $2 \leq c \leq \frac{n-2}{2}$. By direct check or by the Claim in the proof of Theorem 1 , if $T \not \approx S_{n}(n-5,3), S_{n}(n-4,2)$, then $T \succ S_{n}(n-5,3) \succ S_{n}(n-4,2)$. Thus $S_{n}(n-5,3)$ is the unique tree with the second-minimal energy in $\mathbb{T}_{n, n-2}$. This proves (i).

Let $T \in \mathbb{T}_{n, n-3}$ with $T \not \approx A_{n, n-3}, P_{n, n-3}^{2,4}(n-7,2), P_{n, n-3}^{2,3}(n-6,1)$. Then $l(T) \geq 2$ and T must be of the form obtained from the path $P_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$ by attaching x, y and z pendent vertices to vertices v_{2}, v_{3} and v_{4}, respectively, where $x+y+z=n-5$, $x \geq z,(x, y, z) \neq(n-6,0,1),(n-7,0,2),(n-6,1,0)$. If $y=0$, then $n \geq 9$ and by the argument of Theorem $1, T \succ P_{n, n-3}^{2,4}(n-7,2)$. If $y \geq 1$, then applying Operation II and by Lemma 2, we may easily have $T \succ P_{n, n-3}^{2,3}(n-6,1)$. By Lemma 5 , we have the result in (ii).

In the following we prove (iii). Let $T \in \mathbb{T}_{n, k}$ with $T \not \not A_{n, k}, B_{n, k}$, where $4 \leq k \leq$ $n-4$.

Note that $l(T) \geq 2$. If $l(T) \geq 3$, then by making use of Operation II and if necessary Operation I to T, and by Lemma 2, we get a tree $T^{\prime} \in \mathbb{T}_{n, k}$ such that $l\left(T^{\prime}\right)=2$ and $T \succ T^{\prime}$. By the definition of Operation II, $T^{\prime} \neq A_{n, k}$. Assume that $l(T)=2$ and $T \not \approx A_{n, k}$. Let u, v be the two vertices in T with $d_{u} \geq d_{v} \geq 3$.

Suppose that $d_{u} \geq d_{v} \geq 4$. Applying Operation I, and by Lemma 2, we find $T \succeq S_{n}\left(d_{u}+1, d_{v}-1\right)$. By the proof of Theorem 1, we have $T \succeq S_{n}(k-3,3)$.

Claim 1. $S_{n}(a, 3) \succ B_{n, a+3}$, where $a \geq 3$.
Let $d=n-a-3$. Since $m\left(P_{n}, i\right)=\binom{n-i}{i}$, we have

$$
\begin{aligned}
m\left(S_{n}(3,3), i\right)= & 3 \cdot 3 \cdot\binom{d-2-i+2}{i-2}+3 \cdot\binom{d-1-i+1}{i-1}+3 \cdot\binom{d-1-i+1}{i-1}+\binom{d-i}{i} \\
= & 9\binom{d-i}{i-2}+6\binom{d-i}{i-1}+\binom{d-i}{i}, \\
m\left(B_{n, 3+3}, i\right)= & 4 \cdot 2 \cdot\binom{d-2-i+2}{i-2}+4 \cdot\binom{d-1-i+1}{i-1}+\binom{d+1-i}{i}+\binom{d-2-i+1}{i-1} \\
& +\binom{d-2-i+2}{i-2} \\
= & 9\binom{d-i}{i-2}+4\binom{d-i}{i-1}+\binom{d-i+1}{i}+\binom{d-i-1}{i-1},
\end{aligned}
$$

and thus

$$
m\left(S_{n}(3,3), i\right)-m\left(B_{n, 3+3}, i\right)=\binom{d-i}{i-1}-\binom{d-i-1}{i-1} .
$$

It follows that $m\left(S_{n}(3,3), i\right) \geq m\left(B_{n, 3+3}, i\right)$ for all $i \geq 0$ and it is strict for $i=2$.

Thus the claim is true for $a=3$. Suppose that $a \geq 4$ and it is true for $a-1$. By Lemma 1 we have

$$
\begin{aligned}
m\left(S_{n}(a, 3), i\right) & =m\left(S_{n-1}(a-1,3), i\right)+m\left(P_{d+2,4}^{2}, i-1\right), \\
m\left(B_{n, a+3}, i\right) & =m\left(B_{n-1, a+2}, i\right)+m\left(P_{d+1,3}^{2}, i-1\right)
\end{aligned}
$$

Since $P_{d+1,3}^{2}$ is a proper subgraph of $P_{d+2,4}^{2}$, we have $m\left(S_{n}(a, 3), i\right) \geq m\left(B_{n, a+3}, i\right)$ for all $i \geq 1$ and it is strict for $i=2$. Now Claim 1 follows. By Claim $1, T \succeq$ $S_{n}(k-3,3) \succ B_{n, k}$.

Now suppose that $d_{u} \geq d_{v}=3$. If $p(T) \geq 2$, then applying Operation I to T we may get a tree T^{\prime} such that T^{\prime} with $p\left(T^{\prime}\right)=1$, and by Lemma $2, T \succ T^{\prime}$. Suppose that $T^{\prime} \not \not B_{n, k}$. Then we have either $T^{\prime} \cong P_{n, k}^{2, s}(k-3,1)$ with $3 \leq s \leq n-k$ and $s \neq 4$, or $k \geq 4$ and $T^{\prime} \cong P_{n, k}^{2, s}(1, k-3)$ with $3 \leq s \leq n-k$.

Suppose that $3 \leq s \leq c$ and $s \neq 4$. We have by Lemma 3 that $P_{s-1} \cup P_{c+2-s} \succ$ $P_{3} \cup P_{c-2}$, and thus by Lemma $1, P_{c+3,3}^{s} \succ P_{c+3,3}^{4}$. If $s=3$, then by Lemmas 1 and $4, P_{c+4,4}^{2, s}(1,1) \succ P_{c+4,4}^{2,4}(1,1) \cong B_{c+4,4}$. If $5 \leq s \leq c$, then by Lemma 3 , we have $P_{s-3} \cup P_{c+2-s} \succ P_{1} \cup P_{c-2}$, and by Lemma 1, we have $P_{c+1,3}^{(s-2)} \succ P_{c+1,3}^{2}$, and thus $P_{c+4,4}^{2, s}(1,1) \succ P_{c+4,4}^{2,4}(1,1) \cong B_{c+4,4}$. We have shown that $P_{c+4,4}^{2, s}(1,1) \succ B_{c+4,4}$ for $3 \leq s \leq c$ and $s \neq 4$, which will be the starting point of Claims 2 and 3 .
Claim 2. $P_{c+x+3, x+3}^{2, s}(x, 1) \succ B_{c+x+3, x+3}$, where $x \geq 1,3 \leq s \leq c, s \neq 4$.
If $x=1$, then the claim follows. Suppose that $x \geq 2$ and it is true for $x-1$. By Lemma 1,

$$
\begin{aligned}
m\left(P_{c+x+3, x+3}^{2, s}(x, 1), i\right)= & m\left(P_{c+x+2, x+2}^{2, s}(x-1,1), i\right) \\
& +m\left(P_{c+x+3, x+3}^{2, s}(x, 1)-v_{1}-v_{2}, i-1\right) \\
m\left(B_{c+x+3, x+3}, i\right)= & m\left(B_{c+x+2, x+2}, i\right)+m\left(x P_{1} \cup P_{c+1,3}^{2}, i-1\right)
\end{aligned}
$$

If $s \neq 3$, then $c \geq 5, P_{c+1,3}^{s-2} \succ P_{c+1,3}^{2}$, and thus $P_{c+x+3, x+3}^{2, s}(x, 1)-v_{1}-v_{2}=x P_{1} \cup P_{c+1,3}^{s-2} \succ$ $x P_{1} \cup P_{c+1,3}^{2}$. If $s=3$, then $c \geq 3, P_{c+1} \succ P_{c+1,3}^{2}$, and thus $P_{c+x+3, x+3}^{2, s}(x, 1)-v_{1}-v_{2}=$ $x P_{1} \cup P_{c+1} \succ x P_{1} \cup P_{c+1,3}^{2}$. Thus Claim 2 follows.
Claim 3. $P_{c+x+3, x+3}^{2, s}(1, x) \succ B_{c+x+3, x+3}$, where $x \geq 2$ and $3 \leq s \leq c$.
If $x=1$ and $s \neq 4$, then $P_{c+x+3, x+3}^{2, s}(1, x) \succ B_{c+x+3, x+3}$. If $x=1$ and $s=4$, then
$P_{c+x+3, x+3}^{2, s}(1, x) \cong B_{c+x+3, x+3}$. Suppose that $x \geq 2$. By Lemma 1, we have

$$
\begin{aligned}
m\left(P_{c+x+3, x+3}^{2, s}(1, x), i\right)= & m\left(P_{c+x+2, x+2}^{2, s}(1, x-1), i\right) \\
& +m\left((x-1) P_{1} \cup P_{s, 3}^{2} \cup P_{c+2-s}, i-1\right) \\
m\left(B_{c+x+3, x+3}, i\right)= & m\left(B_{c+x+2, x+2}, i\right)+m\left(x P_{1} \cup P_{c+1,3}^{2}, i-1\right) .
\end{aligned}
$$

Obviously, $m\left((x-1) P_{1} \cup P_{s, 3}^{2} \cup P_{c+2-s}, i-1\right) \geq m\left(x P_{1} \cup P_{c+1,3}^{2}, i-1\right)$ and then $m\left(P_{c+x+3, x+3}^{2, s}(1, x), i\right) \geq m\left(B_{c+x+3, x+3}, i\right)$ for all $i \geq 1$ and it is strict for $i=2$. Thus Claim 3 follows.

Setting $x=k-3$ and $c=n-k$ in Claims 2 and 3, we have $T \succ T^{\prime} \succ B_{n, k}$.

Acknowledgement. This work was supported by the National Natural Science Foundation of China (Grant No. 10671076) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 8151063101000026).

References

[1] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Johann Ambrosius Barth, Heidelberg, 1995.
[2] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978) 1-22.
[3] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[4] I. Gutman, The energy of a graph: Old and new results, in: Algebraic Combinatorics and Applications, A. Betten, A. Kohnert, R. Laue, A. Wassermann (eds.), Springer-Verlag, Berlin, 2001, pp. 196-211.
[5] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441-456.
[6] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theoret. Chim. Acta 45 (1977) 79-87.
[7] I. Gutman, S. Radenković, N. Li, S. Li, Extremal energy trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 315-320.
[8] N. Li, S. Li, On the extremal energies of trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 291-314.
[9] F. Zhang, H. Li, On acyclic conjugated molecules with minimal energies, Discr. Appl. Math. 92 (1999) 71-84.
[10] H. Li, On minimal energy ordering of acyclic conjugated molecules, J. Math. Chem. 25 (1999) 145-169.
[11] W. Lin, X. Guo, H. Li, On the extremal energies of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 54 (2005) 363-378.
[12] W. Yan, L. Ye, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046-1052.
[13] B. Zhou, F. Li, On minimal energies of trees of a prescribed diameter, J. Math. Chem. 39 (2006) 465-473.
[14] A. Yu, X. Lv, Minimum energy on trees with k pendent vertices, Lin. Algebra Appl. 418 (2006) 625-633.
[15] L. Ye, X. Yuan, On the minimal energy of trees with a given number of pendent vertices, MATCH Commun. Comput. Chem. 57 (2007) 193-201.
[16] I. Gutman, S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem. 46A (2007) 1733-1736.
[17] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Comput. Chem. 60 (2008) 415-426.
[18] I. Gutman, O. Araujo, J. Rada, Matchings in starlike trees, Appl. Math. Lett. 14 (2001) 843-848.

[^0]: *Corresponding author. E-mail: zhoubo@scnu.edu.cn

