MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Constructing Graphs with Energy $\sqrt{r} E(G)$ where G is a Bipartite Graph

Oscar Rojo and Luis Medina

Department of Mathematics, Universidad Católica del Norte, Antofagasta, Chile

(Received October 23, 2008)

Abstract

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of its adjacency matrix. If G is a bipartite graph and r is any positive integer, we construct graphs with energy $\sqrt{r} E(G)$.

1. INTRODUCTION

Let M be an $n \times n$ complex matrix. Here, as usual, $\lambda_1(M), \lambda_2(M), \ldots, \lambda_n(M)$ are the eigenvalues of M. If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are nonnegative numbers then $\sum \alpha_j$ denotes the sum over the all positive α_j .

Let B be an $m \times n$ complex matrix. Let $q = \min\{m, n\}$. Let

$$\sigma_1(B) \ge \sigma_2(B) \ge \cdots \ge \sigma_q(B)$$

be the singular values of *B*. It is well known that if $m \leq n$ then, for j = 1, 2, ..., m, $\sigma_j(B)$ are the square roots of the eigenvalues of BB^* and if m > n then, for j = 1, 2, ..., n, $\sigma_j(B)$ are the square roots of the eigenvalues of B^*B . - 466 -

Nikiforov [1] defines the energy of B, denoted by E(B), as

$$E\left(B\right) = \sum \sigma_j\left(B\right) \; .$$

Since the positive semidefinite matrices BB^* and B^*B have the same positive eigenvalues

$$E(B) = \sum \sqrt{\lambda_j(BB^*)} = \sum \sqrt{\lambda_j(B^*B)} .$$

Let G be a simple graph on n vertices. Let A(G) be the adjacency matrix of G. The eigenvalues of A(G) are called the eigenvalues of G. The energy E(G) of G was first introduced by Gutman in 1978 as

$$E(G) = \sum_{j=1}^{n} |\lambda_j(A(G))| .$$

The energy of a graph is intensively studied in chemistry and it is used to approximate the total π -electron energy of a molecule [2, 3]. Since A(G) is a real symmetric matrix, its singular values are the modulus of its eigenvalues. Then

$$E\left(G\right) = E\left(A\left(G\right)\right).$$

Let 0 and I be the all zeros matrix and the identity matrix of the appropriate sizes, respectively.

Let $r \ge 1$ be an integer. Given an $m \times n$ matrix B, we denote by $B^{(r+1)}$ the $(r+1) \times (r+1)$ block bordered matrix

$$B^{(r+1)} = \begin{bmatrix} 0 & B & \cdots & B \\ B^* & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B^* & 0 & \cdots & 0 \end{bmatrix}.$$

Observe that $B^{(r+1)}$ is an Hermitian matrix of order (m+rn) in which there are r copies de B.

Lemma 1.

$$E\left(B^{(r+1)}\right) = 2\sqrt{r}E\left(B\right) \ .$$

Proof. The singular values of $B^{(r+1)}$ are the square roots of the eigenvalues of the matrix

$$B^{(r+1)}B^{(r+1)} = \begin{vmatrix} rBB^* & 0 & \cdots & 0\\ 0 & B^*B & \cdots & B^*B\\ \vdots & \vdots & \ddots & \vdots\\ 0 & B^*B & \cdots & B^*B \end{vmatrix}$$

At this point, we recall that the Kronecker product [4] of two matrices $A = (a_{i,j})$ and $B = (b_{i,j})$ of sizes $m \times m$ and $n \times n$, respectively, is defined to be the $(mn) \times (mn)$ matrix $A \otimes B = (a_{i,j}B)$. It is known that the eigenvalues of $A \otimes B$ are $\lambda_i (A) \lambda_j (B)$ with $1 \le i \le m$ and $1 \le j \le n$. We have

$$\begin{bmatrix} B^*B & \cdots & B^*B \\ \vdots & \ddots & \vdots \\ B^*B & \cdots & B^*B \end{bmatrix} = (B^*B) \otimes \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

The eigenvalues of all ones matrix of order $r \times r$ are the simple eigenvalue r and 0 with multiplicity (r-1). Then the positive eigenvalues of $B^{(r+1)}B^{(r+1)}$ are the positive eigenvalues of rBB^* and the positive eigenvalues of rB^*B . In addition, BB^* and B^*B have the same positive eigenvalues. Therefore

$$E\left(B^{(r+1)}\right) = \sum \sigma_j\left(B^{(r+1)}\right) = \sum 2\sqrt{r\lambda_j\left(BB^*\right)} = 2\sqrt{r}E(B) \ .$$

This completes the proof.

2. CONSTRUCTING GRAPHS WITH ENERGY $\sqrt{r} E(G)$

From now on, G is a given bipartite graph on n vertices. Then the vertex set of G can be divided into two disjoint sets V_1 with n_1 vertices and V_2 with n_2 vertices, such that every edge of G connects a vertex in V_1 to one in V_2 . Clearly $n = n_1 + n_2$. Labelling the vertices in V_1 by $1, 2, \ldots, n_1$ and the vertices in V_2 by $n_1 + 1, n_1 + 2, \ldots, n_1 + n_2$, the adjacency matrix of G becomes of the form

$$A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix} = B^{(2)}$$

where B is an $n_1 \times n_2$ matrix. Similarly, labelling the vertices in V_2 by $1, 2, \ldots, n_2$ and the vertices in V_1 by $n_2 + 1, n_2 + 2, \ldots, n_2 + n_1$, the adjacency matrix of G is of the form

$$A(G) = \begin{bmatrix} 0 & C \\ C^T & 0 \end{bmatrix} = C^{(2)}$$

where C is an $n_2 \times n_1$ matrix.

Lemma 2. If G is a bipartite graph then

E(G) = 2 E(B) = 2 E(C) and E(B) = E(C).

Proof. We know that $E(G) = E(A(G)) = E(B^{(2)}) = E(C^{(2)})$. We apply Lemma 1 to obtain

 $E(G) = E(B^{(2)}) = 2E(B)$ and $E(G) = E(C^{(2)}) = 2E(C)$.

Consequently, E(B) = E(C).

Let $G_1^{(2)}$ be the graph obtained from two copies of G by identifying the vertices in V_1 . In this case, we label the vertices in V_1 by $1, 2, \ldots, n_1$. Similarly, let $G_2^{(2)}$ be the graph obtained from two copies of G by identifying the vertices in V_2 . In this last case, we label the vertices in V_2 by $1, 2, \ldots, n_2$.

Example 1. Let G be the bipartite graph in which V_1 has two vertices and V_2 has three vertices as we show below:

6

and $G_2^{(2)}$:

2

5

$$A\left(G_{1}^{(2)}\right) = \begin{bmatrix} 0 & B & B \\ B^{T} & 0 & 0 \\ B^{T} & 0 & 0 \end{bmatrix} \quad \text{and} \quad A\left(G_{1}^{(2)}\right) = \begin{bmatrix} 0 & C & C \\ C^{T} & 0 & 0 \\ C^{T} & 0 & 0 \end{bmatrix}$$

in which $C = B^{T}$. In the Example 1, $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Definition 1. Let $G_1^{(r)}$ be the graph obtained from r copies of G by identifying the vertices in $V_1 = \{1, 2, ..., n_1\}$ and let $G_2^{(r)}$ be the graph obtained from r copies of G by identifying the vertices in $V_2 = \{1, 2, ..., n_2\}$.

Observe that $G_1^{(r)}$ is a bipartite graph on $n_1 + rn_2$ vertices and $G_2^{(r)}$ is a bipartite graph on $n_2 + rn_1$ vertices.

As we illustrated in Example 1, there is a labelling for the vertices of $G_1^{(r)}$ such

that

$$A\left(G_{1}^{(r)}\right) = \begin{bmatrix} 0 & B & \cdots & B \\ B^{T} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B^{T} & 0 & \cdots & 0 \end{bmatrix}$$
(1)

and there is a labelling for the vertices of $G_2^{(r)}$ such that

$$A\left(G_2^{(r)}\right) = \begin{bmatrix} 0 & C & \cdots & C\\ C^T & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ C^T & 0 & \cdots & 0 \end{bmatrix}$$
(2)

with

$$C = B^T.$$
 (3)

Theorem 1. Let G be a bipartite graph. Then

$$E\left(G_1^{(r)}\right) = E\left(G_2^{(r)}\right) = \sqrt{r} E\left(G\right) \; .$$

Proof. From (1) and (2)

$$A(G_1^{(r)}) = B^{(r+1)}$$
 and $A(G_2^{(r)}) = C^{(r+1)}$.

We apply Lemma 1 and Lemma 2 to obtain

$$E\left(A\left(G_{1}^{(r)}\right)\right) = E\left(B^{(r+1)}\right) = 2\sqrt{r} E(B) = \sqrt{r} E(G)$$

and

$$E\left(A\left(G_2^{(r)}\right)\right) = E\left(C^{(r+1)}\right) = 2\sqrt{r} E(C) = \sqrt{r} E(G) .$$

The proof is complete.

We have constructed two graphs $G_1^{(r)}$ and $G_2^{(r)}$ with the same energy $\sqrt{rE}(G)$ from a given bipartite graph G. Clearly, if $n_1 \neq n_2$ then $G_1^{(r)}$ and $G_2^{(r)}$ are graphs of different orders.

Corollary 1. If $n_1 = n_2$, then the graphs $G_1^{(r)}$ and $G_2^{(r)}$ are cospectral.

Proof. Since $n_1 = n_2$, $A\left(G_1^{(r)}\right)$ and $A\left(G_2^{(r)}\right)$ are matrices of the same order. From (3), $C = B^T$. We have

$$\begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix} A \begin{pmatrix} G_2^{(r)} \end{pmatrix} \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & C & \cdots & C \\ C^T & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C^T & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & C^T & \cdots & C^T \\ C & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C^T & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & B & \cdots & B \\ B^T & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B^T & 0 & \cdots & 0 \end{bmatrix} = A \begin{pmatrix} G_1^{(r)} \end{pmatrix}.$$

Therefore the adjacency matrices of the graphs $G_1^{(r)}$ and $G_2^{(r)}$ are unitarily similar. Thus the result follows.

Example 2. Let G be the bipartite graph:

Observe that V_1 and V_2 have both 3 vertices. We have $G_1^{(2)}\colon$

and $G_2^{(2)}$:

From Corollary 1, the graphs $G_1^{(2)}$ and $G_2^{(2)}$ are cospectral. Observe that they are nonisomorphic. In fact, in $G_1^{(2)}$ the largest vertex degree is 6 whereas in $G_2^{(2)}$ the largest vertex degree is 4.

This example illustrates the following immediate result.

Corollary 2. If $n_1 = n_2$ and if the largest vertex degrees in V_1 and V_2 are different then $G_1^{(r)}$ and $G_2^{(r)}$ are nonisomorphic cospectral graphs.

Acknowledgement. This work was supported by Project Fondecyt 1070537, Project Mecesup UCN0202, Chile.

References

- V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472–1475.
- [2] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), *Algebraic Combinatorics and Applications*, Springer-Verlag, Berlin, 2001, pp. 196–211.
- [3] I. Gutman, O. E. Polansky, Mathatical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- [4] F. Zhang, Matrix Theory, Springer–Verlag, Berlin, 1999.