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Abstract

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of
its adjacency matrix. If G is a bipartite graph and r is any positive integer, we construct
graphs with energy

√
r E(G) .

1. INTRODUCTION

Let M be an n×n complex matrix. Here, as usual, λ1(M), λ2(M), . . . , λn(M) are

the eigenvalues of M . If α1, α2, . . . , αn are nonnegative numbers then
∑

αj denotes

the sum over the all positive αj.

Let B be an m × n complex matrix. Let q = min {m,n} . Let

σ1 (B) ≥ σ2 (B) ≥ · · · ≥ σq (B)

be the singular values of B. It is well known that if m ≤ n then, for j = 1, 2, . . . , m,

σj (B) are the square roots of the eigenvalues of BB∗ and if m > n then, for j =

1, 2, . . . , n, σj (B) are the square roots of the eigenvalues of B∗B.

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 62 (2009) 465-472  

                          
                                          ISSN 0340 - 6253  

 



Nikiforov [1] defines the energy of B, denoted by E(B) , as

E (B) =
∑

σj (B) .

Since the positive semidefinite matrices BB∗ and B∗B have the same positive eigen-

values

E (B) =
∑√

λj (BB∗) =
∑√

λj (B∗B) .

Let G be a simple graph on n vertices. Let A (G) be the adjacency matrix of G.

The eigenvalues of A (G) are called the eigenvalues of G. The energy E (G) of G was

first introduced by Gutman in 1978 as

E (G) =

n∑
j=1

|λj (A (G))| .

The energy of a graph is intensively studied in chemistry and it is used to approximate

the total π-electron energy of a molecule [2, 3]. Since A (G) is a real symmetric matrix,

its singular values are the modulus of its eigenvalues. Then

E (G) = E (A (G)) .

Let 0 and I be the all zeros matrix and the identity matrix of the appropriate

sizes, respectively.

Let r ≥ 1 be an integer. Given an m × n matrix B, we denote by B(r+1) the

(r + 1) × (r + 1) block bordered matrix

B(r+1) =

⎡
⎢⎢⎢⎣

0 B · · · B
B∗ 0 · · · 0
...

...
. . .

...
B∗ 0 · · · 0

⎤
⎥⎥⎥⎦ .

Observe that B(r+1) is an Hermitian matrix of order (m + rn) in which there are r

copies de B.

Lemma 1.

E
(
B(r+1)

)
= 2

√
rE (B) .
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Proof. The singular values of B(r+1) are the square roots of the eigenvalues of the

matrix

B(r+1)B(r+1) =

⎡
⎢⎢⎢⎣

rBB∗ 0 · · · 0
0 B∗B · · · B∗B
...

...
. . .

...
0 B∗B · · · B∗B

⎤
⎥⎥⎥⎦ .

At this point, we recall that the Kronecker product [4] of two matrices A = (ai,j) and

B = (bi,j) of sizes m × m and n × n, respectively, is defined to be the (mn) × (mn)

matrix A ⊗ B = (ai,jB) . It is known that the eigenvalues of A ⊗ B are λi (A) λj (B)

with 1 ≤ i ≤ m and 1 ≤ j ≤ n. We have⎡
⎢⎣

B∗B · · · B∗B
...

. . .
...

B∗B · · · B∗B

⎤
⎥⎦ = (B∗B) ⊗

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ .

The eigenvalues of all ones matrix of order r × r are the simple eigenvalue r and

0 with multiplicity (r − 1) . Then the positive eigenvalues of B(r+1)B(r+1) are the

positive eigenvalues of rBB∗ and the positive eigenvalues of rB∗B. In addition, BB∗

and B∗B have the same positive eigenvalues. Therefore

E
(
B(r+1)

)
=
∑

σj

(
B(r+1)

)
=
∑

2
√

rλj (BB∗) = 2
√

r E(B) .

This completes the proof. �

2. CONSTRUCTING GRAPHS WITH ENERGY
√

rE(G)

From now on, G is a given bipartite graph on n vertices. Then the vertex set of

G can be divided into two disjoint sets V1 with n1 vertices and V2 with n2 vertices,

such that every edge of G connects a vertex in V1 to one in V2 . Clearly n = n1 + n2 .

Labelling the vertices in V1 by 1, 2, . . . , n1 and the vertices in V2 by n1 + 1, n1 +

2, . . . , n1 + n2 , the adjacency matrix of G becomes of the form

A (G) =

[
0 B

BT 0

]
= B(2)

where B is an n1 × n2 matrix. Similarly, labelling the vertices in V2 by 1, 2, . . . , n2

and the vertices in V1 by n2 + 1, n2 + 2, . . . , n2 + n1 , the adjacency matrix of G is of

the form

A (G) =

[
0 C

CT 0

]
= C(2)
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where C is an n2 × n1 matrix.

Lemma 2. If G is a bipartite graph then

E(G) = 2 E(B) = 2 E(C) and E(B) = E(C) .

Proof. We know that E (G) = E (A (G)) = E
(
B(2)
)

= E
(
C(2)
)
. We apply Lemma

1 to obtain

E (G) = E
(
B(2)
)

= 2E (B) and E (G) = E
(
C(2)
)

= 2E (C) .

Consequently, E (B) = E (C) . �

Let G
(2)
1 be the graph obtained from two copies of G by identifying the vertices in

V1 . In this case, we label the vertices in V1 by 1, 2, . . . , n1 . Similarly, let G
(2)
2 be the

graph obtained from two copies of G by identifying the vertices in V2 . In this last

case, we label the vertices in V2 by 1, 2, . . . , n2 .

Example 1. Let G be the bipartite graph in which V1 has two vertices and V2 has

three vertices as we show below:
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Then G
(2)
1 :

and G
(2)
2 :

Observe that G
(2)
1 is a bipartite graph on n1 + 2n2 vertices and G

(2)
2 is a bipartite

graph on n2 + 2n1 vertices. By labelling the vertices as in Example 1, we have

A
(
G

(2)
1

)
=

⎡
⎣ 0 B B

BT 0 0
BT 0 0

⎤
⎦ and A

(
G

(2)
1

)
=

⎡
⎣ 0 C C

CT 0 0
CT 0 0

⎤
⎦

in which C = BT . In the Example 1, B =

[
1 1 0
1 1 1

]
and C =

⎡
⎣ 1 1

1 1
0 1

⎤
⎦ .

Definition 1. Let G
(r)
1 be the graph obtained from r copies of G by identifying the

vertices in V1 = {1, 2, . . . , n1} and let G
(r)
2 be the graph obtained from r copies of G

by identifying the vertices in V2 = {1, 2, . . . , n2} .

Observe that G
(r)
1 is a bipartite graph on n1 + rn2 vertices and G

(r)
2 is a bipartite

graph on n2 + rn1 vertices.

As we illustrated in Example 1, there is a labelling for the vertices of G
(r)
1 such
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that

A
(
G

(r)
1

)
=

⎡
⎢⎢⎢⎣

0 B · · · B
BT 0 · · · 0
...

...
. . .

...
BT 0 · · · 0

⎤
⎥⎥⎥⎦ (1)

and there is a labelling for the vertices of G
(r)
2 such that

A
(
G

(r)
2

)
=

⎡
⎢⎢⎢⎣

0 C · · · C
CT 0 · · · 0
...

...
. . .

...
CT 0 · · · 0

⎤
⎥⎥⎥⎦ (2)

with

C = BT . (3)

Theorem 1. Let G be a bipartite graph. Then

E
(
G

(r)
1

)
= E
(
G

(r)
2

)
=

√
r E (G) .

Proof. From (1) and (2)

A
(
G

(r)
1

)
= B(r+1) and A

(
G

(r)
2

)
= C(r+1) .

We apply Lemma 1 and Lemma 2 to obtain

E
(
A
(
G

(r)
1

))
= E
(
B(r+1)

)
= 2

√
r E(B) =

√
rE (G)

and

E
(
A
(
G

(r)
2

))
= E
(
C(r+1)

)
= 2

√
r E(C) =

√
r E(G) .

The proof is complete. �

We have constructed two graphs G
(r)
1 and G

(r)
2 with the same energy

√
rE (G)

from a given bipartite graph G. Clearly, if n1 �= n2 then G
(r)
1 and G

(r)
2 are graphs of

different orders.

Corollary 1. If n1 = n2 , then the graphs G
(r)
1 and G

(r)
2 are cospectral.
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Proof. Since n1 = n2, A
(
G

(r)
1

)
and A

(
G

(r)
2

)
are matrices of the same order. From

(3) , C = BT . We have

⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦A
(
G

(r)
2

)
⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 C · · · C
CT 0 · · · 0
...

...
. . .

...
CT 0 · · · 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 CT · · · CT

C 0 · · · 0
...

...
. . .

...
C 0 · · · 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 B · · · B
BT 0 · · · 0
...

...
. . .

...
BT 0 · · · 0

⎤
⎥⎥⎥⎦ = A

(
G

(r)
1

)
.

Therefore the adjacency matrices of the graphs G
(r)
1 and G

(r)
2 are unitarily similar.

Thus the result follows. �

Example 2. Let G be the bipartite graph:

Observe that V1 and V2 have both 3 vertices. We have G
(2)
1 :

- 471 -



and G
(2)
2 :

From Corollary 1, the graphs G
(2)
1 and G

(2)
2 are cospectral. Observe that they

are nonisomorphic. In fact, in G
(2)
1 the largest vertex degree is 6 whereas in G

(2)
2 the

largest vertex degree is 4.

This example illustrates the following immediate result.

Corollary 2. If n1 = n2 and if the largest vertex degrees in V1 and V2 are different

then G
(r)
1 and G

(r)
2 are nonisomorhic cospectral graphs.
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