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Abstract

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of
its adjacency matrix. If G is a bipartite graph and r is any positive integer, we construct
graphs with energy /7 E(G).

1. INTRODUCTION

Let M be an n x n complex matrix. Here, as usual, \j (M), \o(M), ..., N\, (M) are
the eigenvalues of M. If oy, s, ..., a, are nonnegative numbers then Y a; denotes
the sum over the all positive ;.

Let B be an m x n complex matrix. Let ¢ = min{m,n}. Let

be the singular values of B. It is well known that if m < n then, for j =1,2,...,m,
o; (B) are the square roots of the eigenvalues of BB* and if m > n then, for j =

1,2,...,n, 0; (B) are the square roots of the cigenvalues of B*B.
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Nikiforov [1] defines the energy of B, denoted by E(B), as

E(B)=Y o0;(B) .

Since the positive semidefinite matrices BB* and B*B have the same positive eigen-

E(B)=Y \/Aj(BB*)=> /X (B*B) .

Let G be a simple graph on n vertices. Let A (G) be the adjacency matrix of G.

values

The eigenvalues of A (G) are called the eigenvalues of G. The energy E (G) of G was
first introduced by Gutman in 1978 as

E(G) = ZW (A@)l -

The energy of a graph is intensively studied in chemistry and it is used to approximate
the total 7-electron energy of a molecule [2, 3]. Since A (G) is a real symmetric matrix,

its singular values are the modulus of its eigenvalues. Then

Let 0 and I be the all zeros matrix and the identity matrix of the appropriate
sizes, respectively.
Let > 1 be an integer. Given an m x n matrix B, we denote by BU+D the

(r+1) x (r+ 1) block bordered matrix

0 B B
B(r+1) _ '* 0 0
B* 0 0

Observe that BU+Y is an Hermitian matrix of order (m + rn) in which there are r

copies de B.

Lemma 1.

E(B"™) =2yrE(B) .
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Proof. The singular values of BU+Y are the square roots of the eigenvalues of the

matrix
rBB* 0 0
B+ gy _ 0 B*.“B B*TB
0 B*B --- B*B

At this point, we recall that the Kronecker product [4] of two matrices A = (a;;) and
B = (b;;) of sizes m x m and n x n, respectively, is defined to be the (mn) x (mn)
matrix A® B = (a;;B) . It is known that the eigenvalues of A ® B are \; (A) \; (B)
with 1 <7 <m and 1 < 7 < n. We have
B*B --- B*B 1 .- 1
: U =(B'B)® :
B*B --- B*B 1 -1
The eigenvalues of all ones matrix of order r» X r are the simple eigenvalue r and
0 with multiplicity (r —1). Then the positive eigenvalues of BU+) B0+ are the
positive eigenvalues of rBB* and the positive eigenvalues of rB*B. In addition, BB*

and B*B have the same positive eigenvalues. Therefore

E(BU) =3 "0; (B"V) =Y "2\/r\; (BB*) = 2V E(B) .

This completes the proof. O

2. CONSTRUCTING GRAPHS WITH ENERGY rE(G)

From now on, G is a given bipartite graph on n vertices. Then the vertex set of
G can be divided into two disjoint sets Vi with n; vertices and V5 with ns vertices,
such that every edge of G connects a vertex in Vj to one in V5. Clearly n = nq + ns .

Labelling the vertices in Vi by 1,2,...,ny; and the vertices in V5 by ny + 1,ny +

2,...,n1 + ng, the adjacency matrix of G becomes of the form
0 B
= . = B®@
A@=| g o ]=n
where B is an n; X ng matrix. Similarly, labelling the vertices in Vo by 1,2,... ny
and the vertices in Vj by ny 4+ 1,15 + 2, ..., ny + ny, the adjacency matrix of G is of
the form

a@=| & §]-c®
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where C' is an ny X n; matrix.

Lemma 2. If GG is a bipartite graph then

E(G)=2E(B)=2E(C)  and  E(B)=E(C).

Proof. We know that £ (G) = E (A(G)) = E (B®) = E(C®) . We apply Lemma
1 to obtain

Consequently, E(B) = E(C). O

Let ng) be the graph obtained from two copies of G by identifying the vertices in
Vi . In this case, we label the vertices in V; by 1,2,... n;. Similarly, let Gg) be the
graph obtained from two copies of G by identifying the vertices in V5. In this last

case, we label the vertices in V5 by 1,2,...,n5.

Example 1. Let G be the bipartite graph in which V; has two vertices and V5, has

three vertices as we show below:
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Then G§2) :

6 3
1
7 4
2
8 5
and G§2> :
1
6 4
7 5

Observe that Gf) is a bipartite graph on n; + 2ny vertices and G(QZ) is a bipartite

graph on ny + 2n; vertices. By labelling the vertices as in Example 1, we have

0 B B 0o C C

A(Gﬁ”): BT 0 0 and A(GP): T 0 0

BT 0 0 cr 0 o0
110 b
in which C' = BT. In the Example 1, B = andC= |1 1
H .

Definition 1. Let G(1T> be the graph obtained from r copies of G by identifying the
vertices in V7 = {1,2,...,n1} and let Ggr) be the graph obtained from r copies of G
by identifying the vertices in Vo = {1,2,...,ns}.

Observe that GY) is a bipartite graph on n; + rny vertices and Ggr) is a bipartite
graph on ny + rny vertices.

As we illustrated in Example 1, there is a labelling for the vertices of G@ such
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that _ _
0 B - B
. BT 0 0
A(GQ): L (1)
BT 0 - 0

0 C ... C
NEYE C:T 0 0 )
_C.'T 0 0 |
with
C =pB". (3)

Theorem 1. Let G be a bipartite graph. Then
E (Gﬁ”) -F <G§T>> = VrE(G) .

Proof. From (1) and (2)

A (Gﬁ”) =BC)  and A (Gg>) = oty
We apply Lemma 1 and Lemma 2 to obtain

E (A (GY))) = E(B"Y) = 2yr E(B) = iE (G)
and

(MY) — (r+1)\ _ _

E <A <G2 )) = E(C*Y) = 2yr B(C) = 7 E(G) .

The proof is complete. O

We have constructed two graphs GV and G with the same energy /7E (G)
from a given bipartite graph G. Clearly, if ny # ny then GY) and Ggr) are graphs of

different orders.

Corollary 1. If n; = ny, then the graphs GY) and G;” are cospectral.
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Proof. Since ny =ny, A (GE”) and A (Gg)) are matrices of the same order. From
(3), C = BT. We have

0 - 0 I7 0 -~ 0
0 I 0 I :
|1 0 0 | I 0 0
[0 0 I 0o C C 0 0 I
ct oo - 0 0 0
0 S 0 I :
L7 0 0] LC" o0 0 I 0 0
[0 o7 cr 0 B B
c 0 0 BT 0 0 )
= : : : : . : :A<G1>
| C 0 0 BT 0 -+ 0

Therefore the adjacency matrices of the graphs G(lr) and G(QT) are unitarily similar.

Thus the result follows. |

Example 2. Let G be the bipartite graph:

Observe that V; and V5, have both 3 vertices. We have G(IQ) :
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and Géz) :

From Corollary 1, the graphs G?) and G(QQ) are cospectral. Observe that they
are nonisomorphic. In fact, in GP the largest vertex degree is 6 whereas in GéQ) the
largest vertex degree is 4.

This example illustrates the following immediate result.

Corollary 2. If ny = ny and if the largest vertex degrees in V; and V5, are different

then GET) and va) are nonisomorhic cospectral graphs.
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