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Abstract. Usually, a higher value for the number of Kekulé valence structures
(K) is associated with a higher stability of the molecule. But there are also
exceptions. The thin-tubed polyhex tori are more strained and yet have the largest
K value. Numerical calculations of strain energy and K for families of polyhex
tori are given. The trend of the number of Kekulé valence structures of some

twisted families of polyhex tori (T(6,3)VH{[c,n]) are also presented.

POLYHEX TORI

Among the carbon allotropes, the torus is the only closed (orientable) surface which can
be tiled entirely with hexagons.

There are three methods for generating a polyhex torus.' The graphite zone-folding
procedure”” is the most often used to cover a torus by hexagons. The method defines an equivalent planar
parallelogram on the graphite sheet and identifies a pair of opposite sides to form a tube. Finally the two

ends of the tube are glued together in order to form a torus. The resulting polyhex torus is completely

3,4,6,7 358

defined by four independent integer parameters, reducible to three parameters.

A second procedure uses the so-called topological coordinates, extracted from the adjacency

e o 9-12
matrix eigenvectors.
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The third method starts from the tetragonal (4,4) net embedded on the toroidal surface.!*

In this way, a square torus is achieved. The squares are then changed to hexagons by using
cutting operations.'>"”

A cutting operation consists of deleting appropriate edges in a square lattice in order to
produce some larger polygonal faces. To obtain the (6,3) lattice, each second edge is cut off. Two
embedding isomers could result at each given [c,n] pair, as the cut edges lye either horizontally or
vertically (i.e., perpendicularly and parallel to the z-axis of the torus). The two isomers are called
H and V, according to the edge-cut location."!> By deleting each second horizontal edge and
alternating edges and cuts in each second row it results in an H-isomer, while deleting each
second vertical edge and alternating edges and cuts in each second column it results in a V-
isomer.

Naming polyhex tori is given in Diudea’s terms.'> The name of such a torus is a string of
characters specifying the tiling and dimensions of the net, T(6,3)[c,n] with the (integer)
parameters in the square brackets being the number of atoms in the tube cross-section and the
number of cross sections around the large hollow of the torus, respectively.

Twisted tori can be generated by cutting procedures in the following two ways:'*'>'®

(1) twisting the horizontal connections (Figure 1 (c) and (e)) and

(2) twisting the vertical (offset) connections (Figure 1 (d) and (f)).

We have two classes of simple tori and four classes of twisted tori by this constructive
approach:

(a) H-cut: T(6,3)H[c,n];

(b) V-cut: T(6,3)V[e,n];

(c) H-twist, H-cut: T(6,3)HH1[c,n];

(d) V-twist, H-cut: T(6,3)VH[c,n];

(e) H-twist, V-cut: T(6,3)HV1[c,n];

(f) V-twist, V-cut: T(6,3)VVi[c,n].
where ¢ and » are as above and 7 is the number of twisted rows (Figure 1).

By construction, the maximum possible 7-value of H-twisted polyhex tori is 7, =c. In

the case of V-twisted polyhex tori, # can take values up to n (by construction). The maximum

value of 7 so that distinct topological objects are obtained, are given by the Rules of Valencia:'
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() The maximum value of 7 to provide distinct topological objects, in a family of H-
twisted polyhex tori, equals n/2.
(ii) The maximum value of 7 to provide distinct topological objects, in a family of V-

twisted polyhex tori, equals ¢/2.

(a) T(6,3)H[8,24] (b) T(6,3)V[8,24] (offset)

AN
L0,

=4

Figure 1: The six classes of polyhex tori (non-optimized geometry).
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KEKULE STRUCTURES IN FAMILIES OF V-twisted, H-cut POLYHEX TORI

A Kekulé structure is a valence structure covered by the maximal number of disjoint
(double) edges so that all vertices are incident to exactly one of the disjoint edges.'**

A Kekulé structure coincides with a perfect matching and a 1-factor in the Graph Theory.
The number of Kekulé valence structures, K, for a molecule is the number of 1-factors of the
associate molecular graph.

To count the number of geometric Kekulé valence structures for V-twisted-H-cut-
polyhex tori T(6,3)VH{[c,n], c<{6,8}, we used the analytical formulas obtained with transfer

matrix method:?!
a) T(6,3)VH1[6,n], 1 €{0,2}
THI6,n]: K, (x)=3+2""+9", n=2x 2)

TVH2[6,n]: K, ,(x,y)=2"%"+9", n=2x 3)
b) T(6,3)VH/[8,1], 1 €{0,2,4}
TH[8,n]: K, (x) =14+3x 2" +2"5 4167 + (6—44/2)" + (6 +44/2)", n=2x @)
TVH2[8,n]: K, ,(x,y) =143x2" £2"% 416" + (6-42)" +(6+442)" =27, n=2x  (5)
TVH4[n): K, ,(x,0)=143x2" 425 416" 4 (6-4+2)" +(6+4+2)" 2", n=2x  (6)
Because of the limits imposed by the Jordan matrix decomposition, for tori
T(6,3)VH{[c,n] of ¢>10 we were not able to obtain an analytical formula for the number of

geometric Kekulé valence structures, K. For counting the values of K in the case of V-twisted, H-

cut polyhex tori T(6,3)VH/[c,n], ¢ € {10,12,14,16,18,20} , we used the following formulas:*'

a) T(6,3)VH{[c,n]
Ky, (x,9)=Tr(AT” x AU); t=2y;n=2x @)
b) T(6,3)H[c,n]
K, (x)=Tr(4U"); n=2x ®)

where 7r(4) denotes the trace of the matrix A4, and AT and AU denote the transfer matrices of the
twisted and untwisted units of T(6,3)VH¢[c,n].
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The order of the matrices A7 and AU grows exponentially with the number of atoms in

the tube cross-section (2% ). By this reason, we calculated the values of K only for families of
polyhex tori up to 20 atoms in the tube cross-section.

More information about formulas (2)-(8), the reader can find in reference 21.

Figures 2-10 show the trend of K in some families of twisted tori T(6,3)VH[c,n],
c<{6,8,10,12,14,16,18,20} .

T(6,3)VH1[6,n]

Number of Kekulé
structures

Twisting step, t

Figure 2: Trend of Kekulé valence structures number in T(6,3)VH?[6,1], n=6,8,10,... family

T(6,3)VH[8,n]

Number of Kekulé
structures

0 2 4
Twisting step, t

Figure 3: Trend of Kekulé valence structures number in T(6,3)VH/[8,1], n=8,10,12, ... family
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T(6,3)VH?[10,n]
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Figure 4: Trend of Kekulé valence structures number in T(6,3)VH¢[10,n], n=8,10,...,100 family
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Figure 5: Trend of Kekulé valence structures number in T(6,3)VH/[12,n], n=6.,8,...,60 family

(6,3)VH?[14,n]
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Figure 6: Trend of Kekulé valence structures number in T(6,3)VH[14,n], n=8,10,...,44 family
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T(6,3)VH[16,n]
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Figure 7: Trend of Kekulé valence structures number for (6,3)VH?[16,n], n=8,10,...,50 family of tori
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Figure 8: Trend of Kekulé valence structures number in T(6,3)VH¢[18,n], n=8,10,...,36 family
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Figure 9: Trend of Kekulé valence structures number in T(6,3)VH[18,1], n=38,40,...,56 family
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T(6,3)VH?[20,n]

Number of Kekulé
structures

0 2 4 6 8 10
Twisting step, t

Figure 10: Trend of Kekulé valence structures number for (6,3)VH?[20,1], n=10,12,...,44 family

From the graphics (Figures 3 and 4) it appears that the number K has some degeneracy,
i.e., there are non-isomorphic molecular structures with the same K value. Thus, the polyhex tori
T(6,3)H[c,n] with 8 atoms in the tub cross-section, have the same number of Kekulé structures
when 2, respectively 4 layer connections are twisted (i.e., =2 and =4, respectively). The same
thing happens in the case of polyhex tori T(6,3)H[c,n] with 10 atoms in the tub cross-section.

In all the cases, the maximum value for X is reached for the untwisted torus (twisting step
=0). In the case of polyhex tori with 6,8,10,12,14,16 atoms in the tube cross-section, the
minimum value for K is obtained when the twisting is maximum (twisting step
t=c/2if c/2is evenor c/2-1if ¢/2is odd). For the family of tori T(6,3)H[18,1], with
c=18, the above finding is true up to #=36; n> 36, the minimum K-value is obtained when = 6. In
the case of T(6,3)H[20,n] family, with ¢=20, the minimum value of K is obtained at the twisting
step 7= 8. Finally, local minima/maxima are recorded for /=2 and =4, respectively.

The tori from our study have been generated by TORUS 3.0 software package'®. We used
a Molecular Mechanics procedure (MM+) to optimize the tori in Table 1. The strain energy was
estimated in terms of POAV1 theory. 22

Usually, a molecule with a higher K value is more aromatic and more stable.'”* There
are, however, 20 Cg isomers, less stable (non-spherical, non-IPR, strained isomers), with K >
12500, which is the K value of Buckminsterfullerene C60.26

In the case of non-planar molecules, the strain in the o-frame is an important energetic

factor which may revert the expected ordering. Thus, in toroidal polyhexes T(6,3)H[c,n], as the
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tube cross-section of tori increases, the structure becomes less strained and meanwhile the K-
value decreases (see Tables 1 and 2). There are exceptions, amongst the studied cases:
T(6,3)H[10,n,] are more strained than T(6,3)H[12,1,], (10x n;=12% n), while smaller K-values

are recorded.

Table 1. Strain energy/atom (kcal/mol) and K-value in polyhex tori; N <640

Polyhex N Strain
Torus No. Atoms | Energy Kekulé Valence Structures Number

TH]c,n]

[6,40] 240 20.8037 12157667658080184356
[8,30] 240 11.0003 1162892088422301697
[10,24] 240 9.3648 239984311467844752
[12,20] 240 7.9419 295417896035533968
[8,40] 320 10.8858 1211071807802910030430209
[10,32] 320 8.7760 125182553077333588651137
[16,20] 320 6.1354 74724110026538983364609
[6,60] 360 20.9957 42391158277522046523508127156
[10,36] 360 8.4753 91145194531044333281676112
[8,50] 400 10.831 1268112485547288541280650395649
[10,40] 400 8.2088 66666933026281285404161681217
[6,80] 480 21.0667 147808829414348341167722439464732709956
[8,60] 480 10.8000 1329327408283709635421659976559493121
[10,48] 480 7.76110 36080406830883453872925278999557392
[12,40] 480 6.5393 83031252203688279528426787942996368
[16,30] 480 5.5626 15090599526434375752916536601794561
[20,24] 480 4.7634 13664460468885647476885222505347328
[6,100] 600 21.1039 | 515377520732011333571762330222080075695513932756
[10,60] 600 7.2630 14681270076404482401003780113505534329674192
[12,50] 600 6.0358 44554637804150176790714877135727741668853044
[20,30] 600 4.5314 4131354937436509571481868391492823407912784
[10,64] 640 7.1248 | 10925455416997565371127420402247070494617125377
[16,40] 640 5.1197 314392796844161699956686674637152553660923904 1
[20,32] 640 4.4600 2783506221259044138095697187375654905511811073
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CONCLUSIONS

In this article, the trend of the number of Kekulé valence structures of some families of

twisted polyhex tori ((6,3) VH¢[c,n]), c € {6,8,10,12,14,16,1 8,20} is presented for the first time;

regularities between the maximum/minimum value of K and the twisting value were evidenced.

Numerical calculations of the Kekulé valence structures number and strain energy in

some families of polyhex tori T((6,3)H[c,n]) were reported. Our results support the previous

finding that the polyhex tori with thin-tube show the largest K-values although they are more

strained. We also found exceptions: T(6,3)H[10,7;] are more strained than T(6,3)H[12,1,], (10x

m=12x ny), while smaller K-values are recorded.
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