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Counting of non-equidistant edges in a graph can be achieved in the formalism of PI-type 
polynomials. At least three ways of evaluating the equidistance of edges are discussed 
and the corresponding conditions established. Two versions of polynomials counting 
non-equidistant edges (PI-type polynomials) and two polynomials counting equidistant 
edges (Theta and Omega polynomials) are discussed and analytical formulas for an 
infinite series of tubulenes/fullerenes, derived from the dodecahedron C20, are developed. 

 

1. Introduction 
Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of 

carbon atoms. Fullerenes Cn can be drawn for n = 20 and for all even n ≥ 24. They 

have n carbon atoms, 3n/2 bonds, 12 pentagonal and n/2-10 hexagonal faces. The 

most important member of the family of fullerenes is C60.1,2 

Let G = (V,E) be a connected bipartite graph with the vertex set V = V(G) and 

the edge set E = E(G), without loops and multiple edges. In 1988, Hosoya3 introduced 

what he termed the Wiener (and latter called Hosoya) polynomial of a graph as 

1
( , ) ( , ) k

k l
H G x m G k x

< <
= ⋅∑ , where m(G,k) is the number of pairs of vertices in G 

that are distance k apart, and l is the maximum value of k or the diameter of G. Sagan, 

Yeh and Zhang4 produced a treatment apparently independent of Hosoya's. Perhaps 

the most interesting property of H(G,x) is the first derivative, evaluated at x = 1, 

which equals the Wiener index: ( ,1) ( )H G W G′ = . Ashrafi, Manoochehrian and 
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Yousefi-Azari5,6 continued the line of the mentioned paper of Sagan et al. to introduce 

the notion of PI polynomial of a molecular graph G as: 
  

( , )
( , ) ( )

( , ) N u v
u v e E G

PI G x x
= ∈

=∑       (1) 

where ( , ) ( | ) ( | )eu evN u v n e G n e G= + and ( | )eun e G is the number of edges lying closer 

to u than v (i.e., the non-equidistant edges) while the number of edges equidistant to 

the edge ( , ) ( )e u v E G= ∈  is given by: ( ) ( ) ( , )N e E G N u v= −

( )2
( ) ( ,1) ( )

e
PI G PI G E N e′= = −∑       (2) 

which is just the formula proposed by John et al.8 to calculate the PI index. 

Two edges ( , )e u v=  and ( , )f x y= of a graph G are called equidistant if the 

two ends of one edge show the same distance to the other edge. However, the distance 

between edges can be defined in several modes, as presented below. 

(a) The distance from a vertex z to an edge ( , )e u v=  is taken as the minimum 

distance between the given point and the two endpoints of that edge:5 
 

( , ) min{ ( , ), ( , )}d z e d z u d z v=        (3) 

Then, the edge ( , )e u v=  is equidistant to ( , )f x y=  if: 

( , ) ( , )d x e d y e=         (4) 

Or the edges ( , )e u v=  and ( , )f x y=  are equidistant if: 

( , ) ( , ) and ( , ) ( , )d x e d y e d u f d v f= =       (4`) 

(b) A second definition for equidistant edges joins the conditions for 

(topologically) parallel and perpendicular edges:9 
 

( , ) ( , ) 1 ( , ) 1 ( , ), for edgesd v x d v y d u x d u y= + = + = �    (5) 

( , ) ( , ) ( , ) ( , ), for edgesd u x d u y d v x d v y= = = ⊥     (6) 

Clearly, the two polynomials ( , )PI G x  (counted cf. version (a) - patterned by 

Ashrafi’s group) and ( , )G xΠ  (provided by version (b) - patterned by Diudea’s group) 

are different and their first derivatives in x=1 will give different PI-type indices. 
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Keeping in mind relation (2) and accounting that condition (4) is less strong than 

conditions (5) and (6) it is easily seen that:  
 

 ( ,1) ( ,1)PI G G′ ′≤ Π         (7) 

The above results are exemplified for the graph G1 (Figure 1) in Table 1 (for each 

edge, the corresponding non-equidistant edges are listed). 

 

  

G1 

Figure 1. Cuneane graph and its numbering 

 
Table 1. Counting polynomials for the structure G1 

 Version c Polynomial/index 

1 ( , )PI G x : non-equidistant edges (Ashrafi)  (comments) 

 1-2 7-8 5-6 3-4 2-7 2-3 1-7 1-6   

1-6 7-8 5-8 5-6 4-5 3-6 3-4 2-7 1-7 1-2  

1-7 7-8 5-8 5-6 4-8 3-6 2-7 2-3 1-2 1-6  

2-3 7-8 5-6 4-8 4-5 3-6 3-4 2-7 1-2 1-7  

2-7 7-8 5-8 4-8 3-6 3-4 1-2 1-6 1-7 2-3  

3-4 7-8 5-8 4-8 4-5 3-6 1-2 1-6 2-3 2-7  

3-6 5-8 5-6 4-8 1-6 1-7 2-3 2-7 3-4  

4-5 7-8 5-8 5-6 4-8 1-6 2-3 3-4   

4-8 7-8 5-8 5-6 1-7 2-3 2-7 3-4 3-6 4-5  

5-6 7-8 5-8 1-2 1-6 1-7 2-3 3-6 4-5 4-8  

5-8 7-8 1-6 1-7 2-7 3-4 3-6 4-5 4-8 5-6  

7-8 1-2 1-6 1-7 2-3 2-7 3-4 4-5 4-8 5-6 5-8  
 

       7 7 

9 

9 

9 

9 

9 

8 

        7 7 

9 

9 

9 

10  

7 8 9 10( , ) 2 8PI G x x x x x= + + +  

PI’(G,1) =104 

 

 

Edge 2-7 is equidistant to  

                5-6 and 4-5, cf. (4) 

 e.g., 

      [(6,5),2] [(6,5)7] 2
[5,(2,7)] (6,(2,7)] 2

d d
d d

= =⎧
⎨ = =⎩
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2 ( , )G xΠ : non-equidistant edges (Diudea)   

 1-2 7-8 5-8 5-6 4-8 3-4 2-7 2-3 1-7 1-6   

1-6 7-8 5-8 5-6 4-8 4-5 3-6 3-4 2-7 1-7 1-2   
1-7 7-8 5-8 5-6 4-8 4-5 3-6 3-4 2-7 2-3 1-2 1-6  

2-3 7-8 5-8 5-6 4-8 4-5 3-6 3-4 2-7 1-2 1-7   
2-7 7-8 5-8 5-6 4-8 4-5 3-6 3-4 1-2 1-6 1-7 2-3  

3-4 7-8 5-8 4-8 4-5 3-6 1-2 1-6 1-7 2-3 2-7   

3-6 5-8 5-6 4-8 1-6 1-7 2-3 2-7 3-4   

4-5 7-8 5-8 5-6 4-8 1-6 1-7 2-3 2-7 3-4   
4-8 7-8 5-8 5-6 1-2 1-6 1-7 2-3 2-7 3-4 3-6 4-5  

5-6 7-8 5-8 1-2 1-6 1-7 2-3 2-7 3-6 4-5 4-8   
5-8 7-8 1-2 1-6 1-7 2-3 2-7 3-4 3-6 4-5 4-8 5-6  

7-8 1-2 1-6 1-7 2-3 2-7 3-4 4-5 4-8 5-6 5-8   
 

       9 9 

10 

11 

10 

11 

10 

8 

        9 9 

11 

10 

11 

10 
 

8 9 10 11( , ) 2 5 4G x x x x xΠ = + + +
( ,1) 120G′Π =  

 
 

Edge 2-7 is equidistant to no any edge 

cf. (5) and (6) 

 

 

3 ( , )G xΘ : equidistant edges   

 1-2 4-5 3-6  

1-6 2-3  

1-7  

2-3 1-6  

2-7  

3-4 5-6  

3-6 1-2 4-5 7-8  

4-5 1-2 3-6  

4-8  

5-6 3-4  

5-8  

7-8 3-6  

 

3 

2 

1 

2 

1 

2 

4 

3 

1 

2 

1 

2 

2 3 4( , ) 4 5 2G x x x x xΘ = + + +  

Θ′ =24 
 

Edge 2-7 is equidistant to no any edge 

cf. (5) and (6) 

Edge 3-6 is �  to (1-2) and (4-5) 

             and ⊥  to 7-8 

which, cf. (5) and (6), are equidistant 

 
Edge 7-8 is equidistant to 3-6 

4 ( , )G xΩ : strips   

 1-2 3-6 4-5 

1-6 2-3  

1-7  

2-7  

3-4 5-6  

4-8 

5-8  

7-8   

3 

2 

1 

1 

2 

1 

1 

1 

2 3( , ) 5 2G x x x xΩ = + +  

 CI=122 

 

 

 

- 908 -



2. Omega Polynomial 
Two edges e = (u,v) and f = (x,y) of G are called codistant (briefly: e co f ) if they 

obey the topologically parallel edges relation (5). 

For some edges of a connected graph G there are the following relations 

satisfied:8,10 

ecoe             (8) 

e co f f co e⇔              (9) 

hcoehcoffcoe ⇒&                 (10)  

though the relation (10) is not always valid.  

Let });({:)( ecofGEfeC ∈=  denote the set of edges in G, codistant to the 

edge )(GEe∈ . If relation co is an equivalence relation (i.e., all the elements of C(e) 

satisfy the relations  (8) to (10), then G is called a co-graph. Consequently, C(e) is 

called an orthogonal cut oc of G and E(G) is the union of disjoint orthogonal cuts: 

1 2( ) ... kE G C C C= ∪ ∪ ∪ and =∩CjCi Ø for kjiji ,..,2,1,, =≠ .  

Observe co is a Θ  relation, (Djokovi�-Winkler relation11-13) and G is a co-

graph if and only if it is a partial cube, as Klavžar correctly stated in a recent paper.14  

If any two consecutive edges of an edge-cut sequence are topologically 

parallel within the same face of the covering, such a sequence is called a quasi-

orthogonal cut qoc strip. This means the transitivity relation (10) of the co relation is 

not necessarily obeyed. Any oc strip is a qoc strip but the reverse is not always 

true.15,16  

Let m(G,c) be the number of qoc strips of length c (i.e., the number of cut-off 

edges) in the graph G; for the sake of simplicity, m(G,c) will hereafter be written as m.  

Three counting polynomials have been defined9 on the ground of qoc strips: 
 

∑ ⋅=Ω
c

cxmxG ),(            (11) 

∑ ⋅⋅=Θ
c

cxcmxG ),(            (12) 

( , ) e c
c

G x m c x −Π = ⋅ ⋅∑            (13) 

( , )G xΩ and ( , )G xΘ polynomials count equidistant edges in G while ( , )G xΠ , non-

equidistant edges (Table 1).  
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In a counting polynomial, the first derivative (in x=1) defines the type of 

property which is counted; for the three polynomials, they are: 
 

( ,1) ( )
c

G m c e E G′Ω = ⋅ = =∑                (14) 

2( ,1)
c

G m c′Θ = ⋅∑            (15) 

( ,1) ( )
c

G m c e c′Π = ⋅ ⋅ −∑                (16) 

Reformulating (16) taking into account (2) and (11) to (13), we can write: 
2 2 2( ,1) [ ( , )] ( , ){ }

c
G e m c G x G x′ ′ ′Π = − ⋅ = Ω −Θ∑        (17) 

Comparing (17) with (2) one can observe that ( )
e
N e∑ and 2

c
m c⋅∑  both 

evaluate equidistant edges in G.    

On the other hand, the Cluj-Ilmenau10 index, CI=CI(G), is calculable from 

Omega17 polynomial as: 
 

2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω                              (18) 

It is easily seen that, for a single qoc, one calculates the polynomial: ( , ) cG x xΩ =  

and 2( ) ( ( 1)) 0CI G c c c c= − + − = .   

 There exist graphs for which CI equals PI (or its ( ,1)G′Π  analogue). Applying 

definition (18), CI is calculated as: 

 

      2 2 2( ) ( 1) ( )( ) [ ]
c c c c

CI G m c m c m c c e m c PI G= ⋅ − ⋅ + ⋅ ⋅ − = − ⋅ =∑ ∑ ∑ ∑          (19) 

 

The two indices CI and PI will show identical values if the edge equidistance 

evaluation in the graph involves only the locally parallel edges, condition (5); this is 

obeyed in partial cubes. Next, PI will be equal to ( ,1)G′Π if only the relations (5) and 

(6) are involved. Planar polyhex graphs such as acenes An and phenacenes Phn (Table 

2) show identical values for the three indices derived from the Omega and PI-type 

polynomials. Analytical formulas for the Omega and related polynomials, in these 

two classes of polyhex molecular graphs were given eswhere.9  

 

 

- 910 -



Table 2. Counting polynomials in acenes An, and phenacenes Phn 

 Omega CI ),( xGΠ =PI(G,x) ( ,1)G′Π = PI 

A3 426 xx +  216 1412 124 xx +  216 

A4 528 xx +  384 1916 165 xx +  384 

A5 2 610x x+  600 20 246 20x x+  600 

Ph3 32 25 xx +  218 1413 106 xx +  218 

Ph4 32 36 xx +  390 1918 129 xx +  390 

Ph5 2 37 4x x+  612 23 2412 14x x+  612 

 

Other examples are given on square (4,4) tori (Table 3).The torus in the first 

row is bipartite (but not a partial cube), so that only the PI-type indices show identical 

values. Conversely, the object in row 7 is non-bipartite but shows all the three indices 

of the same value. Concerning the relation ( ,1)G′Π : PI, the majority objects in Table 3 

show identical values but, rows 3 and 5 give examples of objects showing different 

values; note that inequality (7) is here obeyed.  
 

  Table 3. Polynomials in square tiled (4,4) tori 
 

 Torus ( , )G xΩ  ( , )G x′Π  ( , )PI G x  

 (4,4)  CI  ( ,1)G′Π   PI 

1 T[6,10] 10x6+6x10 13440 60x100+60x108 12480 60x100+60x108 12480 

2 TWH2D[6,10] 6x10+2x30 12000 60x96+60x102 11880 60x96+60x102 11880 

3 TWH3D[6,10] 6x10+x60 10200 120x110 13200 60x108+60x110 13080 

4 TWH6D[6,10] 6x10+2x30 12000 60x92+60x94 11160 60x92+60x94 11160 

5 TWV1D[6,10] 10x6+x60 10440 60x102+60x114 12960 60x100+60x114 12840 

6 TWV2D[6,10] 10x6+2x30 12240 60x94+60x104 11880 60x94+60x104 11880 

7 TWV3D[6,10] 10x6+3x20 12840 60x100+60x114 12840 60x100+60x114 12840 

  

Another example is the pcu cubic lattice,9 which is precisely a partial cube (in our 

terms, a co-graph) and the strips represent orthogonal cuts oc;  it means that all the 

three relations (8) to (10) are valid. In such a lattice, all the three indices show the 

same value and the results appear to imply relations (5) and (6). 
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3. Main Results 

The aim of this section is to compute the counting polynomials of equidistant 
(Omega and Theta polynomials) and non-equidistant (PI-type polynomials) edges of 
an infinite family Fn of fullerenes with 10n carbon atoms and 15n bonds (the graph 
G2, Figure 2 is n=8).  

 

 
G2 

Figure 2. The graph of fullerene Fn , n=8 

 

By Figure 3, there are six distinct cases of qoc strips: 
 

   
e1 e2 e3 

  
e4 e5 e6 

 

Figure 3. The qoc strips of edges e1, e2, …, e6 in G2 
 

We denote the corresponding edges by e1, e2, …, e6. One can see that |C(e1)| = 
|C(e2)| = |C(e3)| = |C(e6)| = 1, |C(e4)| = 5 and |C(e5)| = n – 1. On the other hand there 
are five similar edges for each of edges e1, e2, e3 and e6. There are n–2 edges similar to 
e4 and 10 edges similar to e5. Therefore,  
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5 ( 1)( , ) 20 ( 2) 10 n
nF x x n x x −Ω = ⋅ + − ⋅ + ⋅              (20) 

By Figure 4, for n ≥ 10, there are ten separate edges f1, f2, …., f10 that the 
number of equidistant edges are different. By this figure, one can see that N(f1) = N(f2) 
= N(f9) = 16, N(f3) = N(f4) = 15n - 40, N(f5) = 5, N(f6) = 13, N(f7) = 14, N(f8) = 15 and 
N(f10) = 18. 

 

    

f1 f2 f3 

  
f4 f5 f6 

   

f7 f8 f9 

 
f10 

 

 

Figure 4. The equidistant edges f1, f2,…, f10 in G2 
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There are five similar edges for each of edges f1, f2, f3 and f4. There are also 5(n – 2) 
edges similar to f5, 20 edges similar to f6, f7, f8, f9, and 10(n – 9) edges similar to f10. 
Therefore, for 10n ≥  we have (see also relation (4)): 
  

15 5 15 13 15 14 15 15 15 16 15 18 40( , ) 5( 2) 20 20 20 30 10( 9) 10n n n n n n
nPI F x n x x x x x n x x− − − − − −= − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + − ⋅ + ⋅

− − − − − − −= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + − ⋅

(21’) 
In version of relations (5) and (6) (Diudea) the polynomial is: 
 

15 1 15 5 15 6 15 10 15 12 15 14 15 16 15 18( , ) 10 5( 2) 10 20 20 20 20 10( 9)n n n n n n n n
nF x x n x x x x x x n x− − − − − − − −Π = ⋅ + − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + − ⋅

(22) 
Correspondingly, the equidistant edges are counted by the Theta polynomial as: 
 

1 5 6 10 12 14 16 18( , ) 10 5( 2) 10 20 20 20 20 10( 9)nA x x n x x x x x x n xΘ = ⋅ + − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + − ⋅  
(23) 

Table 4 lists the PI polynomial of Fn for n ≤ 9. 
 

Table 4. Counting polynomials and indices of eight sporadic cases.  
 

Fn PI  Polynomial PI 

 PI  Polynomial (eq 4)  

C20 30x22 660 

 C30 5x40+20x36+20x32 1560 

C40 10x55+30x50+10x44+10x36 2850 

C50 15x70+40x64+10x5910x40 4600 

C60 20x85+30x78+20x77+10x74+10x40 6720 

C70 25x100+40x92+20x91+10x89+10x40 9290 

C80 30x115+20x107+30x106+20x105+10x104+10x40 12310 

C90 35x130+30x119+20x122+20x121+20x120+10x40 15780 

 PI  Polynomial (eq 4` ) and 

C20 30X24 720 

 C30 30X38+10X39+5X40 1730 

C40 10X50+20X51+10X52+10X54+10X55 3130 

C50 50X65+25X70 5000 

C60 30X78+20X79+10X80+30X85 7270 

C70 40X92+20X93+10X95+35X100 9990 

C80 20X105+10X106+20X107+20X108+10X110+40X115 13160 

C90 20X119+20X120+20X122+20X123+10X125+45X130 16780 
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 Π Polynomial (eqs (5) and (6)) ( ,1)G′Π  

C20 30X28 840 

 C30 5X40+20X41+10X43+10X44 1890 

C40 30X54+10X55+10X56+10X59 3320 

C50 40X67+10X69+15X70+10X74 5160 

C60 50X80+10X84+20X85+10X89 7430 

C70 40X93+20X95+10X99+25X100+10X104 10150 

C80 30X106+20X108+20X110+10X114+30X115+10X119 13320 

C90 20X119+20X121+20X123+20X125+10X129+35X130+10X134 16940 

 Θ  polynomial  

C20 30X2 60 

 C30 10X1+10X2+20X4+5X5 135 

C40 10X1+10X4+10X5+30X6 280 

C50 10X1+15X5+10X6+40X8 465 

C60 10X1+20X5+10X6+50X10 670 

C70 10X1+25X5+10X6+20X10+40X12 875 

C80 10X1+30X5+10X6+20X10+20X12+30X14 1080 

C90 10X1+35X5+10X6+20X10+20X12+20X14+20X16 1285 

 Ω  polynomial  

C20 30X1 870 

 C30 20X1+1X5+10X2 1940 

C40 20X1+2X5+10X3 3440 

C50 20X1+3X5+10X4 5370 

C60 20X1+4X5+10X5 7730 

C70 20X1+5X5+10X6 10520 

C80 20X1+6X5+10X7 13740 

C90 20X1+7X5+10X8 17390 

 

Conclusions 
 Counting equidistant edges is not a trivial task. At least two ways of 

evaluating the equidistance of edges were discussed and the corresponding conditions 

established. Thus, three versions of polynomials counting non-equidistant edges (PI-

type polynomials) and two polynomials counting equidistant edges (Theta and Omega 

polynomials) were calculated for an infinite series of tubulenes/fullerenes derived 

from the dodecahedron C20. The analytical formulas for these polynomials in the 

considered family of fullerenes were presented. 
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