MATCH MATCH Commun. Math. Comput. Chem. 60 (2008) 803-830

Communications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

A Six-Step P-stable
Trigonometrically-Fitted Method for
the Numerical Integration of the
Radial Schrodinger Equation

Z.A. Anastassi and T.E. Simos *1

Laboratory of Computational Sciences,
Department of Computer Science and Technology,
Faculty of Sciences and Technology, University of Peloponnese
GR-22 100 Tripolis, GREECE

(Received January 8, 2008)

Abstract

In this paper we obtain a P-—stable exponentially—fitted six—step
method for the approximate solution of the one-dimensional Schrodinger
equation. More specifically we present a method that is P-stable and
also integrates exactly any linear combination of the functions {1, =, 22,
23, 2t 2% 2% 27 exp (£Ivx)}. The numerical experimentation show-
ed that our new introduced method is considerably more efficient com-
pared to well known methods used for the approximate solution of res-
onance problem of the radial Schrédinger equation.

1 Introduction

The one-dimensional Schrodinger equation can be written as:
Y (@) = [+ 1) /2 + V(@) — Kly(a). (1)

The above boundary value problem occurs frequently in theoretical physics
and chemistry, material sciences, quantum mechanics and quantum chemistry,
electronics ete. (see for example [1] - [4]).

We give some definitions for (1):
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e The function W (x) = 1(l+ 1)/2® + V(z) is called the effective potential.
This satisfies W(z) — 0 as @ — o0

e The quantity k2 is a real number denoting the energy
e The quantity [ is a given integer representing the angular momentum
e V is a given function which denotes the potential.

The boundary conditions are:

y(0)=0 (2)
and a second boundary condition, for large values of x, determined by physical
considerations.
The last decades a lot of research has been done on the development of nu-
merical methods for the solution of the Schrédinger equation. The aim of this
research is the development of fast and reliable methods for the solution of the
Schrédinger equation and related problems (see for example [5] - [42], [47] -
[89]).
The methods for the numerical integration of the Schrédinger equation can be
divided into two main categories:

e Methods with constant coefficients
e Methods with coefficients depending on the frequency of the problem .

In this paper we will investigate methods of the second category. More specifi-
cally we will study the exponentially-fitted methods. More specifically we will
obtain an exponentially-fitted method of eighth algebraic order for the numer-
ical solution of the radial Schrodinger equation. The developed method is also
P-stable, that is it has an interval of periodicity equal to (0,00). We apply
the new obtained method to the resonance problem. This is one of the most
difficult problems arising from the radial Schrodinger equation. The above
application shows the efficiency of the new obtained method. The paper is
organized as follows. In Section 2 we present the development of the method.
In the same section, the error analysis is presented. The stability of the new
method is also studied. In Section 3 the numerical results are presented. Fi-
nally, in Section 4 remarks and conclusions are discussed.

"When using the trigonometrically-fitted method for the solution of the radial Schrédinger
equation, the fitted frequency is equal to: /[I(l + 1)/22 + V (z) — k2|
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2 The New Trigonometrically-Fitted Six-Step

Method

2.1 Construction of the New Method

We introduce the following family of methods to integrate y” = f(z,y) :

Yn+3 +c2 Yn+2 + C1 Ynt1 — 2 ao Yn + Yn—1 + c2 Yn—2 + Yn-3 =
R b0 (yias + vis) + 01 (Uiso +0i2) + b2 (Una + i) + bsyr]

3)

In order the above method (3) to be exact for any linear combination of the

functions
{1, 2, 2%, 2%, 2% a° 2% 27, exp(+Tvax)}

where I = \/—1, the following system of equations must hold:

2cos(3vh) +2cycos(2vh) 4+ 2¢q cos(vh) — 2ag
= —2Rh%v?cos(3vh) by — 2h%v* by cos(2v h)
2 h% 0% by cos(vh) — h? v” by

242c+2c;—2a9 = 0
18 +8cy+2¢ 4byg+4by +4by +2b3
1624+ 32co+2¢; = 216by + 96 by + 24 by
128 ¢y + 1458 +2¢; = 4860 by + 960 by + 60 bo

We apply the new method (3) to the scalar test equation:

v =—qy.

We obtain the following difference equation:

A(Qv h) (er+13 + yn—3) + B(q7 h) (er+2 + yn—Z)
+C(Q7 h) (yn+1 + ynfl) + D(q7 h) Yn = 0

where

Alq,h) =1+ ¢*h*bo, B(q,h) = co+¢°h*by,
C(q,h) 1+ ¢2 h2 by,
D(q,h) = —2ao+ ¢*h*bs.

The corresponding characteristic equation is given by:

(4)

—~ o~~~
© 0 N D
= I =

(10)

(11)

(12)

A(v,h) (A +1)+B(v,h) (N +A)+C(v,h) (A +N?)+D(v,h) X* =0 (13)
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Definition 1 (see [{3]) A symmetric siz-step method with the characteristic
equation given by (13) is said to have an interval of periodicity (0,w3) if, for
all w € (0,wd), the roots z;, i = 1,2 satisfy

Z12 = e, |z:] <1,1=3(1)6 (14)
where O(v h) is a real function of vh and w=vh .

Definition 2 (see [43]) A method is called P-stable if its interval of periodicity
is equal to (0, 00).

We note here that recently Wang [91] has proposed a methodology for con-
structing P-stable linear multistep methods for general periodic initial-value
problems. In his methodology, the author assumes that all the roots of the
characteristic equation must have a special form which leads to P-stable meth-
ods. We will follow his methodology in constructing our new trigonometrically-
fitted P-stable method with a special arrangement mentioned below.

In order the new method to be P-stable? we require the characteristic equation
(13) to have the following roots:

exp(£lvh), —(—1) <%> exp(£Ivh),(—1) (%) exp(+lvh) (15)

In order (15) to be roots of the characteristic equation (13), the following
system of equations must hold:

8 (1 +v* h? by) cos(v h)® + 4 (ca +v* h* by) cos(v h)?

+2 (1 + 02 h?by) cos(v h) — 6 (1 +v? h? by) cos(v h) — 2 ¢
—20*h*by —2a9+ h*v*bs = 0 (16)

8 (1 +v* h? by) cos(v h)® + 4 (ca + v* h* by) cos(v h)?

+2 (1 +v2 A2 by) cos(v h) — 6 (1 +v? h? by) cos(v h)
—20y = 20°R*by — 2a9 + WP v*bs = 0 (17)

—(e1 + 07 R?by) cos(vh) + co + 02 h2 by — 2ag + h? v* by

—2(ca + 02 h%by) cos(v h)? — 6 (1 4+ v2 h?bg) cos(v h)

+8 (1 +v* h2by) cos(v h)® + (c1 + v? h? by) sin(v h) V3
—2(cy +v*h2by)sin(vh) cos(vh) V3 = 0 (18)

2in the case that the frequency of the exponential fitting is the same as the frequency of
the scalar test equation (which in the case of (10) has been obtained), i.e. in the case that
q = v. We will examine the case ¢ # v in another paper
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—(c1 +v2h%by) sin(v h) V3 + o + 02 h2 by — 2ag + h?0? bs
—2(cy + 02 h?by) cos(v h)? — (¢ 4+ v* h?by) cos(v h)
+8 (1 +v? h?bg) cos(v h)® — 6 (1 4+ v* h? ) cos(v )

+2 (o + v h% by) sin(v ) cos(v h) V3

—(c1 +v?h? by) sin(v h) V34 o+ 02 h2b — 2a0 + b2 0? by
—2(ca + 02 h?by) cos(v h)? — (¢ + v2 h?by) cos(v h)
+8 (1 +v? h?bg) cos(v h)® — 6 (1 +v* h? ) cos(v )

+2 (co + v h% by) sin(v ) cos(v h) V3

—(c1 +v2 A% by) cos(v h) 4 co + v* W2 by — 2ag + h? v? by
—2(ca + 02 h%by) cos(v h)? — 6 (1 4+ v* h bg) cos(v h)
+8 (1 +v? h?by) cos(v h) + (c1 + v? h2by) sin(v h) V3
—2(cy 4+ v* A2 by) sin(v h) cos(v k) V3

Solving the system of equations (5)—(9), (16)—(21) we obtain the

values of the coefficients of the methods:

ap = 10 (1440 cos(w)? + 196 cos(w)® w* + 672 cos(w)® w?
— 1080 cos(w) — 147 cos(w) w* — 504 cos(w) w?
— 360 — 508w + 1452 w2> /T,

o = 45( — 183 w* — 36 cos(w) w* + 48 cos(w)* w*
+ 488 w? — 156 cos(w) w? + 208 cos(w)? w* — 120
— 360 cos(w) + 480 Cos(w)S) /To

o = 718( — 120 — 360 cos(w) + 480 cos(w)® + 500 w?
— 9cos(w) w" 4 12 cos(w)® w* — 120 cos(w) w?

+ 160 cos(w)® w? — 228 w4> /T

0 (19)

0 (21)

following

bo = —(—360 — 12 cos(w)w" 4 16 cos(w)® w* + 1560 w? + 180 w®

1080 cos(w) + 1440 cos(w)? — 180 cos(w) w?
+ 240 cos(w)® w? — 949 w*) /Ty
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18(—120 — 360 cos(w) + 480 cos(w)® 4 500 w? — 9 cos(w) w*
12 cos(w)® w* — 120 cos(w) w?

160 cos(w)? w? — 228 w)/T)

—45(—183w* — 36 cos(w) w* + 48 cos(w)? w* + 488 w?
156 cos(w) w? 4 208 cos(w)? w? — 120
360 cos(w) + 480 cos(w)?) /T

20(—54 w® cos(w) + 72w’ cos(w)?® — 147 cos(w) w*

196 cos(w)? w* — 508 w* — 504 cos(w) w?

672 cos(w)® w? + 1452 w? — 1080 cos(w) — 360 4 1440 cos(w)?®) Ty
(22)

where w = v h and:

Ty

1560 w? — 12 cos(w) w* + 16 cos(w)® w?
— 360 — 180 cos(w) w* — 1080 cos(w)
+ 240 cos(w)® w? + 1440 cos(w)® — 949 w*
T, = w*(1560w® — 12 cos(w) w* + 16 cos(w)? w’
— 360 — 180 cos(w) w* — 1080 cos(w) + 240 cos(w)? w?
+ 1440 cos(w)® — 949 w™)

For small values of |w| the formulae given by (22) are subject to heavy cance-
lations. In this case the following Taylor series expansions should be used:

bo

141 n 15849 w4 69131367 wh 154755991233 By
2240 5017600 123633664000 3600212295680000

3604722515991 W 303074877872053197 Wl
1612895108464640000 3378047515168342016000000

7223253723520352277237 w2
143769702245564636200960000000

28079026902052066256650371 Wit
4186573729390842206171955200000000
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243 209709 w? 196254819 W 2547621846117 W
224 2508800 61816832000 1800106147840000

59213951695323 W 1864820364102631323 Wl
310172136243200000 129924904429551616000000
255394094069530455147 w2
14376970224556463620096000000

355344541025315275651177071 Wit
2093286864695421103085977600000000

4131 __64936892024_ 28060843689 wh— 71842643988399 By
2240 5017600 123633664000 3600212295680000

4188870846789597 W 20678701847731525467 Wwlo
8064475542323200000 135121900606733680640000

4509667346026274491744827 et
143769702245564636200960000000

13632665526031876066918751949 w
4186573729390842206171955200000000

1689 4307931 w? 4 36466851051 wh 159401983253661w6
560 1254400 30908416000 900053073920000

27484868905253703 Wt 15328897621032309147 10
2016118885580800000 168902375758417100800000

312020473132514612747889 w2
2114260327140656414720000000

26429721303822676777504622871 14
1046643432347710551542988800000000

4131 w? 4 6493689 wh 28060843689 W 71842643988399 W
2240 5017600 123633664000 3600212295680000

4188870846789597 w0 _ 20678701847731525467 w2
8064475542323200000 135121900606733680640000

4509667346026274491744827 Wi
143769702245564636200960000000

243 5 209709 196254819 2547621846117 8
——w w” + w — w

224 2508800 61816832000 1800106147840000

59213951695323 10 1864820364102631323 12
— w
310172136243200000 129924904429551616000000

255394094069530455147 w
14376970224556463620096000000

M,

M.
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6561 , 6913107 , 27668334051 ., = 13349480059233

2649308102711199 10 965452875659956551073 12
8064475542323200000 3378047515168342016000000

347093945151305368945869 4,
11059207865043433553920000000

The local truncation error of this method is given by:

81ht0

LTE = 71500 (

i oty
2.2 Error Analysis
We will study the following methods:

Classical Method?

8LAY0 4y
44800 7"

LTEcL = —
Trigonometrically-fitted Method Produced in this paper
81 A0

44800 (ynm) + v? yV(LS))

The algorithm we follow for the error analysis is:

LTE = —

e The radial time independent Schrodinger equation is of the form

y'(z) = f(x) y(x)

T 2240 T 5017600 T 123633664000 T 720042459136000

(23)

(24)

(25)

(26)

(27)

e Based on the paper of Ixaru and Rizea [48], the function f(x) can be

written in the form:

f(x) =g(x) + G

(28)

where g(x) = V(x) — V. = g, where V, is the constant approximation of

the potential and G =v?> =V, — E.

‘We express the derivatives y,(f), i = 2,3,4,..., which are terms of the
local truncation error formulae, in terms of the equation (27). The ex-
pressions are presented as polynomials of G

Finally, we substitute the expressions of the derivatives, produced in the
previous step, into the local truncation error formulae

3i.e. the method with constant coefficients
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Based on the procedure mentioned above and on the formulae:

y? = (V)= Vo +G)ylx)

d? d d

! = (5 V@) y(@) +2(- V(@) (- y(@)
+ (V(z) - Vﬁ@(%y(w))

g = (% V(r))y(.r)+4(dd—;v(-’b))(%)’(-’ﬁ))
B0 VE) (o y(a)
+ V@)Y

d d

+ 6(V(2) = Ve + G) (-v(2)) (7 V(z)
+ 4(U(z) = Ve +G)y(=) (di; V(z))

2

d
+ (V(z) = V. +G)? (W y(@)) ...
x
we obtain the following expressions:

Classical Method

81 P ,
LTEc, = %Y(UC)(@V(@) V.

- ) (o v v
@) y(e) Vie) 2o (@) y() Vi)
b 20 L)y v
_ %y(m) V(z) V' + % (% v(z)) (% V(z)) V.3
81 d &

= 25 (Go¥(@) (5 V(@) V)
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81 , d 3, d

81 & _ %(%V(QL’))“(@Y(W})

396 y(z) (dx2 V(z)) V(z)?

2349 d

2 d2
5600 (E V(z))*y(z) (@ V(z))

20
44807

S d
700

2511 , d&°

3 2
TV Ve om0 ¢

d
TS V(@) (5 v(@) Ve

d5
V@) ¥(@) (5 V(@)

S V@) (e y() (s Vi)

(V@) (@) (e v(w)

o (V@) (4 3(0) (305 Vi) — s (0 V) ()
ot (L V@) (L (@)

V@) y(e) — o (L) (L y(a) Vi)
S @) (v v

% (% v(@)) (% V(@) V(z)* - % y(x) (% V(x))* v
SLV@) (V@) V()

e ¥(6) (g V) Vi) + 110t (0 V(e y(a) Ve
% ¥(@) V(@) Ve

DY@ V@ V4 v(@) (o V(@) V) Ve

%;00 y(2) V(z)® + % y(@) Ve

% (% ¥(2)) (% V(2)) V()2 V.,

243 d

d 2
e (= ¥(@) (V@) V(@) Ve



81 d d d?
10V

81 d d d?
710 (o V@) (- y(@) (5 V(@) Ve

13689 , d &3

2100 (75 V@) y(@) (55 V(@) V(2)

13689 , d P
32100 (72 V@) ¥(@) (55 V() Ve

348 )(di
11200 Y\ Vg

V(@) (5 V) V() V.

V(@) V() V.

@) V@) Vi) Ve = 22y (a) (Vi) Vi) 122

81 N
my(l) G

(9 e V) 0+ (- 5 s Vet

4% y(@) Ve* = %O y(@) V(@)® + Qi—fm ¥(2) V(z) Ve
o V@) ()

(S V) Ly + 22y (v v,
e (@) (V@) Ve

(@) V(@)

2 @) V(@) Ve — 2o y() Vi) V2 + o y() Ve
243 d d 3483 , d*

s (o ¥(@) (5 V@) Vo) = = (2 Vi(a) (o)

81 ,d

e (V@) ()
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243 &? ) 2349 d°
52 ¥@) (G V@) V@) )6+ (= s (25 V@) v(a)
243 . d d

a0 (g5 VO Ve (0) (g Vo Ve

i

81 \
MY(I) V(z)® Ve

) (s V@) V(w) — 3 3(2) G V@) V()

- ﬁy dx
17091 &,
11500 (g7 V)
81 d d & 81 ,
10 (% V(z)) (@ y(z)) (@ V(z)) - MY(-E) Ve

81 ,d d?
ot G ¥(@) (5 Vi) Ve

y(z)

2511 , d° d 243 d W, d

59100 75 V) (G- 5(@) = o6 (o v(@)) (- V(@) Ve
243 2 vy

<5e @) (55 VI

243 & , sl
396 y(z) (@ V(z)) Ve

13689 , d e
22100 g VY@ (G5 V()

@) (5 V@) V@) V.

243 d d
1120 (@ y(2)) (%

81 ,d d?
250 (7 ¥(@) (75 V(@) V(@)

243 81

Tag V@ V@) Ve + s y(@) V@) V)G

V(@) V(z) Ve

(29)
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Trigonometrically-fitted Method produced in this paper

UlBxiy = o y(@) () Ve = S () (v v
- O V@) v V)
- 2 (LN ) V) + e (L v ) v
- el Y@ V() V!
b G ) (v v - B (L (e (S Vi) Vi

- @ V@) Ve

896 ° dx?
= 560 G VO G v — 55 (2 VE0) G Ve
_ %y(z) V() V.2
- V@) (@) (Ve (30
_ %(%V(@)y(z)(%\/(l’))
e (V@) (3 (o V) ~ i G V) ()
- V) () - B (V@)
- 222i1010 (ddes V(x)) (% y(@) V(z) — % ¥(@) (di; Vi) v
o (@) (e V(@) V(@) — o v(@) (e V(@) Ve
— @) (V@) V)
~ i) (s VD VY + i G V) e
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% v(z) Vi)' V.

T Y V) Vi S v(e) (V@) Vi) Ve
%&100 v(z) V(z)® + 441% y(z) Ve°

(@) (V@) V(@) V.

243  d

d 2
5 (@) (- V(@) V(@) Ve

(oo ¥(2) Ve = oo ¥(@) V() G

41800 " 0T qaso0
(= 1505 o V) y(0) = o5 ¥(2) Ve
1182100 y@) V(@) + 52(1]0 y(@) Viz) Ve
81 ,d d 3
oo (= V(@) (7-v(@)) G
81 & d 4293 2
(555 (o5 V@) (o ¥(@) + oo ¥(0) (5 V() Ve
729 . d d
500 (= ¥(@) (5 V(@) Ve
B (@) V(&) + g () V(@) Ve
% y(@) V() Vo + % y(z) V.3
729 d d 81 d4
200 (2 Y (5 V@) V(@) = g (5 V(@) y(@)
729 d )
roos (= V(@) y(@)
242%% y(z) (% V() V(z)) G+ ( - % (% V(z)) y(z)
243  d d )
o (o (@) (- V(@) V()
B @) V@) Ve 220 () (V) Ve



- 817 -

8L
2800

3159 dt 3483

(&) (g V(@) V(&) = T () (5 V() V()

567  d? R
Lo (5 V(@) y (@)

(2) V() V.

77 A
2800 “dx

3
S G Y0 G V) Ve

V@) (L)~ 28 ) (v v

L vt

V(@) (o (@) (o V() — oo

81 d2

o V(@) (5 V) Ve
Sy (V) v - @) Vi)'
2 (V@) v (s V)
V) (o V) V() Vet o (L () (L V) Vi) Ve
(L (@) (o V) V(@) — oy V()? V.2
81

(z) V(x) vﬁ)c

my

% (% V() (% y(z)) (dd—; V(z)) V(z)
o V@) Ly (di; V() V.
sages (e V@) ¥(@) (di; Vi(z) V()

13689 , d &3
o105 (5= V@) ¥(@) (55 V(@) V.

(&) (e V(@) V@) Vet 2y (g V(@) V(@)? Ve

3483
11200~

81 d 013 2

250 (75 Y@) (% V(@) V(@) Ve = S5 5(@) (55 V(@) V(@) V.2

(31)
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We consider two situations in terms of the value of E:

e The Energy is close to the potential, i.e. G =V, — E ~ 0. So only the
free terms of the polynomials in G are considered. Thus for these values
of G, the methods are of comparable accuracy. This is because the free
terms of the polynomials in G, are the same for the three cases.

e G>0or G« 0. Then | G |is alarge number. So, we have the following
asymptotic expansions of the equations (29) and (31).

Classical Method

81

LTEcL = 14800 v(@)

G+ (32)

Trigonometrically-fitted Method produced in this paper

81

LTENew = = 15050

<Vc - V(z)) v(@) G+ - (33)

;From the above equations we have the following theorem:

Theorem 1 For the Classical Siz-Step Method the error increases as the fifth
power of G. For the Trigonometrically-fitted Six-Step Method developed in this
paper the error increases as the fourth power of G. So, for the numerical
solution of the time independent radial Schrodinger equation the new obtained
Trigonometrically-fitted siz-step Method is the most accurate one, especially
for large values of | G |=| V. — E |.

2.3 Stability Analysis
We apply the new method to the scalar test equation:

v =—¢’y, (34)
where g # v.

We obtain the difference equation (11) and the corresponding characteristic
equation (12)

Substituting in the characteristic equation the values of the coefficients b;, i =
0(1)3, ¢;, i = 0,1 and ag, we obtain the following final form of the characteristic
equation: (we note that H = qh)
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(1 - ( — 360 + 180 H® + 1560 H?
— 12cos(H) H* + 16 cos(H)* H* — 180 cos(H) H?
+ 240cos(H)* H? — 1080 cos(H) + 1440 cos(H )?
~ 949 H4>/(SU)) ()\3 + %) - 20(1440 cos(H)?
+ 196 cos(H)> H* 4 672 cos(H)* H? — 1080 cos(H)
— 147 cos(H) H" — 504 cos(H) H? — 360
1452 H? — 508 H4) / (so) + 20( — 54 HS cos(H)
+ T2 HCcos(H)? — 147 cos(H) H*
+ 196cos(H)* H* — 508 H* — 504 cos(H) H?
+ 672cos(H)* H? + 1452 H* — 360 — 1080 cos(H )
+ 1440 cos(H)3) / <So>
So = —360 — 180 cos(H) H? — 1080 cos(H) + 240 cos(H)> H*
+ 1440 cos(H)? 4 1560 H* — 12 cos(H) H*
+ 16cos(H)* H' — 949 H* = 0 (35)

where we have considered that H = w.
The roots of the above characteristic equation are give by:

{f/cos (3v) — 1/ (cos (3v))* — 1 % (/cos (3v) + 4/ (cos (3v))* — 1

_@ \/ cos (3v) +4/(cos (30v))> =1 — % i/cos (3v) 4+ 1/ (cos (30v))* =1

2
+¥</COS (30) + 4/ (cos (3 U))2 -1 - % </COS (3v) — 4/ (cos (311))2 —1

,$3 cos (3v) —\/(cos (30))> =1 — %Q/COS(?)U)f (cos (30))2 — 1

+$€/Cos (3v) — 4/ (cos (3v))* — 1 % i/cos (3v) + 4/ (cos (3v))* — 1}
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Based on the above roots of the characteristic equation and on the Definitions
1 and 2, it is easy for one to see that \; < 1, i = 0(1)5 for every H? € (0, c0),
i.e. the method is P-stable.

3 Numerical results - Conclusion

In order to illustrate the efficiency of the new obtained method given by coef-
ficients (22) and (23) we apply it to the radial time independent Schrodinger
equation.

In order to apply the new method to the radial Schrodinger equation the
value of parameter v is needed. For every problem of the one-dimensional
Schrodinger equation given by (1) the parameter v is given by

v="la@)] = VIV(z) - E| (36)

where V(z) is the potential and E is the energy.

3.1 Woods-Saxon potential

We use as potential the well known Woods-Saxon potential given by

) U - Upz
Vi) =15 PR (37)

with z = exp [(x — Xo) /a], up = =50, a = 0.6, and X, = 7.0.

The behavior of Woods-Saxon potential is shown in the Figure 1.

For some well known potentials, such as the Woods-Saxon potential, the defi-
nition of parameter v is not given as a function of x but based on some critical
points which have been defined from the study of the appropriate potential
(see for details [13]).

For the purpose of obtaining our numerical results it is appropriate to choose
v as follows (see for details [13]):

V=50+FE for x € [0,6.5 — 2h]

V=375+F forx =65—"h

v={ V=25+F for x = 6.5 (38)
V—125+F forx =6.5+h

VvE for x € [6.5 + 2h, 15]

3.2 Radial Schrédinger Equation - The Resonance Prob-
lem
Consider the numerical solution of the radial time independent Schrodinger

equation (1) in the well-known case of the Woods-Saxon potential (37). In or-
der to solve this problem numerically we need to approximate the true (infinite)
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The Woods-Saxon Potential

Figure 1: The Woods-Saxon potential.

interval of integration by a finite interval. For the purpose of our numerical
illustration we take the domain of integration as z € [0,15]. We consider
equation (1) in a rather large domain of energies, i.e. F € [1,1000].

In the case of positive energies, E = k2, the potential fades away faster than

the term l(lz%l) and the Schrodinger equation effectively reduces to
(l+1
y"(z) + (kZ — %) y(z) =0 (39)

for x greater than some value X.

The above equation has linearly independent solutions kzj;(kx) and kxn,(kz)
where j;(kx) and n;(kz) are the spherical Bessel and Neumann functions re-
spectively. Thus the solution of equation (1) has (when z — oo ) the asymp-
totic form

y(z) =~ Akaxji(kx) — Bkan(kz)

~ AC {sin (k’,x - %T) 4+ tand; cos <kx — %r>:| (40)

where ¢; is the phase shift that may be calculated from the formula
y(x2)S(x1) — y(w1)S(w2)
y(z1)C(21) — y(22)C(22)
for x; and o distinct points in the asymptotic region (we choose z; as the
right hand end point of the interval of integration and zs = z7 — h) with

(41)

tand; =
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S(z) = kxji(kr) and C(x) = —kany(kz). Since the problem is treated as an
initial-value problem, we need yq before starting a one-step method. From the
initial condition we obtain y,. With these starting values we evaluate at z; of
the asymptotic region the phase shift ¢;.

For positive energies we have the so-called resonance problem. This problem
consists either of finding the phase-shift §; or finding those E, for E € [1, 1000],
at which §; = §. We actually solve the latter problem, known as the reso-
nance problem when the positive eigenenergies lie under the potential bar-
rier.

The boundary conditions for this problem are:

y(0) =0, y(x) = cos (\/Ew) for large . (42)

~+=Method |
=+ Method Il
-= Method IlI
=+ Method IV
-~ Method V
-~ Method VI
] === Method VII
4 === Method VIII
= Method IX

EANN

Figure 2: Comparison of the maximum errors Err in the computation of
the resonance E3 = 989.701916 using the Methods I-VIII. The values of
Err have been obtained based on the NFFEx100. The absence of values
of Err for some methods indicates that for these values of NFEx100 =
Number of Function Evaluations, the Err is positive.

We compute the approximate positive eigenenergies of the Woods-Saxon res-
onance problem using:

e the Numerov’s method which is indicated as Method I

e the Exponentially-fitted method of Numerov type developed by Raptis
and Allison [10] which is indicated as Method II

e the Exponentially-fitted four-step method developed by Raptis [16] which
is indicated as Method 111
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e the Two-Step P-stable exponentially-fitted method developed by Kalo-
giratou and Simos [42] which is indicated as Method IV

e the Four-Step method mentioned in Henrici [45] which is indicated as
Method V

e the Two-Step P-stable method obtained by Chawla [46] which is indi-
cated as Method VI

e the P-stable trigonometrically-fitted four-step method obtained by Simos
[90] which is indicated as Method VII

e the P-stable trigonometrically-fitted four-step method produced by Simos
[92] which is indicated as Method VIII

e the New P-stable trigonometrically-fitted six-step method developed in
this paper which is indicated as Method IX

The computed eigenenergies are compared with exact ones. In Figure 2 we
present the maximum absolute error logio (Err) where

Err = |Ecalculated - Eaccurate‘ (43)

of the eigenenergy 3, for several values of NFEx100 = Number of Function
Evaluations.

4 Conclusions

In the present paper we have obtained a new exponentially-fitted six-step
method for the numerical solution of the radial Schrodinger equation. For
this method we have examined the stability properties. We have also studied
the error for the radial Schrodinger equation. The new method is almost P-
stable only in the case that the frequency of the exponential fitting is the same
as the frequency of the scalar test equation. The new method also integrates
exactly every linear combination of the functions

{1, @, 2%, 2%, 2%, 2®, 2%, 27, exp(£lvx)}. (44)
We have applied the new method to the resonance problem of the radial

Schrédinger equation.
Based on the results presented above we have the following conclusions:

e The P-stable exponentially-fitted Numerov’s type method of Kalogiratou
and Simos (see [42]) is more efficient than the Numerov’s method and
the method of Raptis and Allison [10].

e The exponentially-fitted four-step method developed by Raptis [16] is
more efficient than Numerov’s method. For number of function evalua-
tions equal to 400 the behavior is worse than the methods of Raptis and
Allison [10] and Kalogiratou and Simos [42].
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The exponentially-fitted method Raptis and Allison [10] is more efficient
than the Numerov’s method.

The P-stable trigonometrically-fitted four-step method obtained by Si-
mos [90] is more efficient than all the other methods (except the new
one).

The method obtained by Simos [92] is much more efficient than all the
above mentioned methods.

The method developed in this paper is the most efficient one.

The reason of the better behavior of the new method is the combination of the
P-stability, smallest LT E constant and the exponential fitting property.

All computations were carried out on a IBM PC-AT compatible 80486 using
double precision arithmetic with 16 significant digits accuracy (IEEE stan-
dard).
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