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Abstract

In this paper we are constructing two explicit Runge-Kutta meth-
ods, one with tenth order of phase-lag and constant coefficients and
one with infinite order of phase-lag and variable coefficients. The new
methods have eight stages and sixth algebraic order and will be used
for the numerical integration of the radial time-independent Schrödinger
equation. The efficiency of the new constructed methods is compared
to that of a wide range of known methods from the literature. The
numerical results are shown through the graphs of the accuracy versus
the function evaluations when applied to the Resonance problem.

1 Introduction

Much research has been done on the numerical integration of the radial Schrödinger
equation:

y′′(x) =

(
l(l + 1)

x2
+ V (x) − E

)
y(x) (1)

where l(l+1)
x2 is the centrifugal potential, V (x) is the potential, E is the energy

and W (x) = l(l+1)
x2 +V (x) is the effective potential. It is valid that lim

x→∞
V (x) = 0

and therefore lim
x→∞

W (x) = 0.
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Many problems in chemistry, physics, physical chemistry, chemical physics,
electronics etc., are expressed by equation (1).

In this paper we will study the case of E > 0. We divide [0,∞) into subintervals

[ai, bi] so that W (x) is a constant with value Wi. After this the problem (1)
can be expressed by the approximation

y′′
i = (W − E) yi, whose solution is

yi(x) = Ai exp
(√

W − E x
)

+ Bi exp
(
−
√

W − E x
)
,

Ai, Bi ∈ R.

(2)

The classical methods that have been constructed in the previous decades are
not efficient enough when integrating the Schrödinger equation. Some well
known classical methods compared in this paper can be found in [1] and [6].
Many numerical methods have been constructed for the efficient solution of
the Schrödinger equation. For example the explicit Runge-Kutta methods of
Anastassi and Simos [9], [10] and Vande Berghe et al. [8]. Some recent research
work in numerical methods can be found in [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27] and [28].

2 Basic theory

2.1 Explicit Runge-Kutta methods

An s-stage explicit Runge-Kutta method used for the computation of the ap-
proximation of yn+1(x), when yn(x) is known, can be expressed by the following
relations:

yn+1 = yn +
s∑

i=1

bi ki

ki = h f

(
xn + cih, yn + h

i−1∑
j=1

aij kj

)
, i = 1, . . . , s (3)

The methods mentioned previously can also be presented using the Butcher
table below:

0
c2 a21

c3 a31 a32
...

...
...

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

(4)

The following equations must always hold:

ci =
s∑

j=1

aij, i = 2, . . . , s (5)
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Definition 1 [3] A Runge-Kutta method has algebraic order p when the method’s
series expansion agrees with the Taylor series expansion in the p first terms:

y(n)(x) = y
(n)
n (x), n = 1, 2, . . . , p.

Equivalently a Runge-Kutta method must satisfy a number of equations, in
order to have a certain algebraic order. These equations will be shown later in
this paper.

2.2 Phase-Lag Analysis of Runge-Kutta Methods

The phase-lag analysis of Runge-Kutta methods is based on the test equation

y ′ = i w y, w real (6)

Application of the Runge-Kutta method described in (3) to the scalar test
equation (6) produces the numerical solution:

yn+1 = an
∗yn, a∗ = As(v

2) + ivBs(v
2), (7)

where v = wh and As, Bs are polynomials in v2 completely defined by Runge-
Kutta parameters ai,j, bi and ci, as shown in (4).

Definition 2 [4] In the explicit s-stage Runge-Kutta method, presented in (4),
the quantity

t(v) = v − arg[a∗(v)]

is called the phase-lag or dispersion error. If t(v) = O(vq+1) then the method
is said to be of phase-lag order q.

Although dispersion (or phase-lag) was introduced for cyclic orbit, Runge-
Kutta methods with high phase-lag order are more efficient in many other
problem types than methods with lower phase-lag order and higher algebraic
order with the same number of stages. They are even more effective in problems
with oscillating solutions.

3 Construction of the New Methods

We consider a 8-Stage explicit Runge-Kutta method as shown in (8):

0
c2 a21

c3 a31 a32

c4 a41 a42 a43

c5 a51 a52 a53 a54

c6 a61 a62 a63 a64 a65

c7 a71 a72 a73 a74 a75 a76

c8 a81 a82 a83 a84 a85 a86 a87

1 b1 b2 b3 b4 b5 b6 b7 b8

(8)
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There are 43 unknowns totally. The necessary equations that must hold so
that the method has 6th algebraic order are the following 37:

1st Alg. Order (1 equation) 6th Algebraic Order (37)
s∑

i=1

bi = 1
s∑

i=1

bici
5 = 1

6

2nd Alg. Order (2 equations)
s∑

i,j=1

bici
3aij cj = 1

12

s∑
i=1

bici = 1
2

s∑
i,j=1

bici
2aij cj

2 = 1
18

3rd Alg. Order (4 equations)
s∑

i,j,k=1

biciaij cjaikck = 1
24

s∑
i=1

bic
2
i = 1

3

s∑
i,j,k=1

bici
2aijajkck = 1

36

s∑
i,j=1

biaijcj = 1
6

s∑
i,j=1

biciaij cj
3 = 1

24

4th Alg. Order (8 equations)
s∑

i,j,k=1

biciaij cjajkck = 1
48

s∑
i=1

bic
3
i = 1

4

s∑
i,j,k=1

biaij cjaikck
2 = 1

36

s∑
i,j=1

biciaijcj = 1
8

s∑
i,j,k,l=1

biciaijajkaklcl = 1
144

s∑
i,j=1

biaijc
2
j = 1

12

s∑
i,j,k,l=1

biaij cjaikaklcl = 1
72

s∑
i,j,k=1

biaijajkck = 1
24

s∑
i,j,k=1

biciaijajkck
2 = 1

72

5th Algebraic Order (17)
s∑

i,j=1

biaij cj
4 = 1

30

s∑
i=1

bic
4
i = 1

5

s∑
i,j,k=1

biaij cj
2ajkck = 1

60

(9)
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s∑
i,j=1

bic
2
i aijcj = 1

10

s∑
i,j,k=1

biaij cjajkck
2 = 1

90

s∑
i,j=1

biciaijc
2
j = 1

15

s∑
i,j,k,l=1

biaij cjajkaklcl = 1
180

s∑
i,j,k=1

biciaijajkck = 1
30

s∑
i,j,k=1

biaijajkckajlcl = 1
120

s∑
i,j=1

biaijc
3
j = 1

20

s∑
i,j,k=1

biaijajkck
3 = 1

120

s∑
i,j,k=1

biaijcjajkck = 1
40

s∑
i,j,k,l=1

biaijajkckaklcl = 1
240

s∑
i,j,k=1

biciaijajkc
2
k = 1

60

s∑
i,j,k,l=1

biaijajkaklcl
2 = 1

360

s∑
i,j,k,l=1

biaijajkaklcl = 1
120

s∑
i,j,k,l,m=1

biaijajkaklalmcm = 1
720

s∑
i,j,k=1

biaijcjaikck = 1
20

(10)

We select some coefficients giving them constant values in order to simplify
the calculations afterwards: a64 = −11

80
,b2 = 0, b6 = 0, b7 = 5

66
, c2 = 1

6
, c3 = 4

15
,

c4 = 2
3
, c5 = 4

5
, c6 = 1, c7 = 0 and c8 = 1. After satisfying consistency con-

ditions (5) and 6th algebraic order conditions (9), the coefficients depend now
on a86 and a73.

At this point we have two options: To create a method with constant coeffi-
cients, which has finite order of phase-lag, or to create a method with variable
coefficients, which has infinite order of phase-lag.

In order to create a method with constant coefficients we expand the phase-lag
(after satisfying the above equations) using Taylor series.

phl =

(
175

1584
a8,6

2 − 8

22275
a7,3 +

2273

95040
a8,6 +

1

453600
− 28

297
a8,6a7,3

)
v7

+

(
− 7

396
a8,6

2 − 91

10800
a8,6 − 1

45360
+

112

7425
a8,6a7,3

)
v9

+

(
− 7

1188
a8,6

2 − 91

32400
a8,6 +

112

22275
a8,6a7,3 − 1

124740

)
v11 + . . .

By solving the coefficients of the lowest powers of the series for a86 and a73,
we achieve a higher order of phase-lag. So for

a7,3 =
−20640763 + 338935

√
1705

−29183616 + 1411200
√

1705
and a8,6 = − 61

10584
+

1

10584

√
1705
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phase-lag becomes

phl = − 1

1496880
v11 − 1

3603600
v13 − 1151

10216206000
v15 + . . .

which means that the new method has 10th order of phase-lag. The coeffi-
cients of the new method are given below:

a21 =
1

6
, a31 =

4

75
, a32 =

16

75
, a41 = 1/6

3553 + 35
√

1705

−517 + 25
√

1705

a42 = −16/3
253 + 5

√
1705

−517 + 25
√

1705
, a43 =

75

2

11 +
√

1705

−517 + 25
√

1705

a51 = −4
407 +

√
1705

−517 + 25
√

1705
, a52 =

48

25

1859 + 25
√

1705

−517 + 25
√

1705

a53 = −8
253 + 5

√
1705

−517 + 25
√

1705
, a54 =

16

25

a61 = − 1

160

−251690417 + 3511589
√

1705(−517 + 25
√

1705
) (−61 +

√
1705
)

a62 =
12

5

−1539527 + 18650
√

1705(−517 + 25
√

1705
) (−61 +

√
1705
)

a63 = −11

64

−12057133 + 124801
√

1705(−517 + 25
√

1705
) (−61 +

√
1705
) , a64 = −11

80
, a65 =

231

128

a71 =
11

423360

−7871281 + 105085
√

1705

−517 + 25
√

1705
, a72 = −33

20

−341 + 5
√

1705

−517 + 25
√

1705

a73 =
1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
, a74 = − 6347

141120
− 11

28224

√
1705

a75 =
12331

677376
+

275

677376

√
1705, a76 =

61

10584
− 1

10584

√
1705

a81 = − 1

211680

−341912329 + 4484125
√

1705

−517 + 25
√

1705

a82 = −24
110 +

√
1705

−517 + 25
√

1705
, a83 =

1

14112

16699507 + 527705
√

1705

−517 + 25
√

1705

a84 = − 13057

141120
+

11

28224

√
1705, a85 =

278729

677376
− 275

677376

√
1705

a86 = − 61

10584
+

1

10584

√
1705, a87 = 1

As regarded to the new method with variable coefficients we want to produce
the method that is corresponding to the previous method. This means that
the constant coefficients of the previous method must be equal to the limit of
the respective coefficients for v → 0. In order to achieve this we set
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a7,3 =
−20640763 + 338935

√
1705

−29183616 + 1411200
√

1705

that is the same as before and then we satisfy phl = 0 obtaining the value of
a8,6 as shown below together with the other coefficients:

a21 =
1

6
, a31 =

4

75
, a32 =

16

75

a41 =
23

24
− 192

5

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
+

75

22
a8,6

a42 = −3
512

5

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
− 100

11
a8,6

a43 =
65

24
+

125

22
a8,6 − 64

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705

a51 = −19

10
+

2304

25

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
− 90

11
a8,6

a52 =
164

25
− 6144

25

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
+

240

11
a8,6

a53 = −9/2 − 150

11
a8,6 +

768

5

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705

a54 =
16

25

a61 =
1

12800a8,6

(
−158600 a8,6 + 165 + 7096320 a8,6

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
− 630000 a8,6

2 − 50688
5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
+ 3200 a8,6(−11

80
)
)

a62 = − 1

1600a8,6

(
55 − 63800 a8,6 + 2365440 a8,6

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
210000 a8,6

2 − 16896
5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705

)
a63 = − 1

2560a8,6

(
72200 a8,6 − 2365440 a8,6

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
+ 210000 a8,6

2 − 55 + 16896
5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
+ 1600 a8,6(−11

80
)
)
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a64 = −11

80
, a65 =

55

32
− 5

8
(−11

80
)

a71 =
1

84480

−6700 a8,6 + 50688 5
66

1
56448

−20640763+338935
√

1705
−517+25

√
1705

− 275
5
66

a72 = − 1

10560

−1500 a8,6 + 16896 5
66

1
56448

−20640763+338935
√

1705
−517+25

√
1705

− 55
5
66

a73 =
1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
, a74 = − 1

192

60 a8,6 + 1
5
66

,

a75 =
5

1536

1 + 100 a8,6

5
66

, a76 = − 5

66

a8,6

5
66

a81 =
173

128
− 1584

25

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
+

191

32
a8,6 − 66

5

5

66

a82 = −83

20
+

4224

25

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705
− 15 a8,6

a83 =
891

256
+

525

64
a8,6 − 528

5

5

66

1

56448

−20640763 + 338935
√

1705

−517 + 25
√

1705

a84 = − 11

160
+

33

8
a8,6, a85 =

99

256
− 275

64
a8,6

a86 = − 1

211680

1

v4 (−25 + 4 tan (v) v)

(
2732 v5 tan (v)

√
1705 +

+171532 v5 tan (v) − 383611 v4 − 17075 v4
√

1705 +(
42149046944 v10 (tan (v))2 + 937250848 v10 (tan (v))2

√
1705 −

−7843714064 v9 tan (v)
√

1705 − 283759702864 v9 tan (v)

+601033675946 v8 + 12411851650 v8
√

1705 +

+40558023475200 (tan (v))2 v2−, 20279011737600 (tan (v))2 v4 +

+1689917644800 (tan (v))2 v6 − 56330588160 (tan (v))2 v8

+14082647040 v7 tan (v) − 3802314700800 v5 tan (v)

+86185799884800 tan (v) v3 − 253487646720000 tan (v) v

+2112397056000 v6 − 42247941120000 v4 + 253487646720000 v2
)1/2)

a87 = 1

4 Numerical Results

4.1 The resonance problem

The efficiency of the two new constructed methods will be measured through
the integration of problem (1) with l = 0 at the interval [0, 15] using the well
known Woods-Saxon potential
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V (x) =
u0

1 + q
+

u1 q

(1 + q)2
, q = exp

(
x − x0

a

)
, where (11)

u0 = −50, a = 0.6, x0 = 7 and u1 = −u0

a

and with boundary condition y(0) = 0.

The potential V (x) decays more quickly than l (l+1)
x2 , so for large x (asymptotic

region) the Schrödinger equation (1) becomes

y′′(x) =

(
l(l + 1)

x2
− E

)
y(x) (12)

The last equation has two linearly independent solutions k x jl(k x) and k xnl(k x),
where jl and nl are the spherical Bessel and Neumann functions. When x → ∞
the solution takes the asymptotic form

y(x) ≈ Ak x jl(k x) − B k x nl(k x)
≈ D[sin(k x − π l/2) + tan(δl) cos (k x − π l/2)],

(13)

where δl is called scattering phase shift and it is given by the following expres-
sion:

tan (δl) =
y(xi) S(xi+1) − y(xi+1) S(xi)

y(xi+1) C(xi) − y(xi) C(xi+1)
, (14)

where S(x) = k x jl(k x), C(x) = k x nl(k x) and xi < xi+1 and both belong to
the asymptotic region. Given the energy we approximate the phase shift, the
accurate value of which is π/2 for the above problem.

4.2 The Methods

We will compare the new constructed method to a wide range of already known
methods. These are explicit Runge-Kutta methods with algebraic order up to
six, some of which are optimized for solving problems with oscillating solutions
or Schrödinger equation specifically.

• Formulae Butcher (6th order), Fehlberg I (5th), Fehlberg II (6th), Fehlberg
4th, Fehlberg 5th, Kutta-Nyström (5th), England I (4th), England II
(5th) and Gill (4th) from [1].

• Formulae 3.3 (5-2-2), 3.4 (4-2-6), 3.5 (6-2-10), 3.7 (4-4-6), 3.8 (5-4-8), 3.9
(6-4-10), 3.13 (3-2-2), 3.14 (4-1-2), 3.15 (5-1-2) and 3.17 (3-1-12) from
[6]. In parentheses there are the number of stages, the algebraic order
and the order of phase-lag respectively.

• The well known classical Runge-Kutta method with 4 stages and 4th
algebraic order and the method of Zonneveld with 6 stages and 5th al-
gebraic order.
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• The trigonometrically fitted method of Vande Berghe et al. with 4 stages
and 4th algebraic order from [8].

• The two trigonometrically fitted methods of Anastassi and Simos based
on the classical method of England with 6 stages, 5th algebraic order
and exponential orders one and two [9].

• The two trigonometrically fitted methods of Anastassi and Simos based
on the classical method of Kutta-Nyström with 6 stages, 5th algebraic
order and exponential orders one and two [10].

• The two trigonometrically fitted methods based on the classical method
of Fehlberg I with 6 stages, 5th algebraic order and exponential orders
one and two.

• The trigonometrically fitted method based on the classical method of
Butcher with 8 stages, 6th algebraic order and first exponential order.

• The two new formulae 8-6-Inf and 8-6-10 constructed in this paper, where
A-B-C means that the method has A stages, algebraic order B and phase-
lag order C.

4.3 Comparison

We will use four values for the energy: 989.701916, 341.495874, 163.215341
and 53.588872. As for the frequency w we will use the suggestion of Ixaru and
Rizea [7]:

w =

{√
E − 50 x ∈ [0, 6.5]√
E x ∈ [6.5, 15]

(15)

We present the accuracy of the tested methods expressed by the − log10(error
at the end point) when comparing the phase shift to the actual value π/2 ver-
sus the log10(total function evaluations). The function evaluations per step
are equal to the number of stages of the method multiplied by two that is
the dimension of the vector of the functions y(x) and z(x) of the resonance
problem. In Figures 1 - 3 we use E = 989.701916, in Figures 4 - 6 we use
E = 341.495874, in Figures 7 - 9 we use 163.215341 and in Figures 10 - 12 we
use 53.588872. The methods are divided into three groups depending on their
efficiency with the first group including the most efficient ones.

As we see in the figures, the new method with constant coefficients is the most
accurate among all the methods and for all values of energy. It also has the
advantage of being independent from the frequency of the problem and the
step-length. The second method developed in this paper that has variable co-
efficients is more accurate than all the other known methods when searching
for high accuracy and this can be more clearly seen for the low values of energy
(163.215341 and 53.588872).
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Efficiency (E=989.701916)

0

1

2

3

4

5

6

7

8

9

10

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

Log10 (Function Evaluations)

A
cc

u
ra

cy

New 8 6 10

New 8 6 Inf

Kutta Nystrom 5th (2nd)

Fehlberg I 5th (2nd)

England II 5th (2nd)

Fehlberg II 6th

Fehlberg I 5th (1st)

Kutta Nystrom 5th (1st)

England II 5th (1st)

Zonneveld 5th

Figure 1: Efficiency for the first group of methods using E = 989.701916
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Figure 2: Efficiency for the second group of methods using E = 989.701916
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Efficiency (E=989.701916)
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Figure 3: Efficiency for the third group of methods using E = 989.701916
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Figure 4: Efficiency for the first group of methods using E = 341.495874
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Figure 5: Efficiency for the second group of methods using E = 341.495874
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Figure 6: Efficiency for the third group of methods using E = 341.495874
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Figure 7: Efficiency for the first group of methods using E = 163.215341
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Figure 8: Efficiency for the second group of methods using E = 163.215341
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Figure 9: Efficiency for the third group of methods using E = 163.215341

Efficiency (E=53.588872)
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Figure 10: Efficiency for the first group of methods using E = 53.588872
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Figure 11: Efficiency for the second group of methods using E = 53.588872
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Figure 12: Efficiency for the third group of methods using E = 53.588872
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Among the rest of the methods the ones that were competitive were the
exponentially-fitted versions of Kutta-Nyström, Fehlberg I and England II.
Especially the second exponential order methods were very efficient followed
by the first exponential order methods of the families. The high efficiency of
all optimized methods is more clear for high values of energy.

Method of Zonneveld and high phase-lag order methods from [6], like 6-4-10,
5-4-8 etc. were next in order of efficiency followed by the classical methods
found in [1], i.e. Fehlberg 5th, Kutta-Nyström 5th etc., the optimized method
of Vande Berghe, followed by the low algebraic and phase-lag order methods.

5 Conclusions

Two new explicit Runge-Kutta methods with eight stages, sixth algebraic order
and order of phase-lag infinite and tenth are produced in this paper. After
applying the new methods and a great variety of known methods we conclude
that the newly developed methods are highly efficient when integrating the
Resonance problem. This reveals the importance of phase-lag when solving
ODEs with oscillating solutions, especially in the case of non-zero phase-lag,
that is when we want to produce a method with constant coefficient.
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