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Abstract

Most of the chemical reactions are modelled as initial value problems
(IVP) where the derivative can be expressed as a quadratic function of
the dependent variable. Some of the variables in these IVPs change
rapidly as time progresses, whereas others vary very slowly, indicat-
ing the presence of stiffness. Singly Diagonal Implicit Runge–Kutta
(SDIRK) pairs possess an interesting alternative for dealing with such
problem. Software SDIRK4 applies a five stage pair SDIRK method
of accuracy orders 4(3). In this paper by exploiting the presence of
quadratic property, we derive a 5(3) order pair SDIRK methods at the
same cost. Numerical results over well known chemical kinetics prob-
lems justify our effort.

1 Introduction.

Chemical reaction problems are modelled through systems of ordinary differ-

ential problems of the form

y′ = f(x, y), y(x0) = y0, (1)

with y ∈ �m, y0 ∈ �m and x ∈ [x0, xf ]. Function f is defined in f : �m+1 →

�
m, while the vector y′ ∈ �m contains the corresponding derivatives of y.

Expression (1) is called Initial Value Problem.
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An interesting example is the classical Robertson problem [14], that models

the kinetics of an autocatalytic reaction . Let A, B and C be the chemical

species involved with corresponding concentrations 1y,2 y and 3y and if k1,k2

and k3 are the rates constants, then the structure of the reactions is sa follows:

A
k1−→ B

B + B
k2−→ C + B

B + C
k3−→ A + C

Under the assumption of the mass action law for the rate functions and some

idealized conditions, the mathematical modelling of the reaction is an IVP ,

of the form: ⎛⎜⎝ 1y
′

2y
′

3y
′

⎞⎟⎠ =

⎛⎜⎝ −0.04 1y + 104
2y 3y

0.04 1y − 104
2y 3y − 3 × 107

2y
2

3 × 107
2y

2

⎞⎟⎠ . (2)

This problem has initial conditions

1y(0) = 1, 2y(0) = 0, 3y(0) = 0. (3)

There are two things to take into consideration when dealing with such prob-

lems. First, the problem of stiffness is due to the large difference between the

reaction rate constants, and its small but very quick initial transient. This

phase is followed by a very smooth variation of the components where a large

step–size would be appropriate for a numerical method.

Second, as in most chemistry models only second–order (bimolecular) reactions

are taken into account, one mostly encounters functions that are quadratic in

y [11, p. 5].

The former fact obliges us to deal with implicit methods. The latter drives us

to derive methods with higher accuracy since we have to satisfy a smaller set

of conditions.
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2 Singly Diagonal Implicit Runge–Kutta meth-

ods.

The general s−stage embedded Runge-Kutta pair of orders p(p−1), for the ap-

proximate solution of the problem ( 1) can be defined by the following Butcher

scheme [2, 3]
c A

b

b̂

where A ∈ �s×s is strictly lower triangular, bT , b̂T , c ∈ �s with c = A · e

and e = [1, 1, · · · , 1]T ∈ �s. The vectors b̂, b define the coefficients of the

(p − 1)−th and p−th order approximations respectively.

Starting with a given value y(x0) = y0, this method produces approximations

at the mesh points x0 < x1 < x2 < · · · < xf . Throughout this paper, we

assume that local extrapolation is applied, hence the integration is advanced

using the p−th order approximation. For estimating the error, two approxi-

mations are evaluated at each step from xn to xn+1 = xn + hn. These are:

ŷn+1 = yn + hn

s∑
j=1

b̂jfj and yn+1 = yn + hn

s∑
j=1

bjfj, (4)

where

fi = f(xn + cihn, yn + hn

s∑
j=1

aijfj), i = 1, 2, · · · , s. (5)

The local error estimate En = ‖yn − ŷn‖ of the (p− 1)−th order Runge-Kutta

pair is used for the automatic selection of the step size. Given a tolerance

parameter TOL, if TOL > En the algorithm:

hn+1 = 0.9 · hn · (TOL

En

)
1
p , (6)

provides the next step length. In case TOL ≤ En we reject the current step

and retry by estimating a new stepsize using the same formula (6) replacing

in the left side hn+1 by hn.

Let yn(x) be the solution of the local initial value problem,

y′
n(x) = f(x, yn(x)), x ≥ xn, yn(xn) = yn.
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. Then En+1 is an estimate of the error of the local solution yn(x) at x = xn+1.

The method (4-5) is implicit as fi is involved in both the right and left part of

nonlinear (generally) equation (5). Thus fi’s can not be evaluated explicitly

and nonlinear systems of equations have to be solved. This system shares

(m × s) equations with (m × s) unknowns. In each step we have to apply a

modified Newton iteration scheme inverting the matrix Im×s − hA ⊗ ϑf
ϑy

.

For a method to be called Singly Diagonal Implicit has to satisfy

aii = d, i = 1, 2, · · · , s and aij = 0, for j > i. (7)

What we gain from this fact is that we have to deal with s systems with m

unknowns. Thus Newton method involves the inversion of the much easier

Im − h dϑf
ϑy

. Here we treat the stages one after the other and the specific

matrix is common for all stages when implementing the Newton method.

The reason of using implicit methods instead of the explicit ones is the concept

of A–stability which is essential when dealing with stiff systems. In this concept

we consider problem (1) having the form:

y′ = λy, (8)

with Re(λ)< 0. When a Runge–Kutta method is applied to (8) it yields

yn+1 = (1 + hλb(Im − hλA)−1 · e) · yn,

with e = [1, 1, · · · , 1] ∈ �s. We set z = λh and R(z) = 1 + zb(Im − zA)−1 · e.
Then, a method is called A–stable if and only if |R(z)| < 1 for every z with

Re(z)< 0. Only implicit methods can be A–stable therefor we choose to work

with such methods only.

Another useful property is L–stability. A method is called L–stable if it is

A–stable and in addition

lim
z−>∞R(z) = 0. (9)

An L–stable method damps out the transient phase much faster.

- 700 -



3 Derivation of the new method.

Let us now consider the quadratic ordinary differential equation:

ky
′ = αk +

m∑
i=1

βki iy +
m∑

i=1

m∑
j=1

γki iy jy (10)

for k = 1, 2, · · · ,m.

The coefficients A, b and c of a conventional Runge–Kutta method have to

satisfy certain conditions in order to attain an prescribed order of accuracy.

These are given in Table 1 for a method of order five. The interested reader

may see [9] for further details.

be = 1, bc = 1
2 , bc2 − 1

3 , bAc = 1
6 , 1

4bc3 = 1
24 ,

b(c ∗ Ac) = 1
8 , bAc2 = 1

12 , bA2c = 1
24 bc4 = 1

5 , bAc3 = 1
20 ,

b(c ∗ Ac2) = 1
15 , b(c2 ∗ Ac) = 1

10 , bA2c2 = 1
60 , b(c ∗ A2c) = 1

30 , bA3c = 1
120 ,

bA (c ∗ Ac) = 1
40 , b (Ac)2 = 1

20 .

Table 1: Order conditions for a fifth order Runge–Kutta method.

When dealing with problems of the form (10) there is no need to satisfy all

these seventeen equations but only the equations given in Table 2 [12].

be = 1, bc = 1
2 , bc2 − 1

3 , bAc = 1
6 , b(c ∗ Ac) = 1

8 ,

bAc2 = 1
12 , bA2c = 1

24 , b(c ∗ Ac2) = 1
15 , bA2c2 = 1

60 , b(c ∗ A2c) = 1
30 ,

bA3c = 1
120 , bA (c ∗ Ac) = 1

40 , b (Ac)2 = 1
20 .

Table 2: Order conditions for a fifth order quadratic Runge–Kutta method.

The thirteen equations of Table 2 and the four equations b̂e = 1, b̂c = 1
2
,

b̂c2 − 1
3
, b̂Ac = 1

6
, involving b̂, form a set of conditions needed to derive a pair

of orders five and three.

We consider a five stages pair as in [10, p. 100]. That pair had orders four and

three, whereas we indent to construct a pair attaining orders five and three.

The twenty free parameters are c1 = d, c2, c3, c4, c5, a32, a42, a43, a52, a53, a54,

b1, b2, b3, b4, b5 and b̂1, b̂2, b̂3, b̂5. The rest coefficients are defined by (7) and the
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d = 0.2780538411364523 c2 = −0.3676844045443509 c3 = 0.4026030661794143
c4 = 1.477424060656945 c5 = 0.4789677054135209 a21 = −0.6457382456808033
a31 = −0.09776783840898377 a32 = 0.2223170634519457 a41 = −0.03971759296778165
a42 = 0.09093113685756394 a43 = 1.14815667563071 a51 = 0.4516391997886194
a52 = 0.0402931106382387 a53 = −0.01906448555386518 a54 = −0.02897550714589753
b1 = 0.438321681756929 b2 = 0.02688635109307992 b3 = 0.03745399288026874
b4 = 0.01837026885620139 b5 = 0.4789677054135209 b̂1 = 0.3938856814975873
b̂2 = 0.04758554768869072 b̂3 = −0.01486594344074314 b̂5 = 0.5733947142544651

Table 3: The new pair.

obligatory assumption A · e = c. We set b̂4 = 0 to distinguish lower order

weights from the higher order ones.

We solved the seventeen equations of Table– 2 and demanded |R(z)| < 1 for

x ∈ C− = {z : Re(z) ≤ 0}. We also required L-stability property (9). The

coefficients of the resulting pair are listed in Table– 3.

Observe that the propagation function is

R(z) ≈ 1 − 0.390269z − 0.11713z2 + 0.0296971z3 + 0.0114377z4

1 − 1.39027z + 0.773139z2 − 0.214974z3 + 0.298872z4 − 0.00166205z5
.

Starting the process of deriving the coefficients we had to nullify the factor

of z5 in the numerator of R(z). This leads to the polynomial equation 1
120

−
5
24

c1 + 5
3
c2
1 − 5c3

1 +5c4
1 − c5

1 = 0. The latter polynomial has five real roots. Only

the chosen one lies in the interval that ensures L–stability [10, p. 98].

For this method we have constructed a third order continuous extension

yn+1 = yn + hn

s∑
j=1

bj(ϑ)fj = y(xn + ϑhn) + O(h4
n)

with

b1(ϑ) = 1.43485027951414766 ϑ − 1.19504225595235896 ϑ2

− 0.183116142941936452 ϑ3 + 0.381629801137076787 ϑ4

b2(ϑ) = 0.215853035886902714 ϑ − 0.579087229303158891 ϑ2

+ 0.567891501264597077 ϑ3 − 0.177770956755260981 ϑ4

b3(ϑ) = −0.382391279532112815 ϑ + 2.04171664782253553 ϑ2

− 2.07121080238737550 ϑ3 + 0.449339426977221524 ϑ4
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b4(ϑ) = 0.0371406079784377094 ϑ − 0.0125127577943165203 ϑ2

− 0.164027002731974498 ϑ3 + 0.157769421404054698 ϑ4

b5(ϑ) = −0.305452643847375271 ϑ − 0.255074404772701160 ϑ2

+ 1.85046244679668937 ϑ3 − 0.810967692763092028 ϑ4.

This method is useful for implementation purposes as well.

4 Implementation and Numerical Experiments.

In order to test the behavior of our New Method we compare it its similar to

the 5-stage 4(3) order Diagonally Implicit Runge Kutta method of Hairer et.

al. ([10, p. 100]). The numerical tests were done using the code SDIRK4, given

in [8]. The implementation procedure in this code is thoroughly explained in

[10, pp. 118-128]. The code was modified to apply our method too. This

modifications take into account the fact that our method is of order five and

that in our case the coefficients of the last stage are not equal to the bi’s. The

difference in the order of the methods force us to change slightly the stepsize

control mechanism from the formula (6) used by the code to the formula:

hn+1 = 0.9 · hn · ( TOL

‖En‖ 5
4

)
1
5 .

when our method is used to integrate the problems. Since En = O(h4),

the above step-size change algorithm is asymptotically correct. Following

the SDIRK4 code implementation we use the continuous solution of the new

method too.

We have chosen four quadratic test problem originated from Chemical En-

gineering. We have solved the problems for various values of the tolerance

parameter TOL (10−6 − 10−10) and we have measured, in a reference solu-

tion point tf , the absolute maximum error (maxer), the number of function

evaluations (feval), the Jacobian evaluations (jeval), the total number of steps

(nstep) and finally the number of rejected steps (nrej). For each problem
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we present a table containing the results and we have plotted an Efficiency

Curve graph where we plot (log10(feval), log10(maxer)) for each value of the

tolerance parameter TOL.

The problems chosen for the tests are the following.

4.1 The Robertson Problem

The problem has been integrated on the interval [0..1011] with initial stepsize
h0 = 10−6. As a reference solution at the end of the integration interval tf has
been taken from the source of the test set [13].

1y(tf ) = 0.208334015 × 10−7, 2y(tf ) = 0.8333 × 10−13, 3y(tf ) = 0.999999979166505

The results for this problem are presented in Table 4 and in Figure 1.

Method tol maxer feval jeval nstep rej
SDIRK4 10−6 0.3344E − 08 1987 145 171 0

10−7 0.7899E − 09 3322 229 277 1
10−8 0.5601E − 09 5793 402 475 2
10−9 0.9838E − 10 10729 682 840 11
10−10 0.1480E − 09 18930 1172 1448 18

New 10−6 0.2640E − 08 1966 117 135 0
10−7 0.1288E − 07 2398 155 173 0
10−8 0.1825E − 09 3567 256 270 1
10−9 0.8130E − 11 5438 421 436 1
10−10 0.4879E − 11 9024 724 745 3

Table 4: Robertson results

4.2 The Hires problem

The ’High Irradiance Responses’ (Hires) problem [7, 15] is a problem of eight

nonlinear Ordinary Differential Equations which models the involvement of

light in photomorphogenenesis. The mathematical form of the problem is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1y
′

2y
′

3y
′

4y
′

5y
′

6y
′

7y
′

8y
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.71 1y + 0.43 2y + 8.32 3y + 0.0007)
1.71 1y − 8.75 2y

−10.03 3y + 0.43 4y + 0.035 5y
8.32 2y + 1.71 3y − 1.12 4y

−1.745 5y + 0.43 6y + 0.43 7y
−280 6y 8y + 0.69 4y + 1.75 5y − 0.43 6y + 0.69 7y

280 6y 8y − 1.81 7y
−280 6y 8y + 1.81 7y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 1: The Robertson Problem Efficiency Comparison curves

with initial conditions being

1y(0) = 1, 2y(0) = 3y(0) = 4y(0) = 5y(0) = 0 = 6y(0) = 7y(0) = 0, 8y(0) = 0.0057.

The above nonlinear system of odes has been integrated on the interval [0..321.8122]

with initial stepsize h0 = 10−6 and the reference solution ([13]) on tf is

1y(tf ) = 0.7371312573325668 × 10−3, 2y(tf ) = 0.1442485726316185 × 10−3,

3y(tf ) = 0.5888729740967575 × 10−4, 4y(tf ) = 0.1175651343283149 × 10−2,

5y(tf ) = 0.2386356198831331 × 10−2, 6y(tf ) = 0.6238968252742796 × 10−2,

7y(tf ) = 0.2849998395185769 × 10−2, 8y(tf ) = 0.2850001604814231 × 10−2.

The results for the HIRES problem are given in Table 5 and in Figure 2.

4.3 The Orego Problem

The third problem, maned Oregonator, which was named after The University

of Oregon where in 1972 was proposed to model the Belousov-Zhabotinskii
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Method tol maxer feval jeval nstep rej
SDIRK4 10−6 0.1066E − 05 1005 40 100 1

10−7 0.1519E − 05 1628 71 176 2
10−8 0.9175E − 07 3096 136 341 1
10−9 0.1035E − 06 6461 274 726 2
10−10 0.1014E − 07 13612 510 1539 0

New 10−6 0.4356E − 05 978 43 79 0
10−7 0.1904E − 06 1625 71 134 3
10−8 0.1509E − 06 2941 109 263 12
10−9 0.2357E − 08 5498 196 522 0
10−10 0.3636E − 09 11850 381 1154 1

Table 5: Hires results

(BZ) reaction [6, 5]. It consist of a stiff system of three non-linear ODEs.⎛⎜⎝ 1y
′

2y
′

3y
′

⎞⎟⎠ =

⎛⎜⎝ 77.27(2y − 1y 2y + 1y − 8.375 × 10−6
1y

2)
1

77.27
(− 2y − 1y 2y +3 y)
0.161( 1y − 3y)

⎞⎟⎠
with initial conditions 1y(0) = 1, 2y(0) = 2, 3y(0) = 3.
When certain reactants, like bromous acid, bromide ion and cerium ion, are
combined, they exhibit a chemical reaction which after an induction period of
inactivity, oscillates with change in structure and in color, from red to blue and
viceversa. The problem has been integrated in the interval [0..360] with initial
stepsize h0 = 10−6. Again a reference solution at the end of the integration
interval tf has been taken from the source of the test set [13],

1y(tf ) = 1.00081487031852, 2y(tf ) = 1228.17852154988, 3y(tf ) = 132.055494284651.

Table 6 and Figure 3 present the numerical results for the Orego problem.

Method tol maxer feval jeval nstep rej
SDIRK4 10−6 0.1943E − 03 15871 921 1644 15

10−7 0.2343E − 04 34350 1582 3743 4
10−8 0.1859E − 05 75667 2716 8418 3
10−9 0.1507E − 06 168965 3801 18668 3
10−10 0.1433E − 07 374773 5506 41041 10

New 10−6 0.5638E − 04 15083 840 1240 7
10−7 0.1773E − 05 31348 1424 2786 4
10−8 0.1364E − 06 69532 2080 6474 2
10−9 0.1943E − 07 160876 2932 14907 3
10−10 0.7103E − 08 359600 4242 33473 1

Table 6: Orego results
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Figure 2: The HIRES Problem Efficiency Comparison curves

4.4 The F5 Problem

Our final choice is a model for chemical Kinetics known as F5 problem taken

from the Detest Test Set [4].⎛⎜⎜⎜⎝
1y

′

2y
′

3y
′

4y
′

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1011(−3 1y 2y + 0.0012 4y − 9 1y 3y)

−3 × 1011
1y 2y + 2 × 107

4y
1011(−9 1y 3y + 0.001 4y)

1011(3 1y 2y − 0.0012 4y + 9 1y 3y)

⎞⎟⎟⎟⎠ (11)

Its initial conditions are

1y(0) = 3.365×10−7, 2y(0) = 8.261×10−3, 3y(0) = 8.261×10−3, 4y(0) = 9.38×10−6.

The above system of ODEs has been integrated in the interval [0..100] with

initial stepsize h0 = 10−7 while the reference solution ([4]) on tf is:

1y(tf ) = 1.713564284690712 × 10−7, 2y(tf ) = 3.713563071160676 × 10−3,

3y(tf ) = 6.189271785267793 × 10−3, 4y(tf ) = 9.545143571530929 × 10−6.

Finally, the F5 problem numerical testing results are included in Table 7 and

in Figure 4.
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Figure 3: The Orego Problem Efficiency Comparison curves

4.5 Conclusions

Interpreting the results it is obvious that at least one digit of accuracy was

gained by using the new pair. This is justified since we manage to increase the

algebraic order of our method without any extra cost.

Method tol maxer feval jeval nstep rej
SDIRK4 10−6 0.2965E − 09 261 10 29 0

10−7 0.7597E − 11 392 16 41 0
10−8 0.3220E − 10 596 26 59 0
10−9 0.1908E − 10 1158 56 107 0
10−10 0.3069E − 10 2133 96 189 4

New 10−6 0.1868E − 11 293 11 27 1
10−7 0.1837E − 11 377 15 33 0
10−8 0.2080E − 11 550 24 47 1
10−9 0.3369E − 11 827 34 69 1
10−10 0.3176E − 11 1344 62 117 3

Table 7: F5 results
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Figure 4: The F5 Problem Efficiency Comparison curves
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