Comparing variable Zagreb M_1 and M_2 indices for acyclic molecules

Damir Vukičević*

Department of Mathematics, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia
E-mail: vukicevi@pmfst.hr

Ante Graovac

Department of Chemistry, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia and The R. Bošković Institute, P.O.B. 180, HR-10002 Zagreb, Croatia
E-mail: graovac@irb.hr

(Received April 4, 2007)

Abstract
Recently, it has been conjectured that $M_1/n \leq M_2/m$ holds for each simple graph $G=(V,E)$ with $n=|V|$ vertices and $m=|E|$ edges, where M_1 and M_2 are the first and second Zagreb index. This claim has been disproved in [1] for connected as well as for disconnected graphs, but it was shown that it holds for trees [2]. Here, we analyze generalizations of this claim for variable Zagreb indices of trees.

Introduction
The first and second Zagreb indices are among the oldest and best known topological indices (see [3-6] and references within) and they are defined as:

* The author to whom correspondence should be addressed
where V is the set of vertices, E is set of edges and d_i is degree of vertex i. These indices have been generalized to variable first and second Zagreb indices [7] defined as

$$\lambda M_1 = \sum_{i \in V} d_i^{2\lambda} \quad \text{and} \quad \lambda M_2 = \sum_{(i,j) \in E} \left(d_i d_j\right)^{\lambda}.$$

Recently, the system AutoGraphiX [8-9] proposed the following conjecture:

Conjecture 1. For all simple connected graphs G,

$$M_1/n \leq M_2/m$$

and the bound is tight for complete graphs. \square

In paper [1], this claim has been disproved for general graphs and in paper [2] it has been proved for trees. In paper [10] the generalization of this claim to the variable Zagreb indices have been analyzed for general graphs. Here, in the fourth paper in this series, we analyze variable Zagreb indices for trees.

We prove as our main result that:

Theorem 2. $\lambda M_1/n \leq \lambda M_2/m$ for all trees if and only if $\lambda \in [0,1]$.

Main results

The following Theorems A and B are given in paper [10] and Theorem C is given in paper [2]:

Theorem A. For all graphs G and all $\lambda \in [0,1/2]$, it holds that $\lambda M_1(G)/n \leq \lambda M_2(G)/m$.

Theorem B. Let $\lambda \in R \setminus [0,1]$ and G be any complete unbalanced bipartite graph. Then, $\lambda M_1(G)/n > \lambda M_2(G)/m$.

Here, unbalanced refers to different cardinalities of white and black vertices and complete denotes the fact that each white vertex is adjacent to all black vertices.

Theorem C. Let T be a tree with at least two vertices. Then, $M_1/n \leq M_2/m$. The equality holds if and only if T is star.

Since a star with at least three vertices is an unbalanced complete bipartite graph, it follows that it is sufficient to prove:
Proposition 3. \(\frac{\lambda}{n} M_1 \leq \frac{\lambda}{m} M_2 \) for all trees and for all \(\lambda \in (1/2, 1) \).

First, we prove that:

Proposition 4. Let \(v \) be vertex of tree \(T \) such that \(d_v \geq 2 \). Then, \(\lambda^2 M_1 - \lambda^2 M_2 \leq d_v^2 \) for all \(\lambda \in (1/2, 1) \).

Proof: Using the notation given in [2], we denote by \(u_1, \ldots, u_d \) the neighbors of \(v \), by \(T_j \) the component of graph \(T - v \) that contains \(u_j \), by \(E_i = E(T) \cup \{ \nu u_j \} \). Set \(E(T) \) is decomposed as \(E(T) = E_1 \cup E_2 \cup \ldots \cup E_{d_v} \). Similarly, as in [2], it can be shown that

\[
\lambda^2 M_1 - \lambda^2 M_2 = \sum_{q=1}^{d} \sum_{j \in E_q} \left(d_j^{2\lambda - 1} + d_j^{2\lambda - 1} - d_j^{2\lambda} d_j^{2\lambda} \right).
\]

Therefore, it is sufficient to prove that \(\alpha(T_q) = \sum_{j \in E_q} \left(d_j^{2\lambda - 1} + d_j^{2\lambda - 1} - d_j^{2\lambda} d_j^{2\lambda} \right) \leq d_v^{2\lambda - 1} \) for each \(q = 1, \ldots, d_v \). We prove the claim by induction on the number of vertices in \(T_q \). If \(T_q = 1 \), then \(E_q = \{ uv_q \} \) and \(d_v = 1 \). Hence, \(\sum_{j \in E_q} \left(d_j^{2\lambda - 1} + d_j^{2\lambda - 1} - d_j^{2\lambda} d_j^{2\lambda} \right) = d_v^{2\lambda - 1} + 1 - d_v^{2\lambda} \). We need to prove that: \(d_v^{2\lambda - 1} + 1 - d_v^{2\lambda} \leq d_v^{2\lambda - 1} \), i.e. that:

\[
d_v^{2\lambda - 1} + d_v^0 \leq d_v^{2\lambda - 1} + d_v^{2\lambda}.
\]

This follows from the fact that \(f_1(t) = d_v^t \) is a convex function (\(f_1^*(t) = d_v^t \cdot (\ln d_v)^2 \)). Now, suppose that \(T_q \) has \(x \) vertices and that claim holds for all graphs with less than \(x \) vertices. Suppose to the contrary that \(\alpha(T_q) = \sum_{j \in E_q} \left(d_j^{2\lambda - 1} + d_j^{2\lambda - 1} - d_j^{2\lambda} d_j^{2\lambda} \right) > d_v^{2\lambda - 1} \). Proceeding analogously as in [2], let \(l \) be any leaf, namely any vertex of degree 1, in \(T_q \) (different from \(u_q \)). Denote by \(l' \) the only neighbor of \(l \) and by \(N(l') \) the set of neighbors of \(l' \). Note that \(N(l') \) contains at least one vertex which is not a leaf. From the induction hypothesis, it follows that \(\alpha(T_q - l) < \alpha(T_q) \), hence:

\[
0 < \alpha(T_q) - \alpha(T_q - l) = \sum_{j \in E_q} \left(d_j^{2\lambda - 1} + d_j^{2\lambda - 1} - d_j^{2\lambda} d_j^{2\lambda} \right) - \left[\sum_{j \in E_q \setminus M} \left(d_j^{2\lambda - 1} + d_j^{2\lambda - 1} - d_j^{2\lambda} d_j^{2\lambda} \right) + \sum_{i \in N(l')} \left(d_i^{2\lambda - 1} + \left(d_j - 1 \right)^{2\lambda - 1} - d_j^{2\lambda} \cdot (d_v - 1)^{2\lambda} \right) \right]
\]
\[
\begin{align*}
&= \left(d_i^{2\lambda-1} + d_i^{2\lambda-1} - d_i^\lambda \cdot d_i^\lambda\right) - \\
&\sum_{\substack{\mathcal{E} \subseteq \mathcal{E}_d \subseteq \mathcal{E} \\
\mathcal{E} \in \mathcal{V}'(\mathcal{E}) \{\mathcal{I}\}}}
\left(\left[d_i^{2\lambda-1} + d_i^{2\lambda-1} - d_i^\lambda \cdot d_i^\lambda\right] - \left[d_i^{2\lambda-1} + (d_i - 1)^{2\lambda-1} - d_i^\lambda \cdot (d_i - 1)^\lambda\right]\right)
\end{align*}
\]

\[
= (1 + d_i^{2\lambda-1} - d_i^\lambda) + \left(\left[d_i^{2\lambda-1} - d_i^\lambda \cdot d_i^\lambda\right] - \left[(d_i - 1)^{2\lambda-1} - d_i^\lambda \cdot (d_i - 1)^\lambda\right]\right).
\]

In order to obtain a contradiction, it is sufficient to prove the following two claims:

Claim A \(\left[d_i^{2\lambda-1} - d_i^\lambda \cdot d_i^\lambda\right] - \left[(d_i - 1)^{2\lambda-1} - d_i^\lambda \cdot (d_i - 1)^\lambda\right] \leq 0\) for each \(d \in \mathcal{N}\).

Claim B \((1 + d_i^{2\lambda-1} - d_i^\lambda) + \left(\left[d_i^{2\lambda-1} - d_i^\lambda \cdot d_i^\lambda\right] - \left[(d_i - 1)^{2\lambda-1} - d_i^\lambda \cdot (d_i - 1)^\lambda\right]\right) \leq 0\) for each \(d \in \mathcal{N}, \ d \geq 2\).

Let us prove Claim A:

Proof of Claim A: Note that left hand-side is decreasing in \(d\), hence it is sufficient to prove it for \(d = 1\), i.e. we need to prove that:

\[
\left[d_i^{2\lambda-1} - (d_i - 1)^{2\lambda-1}\right] - \left[d_i^\lambda - (d_i - 1)^\lambda\right] \leq 0.
\]

Since \(2\lambda - 1 < \lambda\), it is sufficient to prove that function \(f_2(t) = d_i^\lambda - (d_i - 1)^\lambda\) is increasing function on \((1/2, 1)\) and this follows form \(f_2'(t) = d_i^\lambda \cdot \ln(d_i) - (d_i - 1)^\lambda \cdot \ln(d_i - 1) > 0\).

Now, let us prove Claim B:

Proof of Claim B: Again, note that left hand-side is decreasing in \(d\), hence it is sufficient to prove it for \(d = 2\), i.e. we need to prove that:

\[
(1 + d_i^{2\lambda-1} - d_i^\lambda) + \left(\left[d_i^{2\lambda-1} - d_i^\lambda \cdot d_i^\lambda\right] - \left[(d_i - 1)^{2\lambda-1} - 2^\lambda \cdot (d_i - 1)^\lambda\right]\right) \leq 0.
\]

This expression can be rewritten as:

\[
(1 + d_i^{2\lambda-1} - d_i^\lambda) + (1 - 2^\lambda) \cdot \left[d_i^\lambda - (d_i - 1)^\lambda\right] + \left(\left[d_i^{2\lambda-1} - d_i^\lambda\right] - \left[(d_i - 1)^{2\lambda-1} - (d_i - 1)^\lambda\right]\right) \leq 0. (*)
\]

Let us distinguish four cases:

CASE 1: \(d_i = 2\).

In this case \((*)\) becomes \(1 + 2^{2\lambda-1} - 2^\lambda + (1 - 2^\lambda) \cdot (2^\lambda - 1) + \left(2^{2\lambda-1} - 2^\lambda\right) \leq 0\) and here equality obviously holds.
CASE 2: $\lambda \leq 0.99$, $d_i \geq 35$.

From the proof of Claim A, it follows that the third summand in (*) is negative, the second summand is obviously negative, hence (*) holds if $1 + d_{i,2^{k-1}} - d_{i,1} \leq 0$. Note that $f_3(t) = 1 + t^{2^{k-1}} - t^1$ is decreasing on $(1, +\infty)$ in d, because $2\lambda - 1 < \lambda$ implies that $f_3'(t) = (2\lambda - 1) \cdot t^{2^{k-2}} - \lambda \cdot t^{-1} = t^{-1} \cdot \left[(2\lambda - 1) \cdot t^{2^{k-1}} - \lambda \cdot t^1 \right] < 0$. Hence, it is sufficient to show that $1 + 35^{2^{k-1}} - 35^1 \leq 0$. The last inequality can be rewritten as $\frac{1}{35} \cdot (35^1)^2 - 35^1 + 1 \leq 0$.

Solving $\frac{1}{35} \cdot t^2 - t + 1 \leq 0$ one gets: $\frac{1}{2} \left(35 - \sqrt{1085} \right) \leq t \leq \frac{1}{2} \left(35 + \sqrt{1085} \right)$. Note that $\frac{1}{2} \left(35 - \sqrt{1085} \right) \leq 35^{1/2} \leq 35^1 \leq 35^{0.99} \leq \frac{1}{2} \left(35 + \sqrt{1085} \right)$, hence this case is proved.

CASE 3: $\lambda \leq 0.99$, $3 \leq d_i < 34$.

Let $f_d, f_u : (0.5, 0.99) \to \{0.500, 0.501, ..., 0.989, 0.990\}$ be two functions that round down and up the number to the nearest $1/1000$. More formally $f_d(t) = \frac{1}{1000} \cdot \lfloor 1000t \rfloor$ and $f_u(t) = \frac{1}{1000} \cdot \lceil 1000t \rceil$, where $\lfloor t \rfloor$ is the greatest integer $\leq t$ and $\lceil t \rceil$ is the smallest integer $\geq t$. Note that:

$$
\left(1 + d_{i,2^{k-1}} - d_{i,1} \right) + \left(1 - 2^{k} \right) \cdot \left(d_{i,1} - (d_i - 1)^1 \right) + \left[\left(d_{i,2^{k-1}} - d_{i,1} \right) - \left((d_i - 1)^{2^{k-1}} - (d_i - 1)^1 \right) \right] \leq \\
\left(1 + d_{i,2^{k-1}} - d_{i,1} \right) + \left(1 - 2^{k} \right) \cdot \left(d_{i,1} - (d_i - 1)^1 \right) + \left[\left(d_{i,2^{k-1}} - d_{i,1} \right) - \left((d_i - 1)^{2^{k-1}} - (d_i - 1)^1 \right) \right].
$$

Hence, it is sufficient to prove that:

$$
\left(1 + d_{i,2^{(r+0.001)-1}} - d' \right) + \left(1 - 2^{(r+0.001)} \right) \cdot \left(d' - (d - 1)^{(r+0.001)} \right) + \\
\left[d_{i,2^{(r+0.001)-1}} - d' \right] - \left[(d - 1)^{2^{(r+0.001)-1}} - (d - 1)^{(r+0.001)} \right] \leq 0.
$$

For each $3 \leq d \leq 34$ and each $t \in \{0.500, 0.501, ..., 0.989\}$ a computer check shows that this is true.

CASE 4: $\lambda > 0.99, d \geq 3$.

From the proof of Claim 1, it follows that it is sufficient to prove that:
\[(1 + d_{\mu}^{2k-1} - d_{\mu}^{3}) + (1 - 2^4) \cdot (d_{\mu}^{3} - (d_{\mu} - 1)^{3}) \leq 0,
\]
or equivalently that:
\[d_{\mu}^{3} - d_{\mu}^{2k-1} + (2^4 - 1) \cdot (d_{\mu}^{3} - (d_{\mu} - 1)^{3}) - 1 \geq 0.
\]
Using the Lagrange theorem, one gets that \[d_{\mu}^{3} - d_{\mu}^{2k-1} = \ln d_{\mu} \cdot (1 - \lambda) \cdot d_{\mu}^{3} \] for some \(t \in (2\lambda - 1, \lambda)\). Hence,
\[d_{\mu}^{3} - d_{\mu}^{2k-1} \geq \ln d_{\mu} \cdot (1 - \lambda) \cdot d_{\mu}^{2k-1}.
\]
Analogously, \[d_{\mu}^{3} - (d_{\mu} - 1)^{3} = 1 \cdot \lambda \cdot t^{3-1} \] for some \(t \in (d_{\mu} - 1, d_{\mu})\). Hence,
\[d_{\mu}^{3} - (d_{\mu} - 1)^{3} \geq 1 \cdot \lambda \cdot d_{\mu}^{3-1}.
\]
It follows that:
\[d_{\mu}^{3} - d_{\mu}^{2k-1} + (2^4 - 1) \cdot (d_{\mu}^{3} - (d_{\mu} - 1)^{3}) - 1 \geq \ln d_{\mu} \cdot (1 - \lambda) \cdot d_{\mu}^{2k-1} + \lambda \cdot d_{\mu}^{3-1} - 1 \geq \]
\[
\geq (1 - \lambda) \cdot d_{\mu}^{2k-1} + \lambda \cdot d_{\mu}^{3-1} - 1.
\]
Therefore, it is sufficient to prove that:
\[(1 - \lambda) \cdot d_{\mu}^{2k-1} + \lambda \cdot d_{\mu}^{3-1} - 1 \geq 0.
\]
Note that function \(f_{4}(t) = (1 - \lambda) t^{2k-1} + \lambda \cdot t^{3-1}\) is strictly increasing on \([3, +\infty)\), because
\[
f_{4}'(t) = (1 - \lambda) (2\lambda - 1) t^{2k-1} + \lambda \cdot (\lambda - 1) t^{3-1} = (1 - \lambda) \cdot t^{3-1} \cdot ((2\lambda - 1) \cdot t - \lambda) > 0.
\]
Hence, it is sufficient to prove that:
\[(1 - \lambda) \cdot 3^{2k-1} + \lambda \cdot 3^{3-1} - 1 \geq 0.
\]
Substituting \(t = 3^k\), the last inequality is transformed to:
\[
\frac{1 - \lambda}{3} \cdot 3^2 + \frac{\lambda}{3} \cdot 3 - 1 \geq 0.
\]
By taking into the account that \((1 - \lambda) / 3 > 0\) one gets that it is sufficient to show that:
\[
t \geq \frac{\lambda}{2(-1 + \lambda)} + \frac{1}{2} \sqrt{\frac{12 - 12\lambda + \lambda^2}{(-1 + \lambda)^2}},
\]
i.e. that:

\[3^i \geq \frac{\sqrt{\lambda^2 - 12\lambda + 12} - \lambda}{2(1-\lambda)}. \]

The last inequality can be rewritten as:

\[3^i \geq \frac{12-12\lambda}{2(1-\lambda)\left(\sqrt{\lambda^2 - 12\lambda + 12} + \lambda\right)} \]

\[3^i \geq \frac{6}{\sqrt{\lambda^2 - 12\lambda + 12} + \lambda} \]

Since, \(\sqrt{\lambda^2 - 12\lambda + 12} + \lambda \geq 2\sqrt{\left(\lambda^2 - 12\lambda + 12\right)\cdot \lambda^2} \), it is sufficient to prove that:

\[3^i \geq \frac{3}{\sqrt{\left(\lambda^2 - 12\lambda + 12\right)\cdot \lambda^2}} \]

\[\ln\left(\lambda^4 - 12\lambda^3 + 12\cdot \lambda^2\right) \geq (4 - 4\lambda)\cdot \ln 3. \]

Since, left and right-hand sides are equal to 0 for \(\lambda = 1 \), it is sufficient to prove that the first derivative of the left hand-side is smaller then the first derivative of the right hand-side, i.e. that:

\[\frac{4\lambda^3 - 36\lambda^2 + 24\lambda}{\lambda^4 - 12\lambda^3 + 12\cdot \lambda^2} \leq -4\ln 3, \]

or equivalently that:

\[\frac{-4\lambda^3 + 36\lambda^2 - 24\lambda}{\lambda^4 - 12\lambda^3 + 12\cdot \lambda^2} \geq 4\ln 3. \]

This follows from:

\[\frac{-4\lambda^3 + 36\lambda^2 - 24\lambda}{\lambda^4 - 12\lambda^3 + 12\cdot \lambda^2} \geq \frac{-4\cdot 1^3 + 36\cdot 0.99^2 - 24\cdot 1}{1^4 - 12\cdot 0.99^3 + 12\cdot 1^2} = \frac{7.2836}{1.356412} \geq 5 \geq 4\ln 3. \]

This proves Claim B. ■

From Proposition 4, the proof of Proposition 3 goes in a complete analogy with the proof of Theorem 2 in [2]:
Proof: If $T = K_2$, the claim obviously holds, hence suppose that $T \neq K_2$. Let v be vertex of the smallest degree d_v larger than 1. Since no two vertices of degree 1 are adjacent, it follows that $\lambda M_2 \geq m \cdot (1 \cdot d_v)^\lambda$. We have:

$$\frac{\lambda M_1}{\lambda M_2} \leq \left\{ \text{from Theorem 1} \right\} \leq \frac{\lambda M_2 + d_v\lambda}{\lambda M_2} = 1 + \frac{d_v\lambda}{\lambda M_2} \leq \left\{ \text{the last expression is decreasing in } \frac{\lambda M_1}{\lambda M_2} \right\} \leq \left\{ \text{hence, it is minimal for } \frac{\lambda M_1}{\lambda M_2} = \frac{m}{m} \right\} \leq 1 + \frac{d_v\lambda}{m \cdot d_v\lambda} = \frac{m+1}{m} = \{ T \text{ is tree, hence } m = n-1 \} = \frac{n}{m}.$$

From here, it follows that: $\lambda M_1 / n \leq \lambda M_2 / m$. ■

Acknowledgment

Partial support of the Croatian Ministry of Science, Education and Sports (Grants “Mathematical models in chemistry” and “Modeling of molecules and materials by methods of mathematical and computational chemistry”) is gratefully acknowledged.

References