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Abstract

The nullity of a graph is the multiplicity of the eigenvalues zero in its spectrum. In
this papers, we obtain the nullity set of n−vertex bicyclic graphs, and characterize
the bicyclic graphs with maximal nullity.

1 Introduction

Let G be a simple undirected graph with vertex set V and edge set E. The number

of vertices of G is denoted by v(G). For any v∈V , the degree and neighborhood of v are

denoted by d(v) and N(v), respectively. If W is a subset of V , the subgraph induced by

W is the subgraph of G by tacking the vertices in W and joining those pairs of vertices

in W which are joined in G. We write G − {v1, v, . . . , vk} for the graph obtained from G

by removing the vertices v1, v2, . . . , vk and all edges incident to any of them. The disjoint

union of two graphs G1 and G2 is denoted by G1∪G2. The null graph of order n is the
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graph with n vertices and no edges. As usual, the complete graph, cycle, path and star

of order n denoted by Kn, Cn, Pn and Sn, respectively. An isolated vertex is sometimes

denoted by K1 .

The adjacency matrix A(G) of a graph G with the vertex set V (G) = {v1, v2, . . . , vn}
is the n×n symmetric matrix [aij ], such that aij = 1 if vi and vj are adjacent and 0,

otherwise. A graph is said to be singular(nonsingular) if its adjacency matrix A is a singu-

lar(nonsingular) matrix. The eigenvalues λ1, λ2, . . . , λn of A(G) are said to be the eigenval-

ues of the graph G, and to form the spectrum of this graph. The number of zero eigenvalues

in the spectrum of the graph G is called its nullity and is denoted by η(G). Let γ(A(G))

be the rank of A(G). Clearly, η(G) = n − γ(A(G)). The following result is obvious.

Proposition 1.1. Let G be a graph of order n. Then η(G) = n if and only if G is a null

graph.

Proposition 1.2. Let G = G1∪G2∪· · ·∪Gt, where G1, G2, . . . , Gt are connected compo-

nents of G. Then η(G) =
t∑

i=1
η(Gi).

Definition 1.1[13]. An elementary graph is a simple graph, each component of which

is regular has degree 1 or 2. In other words, each component is a single edge(K2) or a

cycle(Cr). A spanning elementary subgraph of G is an elementary subgraph which contains

all vertices of G.

Proposition 1.3[13]. Let A be the adjacency matrix of a graph G. Then

detA =
∑

(−1)r(H)2s(H),

where the summation is over all spanning elementary subgraphs H of G.

In [1], Collatz and Sinogowitz first posed the problem of characterizing all graphs which

satisfy η(G) > 0. This question is of great interest in both chemistry and mathematics.

For a bipartite graph G, which correspond to an alternant hydrocarbon in chemistry, if

η(G) > 0, it is indicated in [2] that the corresponding molecule is unstable. The nullity of a

graph is also meaningful in mathematics since it is related to the singularity of A(G). The

problem has not yet been solved completely. Some results on trees, bipartite graphs and

unicyclic graphs are known (see[2,3,4]). More recent results can be fond in [5-12].

For trees the following theorem gives a concise formula.

Theorem 1.1[3]. If T is a tree of order n and m is the size of its maximum matchings,

then η(T ) = n − 2m.

If a tree contains a perfect matching, we call it a PM-tree for convenience. In fact,

Theorem 1.1 implies the following corollary.

Corollary 1.1. Let T be a tree of order n. The nullity η(T ) of T is zero if and only if T

is a PM-tree.
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A unicyclic graph is a simple connected graph with equal number of vertices and edges.

Denote by Un the set of all unicyclic graphs of order n.

Theorem 1.2[4]. For any U ∈ Un (n ≥ 5), η(U)≤n − 4.

Let Gn be the set of all graphs of order n, and let [0, n] = {0, 1, 2, . . . , n}. A subset N

of [0, n] is said to be the nullity set of Gn provided that for any k∈N , there exists at least

one graph G∈Gn such that η(G) = k.

Theorem 1.3[4]. The nullity set of Un(n ≥ 5) is [0, n − 4].

Theorem 1.4[4]. Let U ∈ Un (n ≥ 5). Then η(U) = n − 4 if and only if U∼=U∗
1 or U∼=U∗

2

or U∼=U∗
3 , where U∗

1 , U∗
2 and U∗

3 are shown in Fig.1.1.
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A bicyclic graph is a simple connected graph in which the number of edges equals the

number of vertices plus one. Denoted by Bn the set of all bicyclic graphs of order n. Let Ck

and Cl be two vertex-disjoint cycles. Suppose that v1 is a vertex of Ck and vq is a vertex

of Cl. Joining v1 and vq by a path v1v2. . .vq of length q − 1, where q ≥ 1 and q = 1 means

identifying v1 with vq, the resulting graph, denoted by B(k, q, l) shown in Fig.1.2, is called

an ∞−graph; Let Pl+1, Pp+1 and Pq+1 be three vertex-disjoint paths, where l, p, q ≥ 1,

and at most one of them is 1. Identifying the three initial vertices and terminal vertices of

them, respectively, the resulting graph, denoted by P (l, p, q) shown in Fig.1.2, is called a

θ−graph. Obviously, Bn consists of three types of graphs: first type denoted by B+
n is the

set of those graphs each of which is an ∞−graph with trees attached when q > 1; second

type denoted by B++
n is the set of those graphs each of which is an ∞−graph with trees

attached when q = 1; third type denoted by θn is the set of those graphs each of which is

an θ−graph with trees attached. Then Bn=B+
n

⋃
B++

n

⋃
θn.

In section 2, we determine the nullity set of Bn. In section 3, we characterize the bicyclic

graphs with maximal nullity.

1q
P

+

1p
P

+

1l
P

+

Fig.1.2

l
C

k
C

q
v

1
v

( , , )B k q l ( , , )P l p q

- 23 -



2 The nullity set of Bn

First, we introduce some lemmas.

Lemma 2.1[3]. A path with four vertices of degree 2 in a bipartite graph G can be replaced

by an edges without changing the value of η(G).

Lemma 2.2[3]. For a graph G containing a vertex of degree 1, if the induced subgraph H

of G is obtained by deleting this vertex together with the vertex adjacent to it, then the

relation η(H) = η(G) holds.

Lemma 2.3. Let G1, G2 and G3 be the graphs of order n shown in Fig.2.1, respectively.

Then η(G1) = 0, η(G2) = 1 and η(G3) =

{
2 n ≡ 0(mod2)
3 n ≡ 1(mod2)

.
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1
G 3

G

{ { {p pp

Fig.2.1

Proof. We can easy calculate that γ(A(G1)) = n, γ(A(G2)) = n − 1. Then η(G1) = 0,

η(G2) = 1. For the graph G3, if p ∈ [0, 3], it must be one of the following graphs shown in

Fig.2.2. If p ≥ 4, since it is a bipartite graph, it can be transformed into one of the graphs

shown in Fig.2.2 by Lemma 2.1 without changing its nullity. It is not difficult to get that

η(G1
3) = η(G3

3) = 2 and η(G2
3) = η(G4

3) = 3. Therefore η(G3) =

{
2 n ≡ 0(mod2)
3 n ≡ 1(mod2)

.
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Lemma 2.4. η(Cn) =

{
2 n ≡ 0(mod4)
0 otherwise

.

Proof. When n ≡ 0(mod2), by Lemma 2.1, since Cn is a bipartite graph, we can get that

η(Cn) =

{
2 if n ≡ 0(mod4)
0 if n ≡ 2(mod4)

When n ≡ 1(mod2), the spanning elementary subgraph of Cn is itself. Since r(Cn) = 0,

s(Cn) = 1, detA(Cn) = 2 �= 0 by Proposition 1.3. Thus η(Cn) = 0.

Lemma 2.4 is equivalent to the following
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Lemma 2.5. γ(A(Cn)) =

{
n − 2 n ≡ 0(mod4)
n otherwise

.

Lemma 2.6. For any G ∈B+
n (n ≥ 7), η(G)≤n − 6.

Proof. Let Ck, Cl are two vertex-disjoint cycles in G, we distinguish the following two

cases:

Case 1. k, l ∈ {3, 4}. There must exists one of graphs shown in Fig.2.1 as a vertex-induced

subgraph of G since G ∈B+
n . By Lemma 2.3, for each Gi (i = 1, 2, 3), we have γ(A(Gi)) ≥ 6.

Hence γ(A(G)) ≥ γ(A(Gi)) ≥ 6. Thus η(G)≤n − γ(A(Gi))≤n − 6.

Case 2. k ≥ 5 or l ≥ 5. Without loss of generally, we assume that k ≥ 5. There must exists

H1 shown in Fig.2.3 as a vertex-induced subgraph of G since G ∈B+
n . By Lemma 2.2, it is

easy to get that

η((H1)) =

{
1 if k ≡ 0(mod2)
0 if k ≡ 1(mod2)

Hence

γ(A(H1)) =

{
k if n ≡ 0(mod2)
k + 1 if n ≡ 1(mod2)

Since k ≥ 5, we have γ(A(H1)) ≥ 6. Therefore γ(A(G)) ≥ γ(A(H1)) ≥ 6. Thus η(G)≤n −
γ(A(H1))≤n − 6.

Theorem 2.1. The nullity set of B+
n (n ≥ 7) is [0, n − 6].

Proof. By Lemma 2.6, it suffices to show that for each k ∈ [0, n − 6], there exist a graph

G ∈B+
n such that η(G) = n − 6.

When k = 0, let G = G1 shown in Fig.2.1, we have η(G1) = 0; When 1≤k≤n − 7, let

G = G4 shown in Fig.2.3. Using Lemma 2.2 repeatedly, if n�=k(mod2), after n−k−5
2 steps,

we get P2
⋃

C3
⋃

kK1. Hence η(G) = η(P2
⋃

C3
⋃

kK1)= k. If n≡k(mod2), after n−k−4
2 steps,

we get P2
⋃

P2
⋃

kK1. Hence η(G) = η(P2
⋃

P2
⋃

kK1)= k; When k = n−6, let G = G5 shown

in Fig.2.3. By Lemma 2.2, we get P2
⋃

C4
⋃

(n−8)K1. Hence η(G) = η(P2
⋃

C4
⋃

(n−8)K1)=

n − 8 + 2 = n − 6.
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Lemma 2.7. For any G ∈B++
n (n ≥ 8), η(G)≤n − 6.
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Proof. Let Ck, Cl are two cycles in G, we distinguish the following two cases:

Case 1. k, l ∈ {3, 4}. There must exists one of the graphs shown in Fig.2.4 as a vertex-

induced subgraph of G since n ≥ 8. It is easy to calculate that η(G6) = η(G7) = η(G10) =

0, η(G8) = η(G9) = η(G11) = 1 and η(G12) = η(G13) = η(G14) = 2. For each Gi

(i = 6, 7, . . . , 14), we have γ(A(Gi)) ≥ 6. Hence γ(A(G)) ≥ γ(A(Gi)) ≥ 6. Thus η(G)≤n −
γ(A(Gi))≤n − 6.

Case 2. k ≥ 5 or l ≥ 5. Without loss of generally, we assume that k ≥ 5, There must exists

H1 shown in Fig.2.3 as a vertex-induced subgraph of G since G ∈B++
n . Similar to the proof

of Case 2 in Lemma 2.6, we have γ(A(H1)) ≥ 6. Hence γ(A(G)) ≥ γ(A(H1)) ≥ 6. Thus

η(G)≤n − γ(A(H1))≤n − 6.
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Theorem 2.2. The nullity set of B++
n (n ≥ 8) is [0, n − 6].

Proof. By Lemma 2.7, it suffices to show that for each k ∈ [0, n − 6], there exists a graph

G ∈B++
n such that η(G) = n − 6.

When k = 0, if n ≡ 1(mod2), let G = G15 shown in Fig.2.5, Using Lemma 2.2 repeatedly,

after n−5
2 steps, we get H3 shown in Fig.2.5. Hence η(G) = η(H3) = 0. If n ≡ 0(mod2),

let G = G16 shown in Fig.2.5, Using Lemma 2.2 repeatedly, after n−4
2 steps, we get P2

⋃
P2.

Hence η(G) = η(P2
⋃

P2)= 0; When 1≤k≤n − 6, if n�=k(mod2), let G = G17 shown in

Fig.2.5. Using Lemma 2.2 repeatedly, after n−k−5
2 steps, we get kK1

⋃
H3. Hence η(G) =

η(kK1
⋃

H3)= k. If n≡k(mod2), let G = G18 shown in Fig.2.5. Using Lemma 2.2 repeatedly,

after n−k−4
2 steps, we get kK1

⋃
P2

⋃
P2. Hence η(G) = η(kK1

⋃
P2

⋃
P2)= k.
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Lemma 2.8. For any G ∈ θn (n ≥ 6), η(G)≤n − 4.

Proof. Let Ck, Cl are two elementary cycles in G, we distinguish the following two cases:

Case 1. k, l ∈ {3, 4}, There must exists one of the graphs shown in Fig.2.6 as a vertex-

induced subgraph of G since n ≥ 6. It is easy to calculate that η(G19) = η(G25) = 0,

η(G20) = η(G21) = 1 and η(G22) = η(G23) = η(G24) = 2. For each Gi (i = 19, 20, . . . , 25),

we have γ(A(Gi)) ≥ 4. Hence γ(A(G)) ≥ γ(A(Gi)) ≥ 4. Thus η(G)≤n − γ(A(Gi))≤n − 4.

Case 2. k ≥ 5 or l ≥ 5. Without loss of generally, we assume that k ≥ 5. Since Ck is a

vertex-induced subgraph of G, by Lemma 2.5, γ(A(G)) ≥ γ(A(Ck)) ≥ 4. Hence η(G)≤n−4.
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Theorem 2.3. The nullity set of θn(n ≥ 6) is [0, n − 4].

Proof. By Lemma 2.8, it suffices to show that for each k ∈ [0, n − 4], there exists a graph

G ∈ θn such that η(G) = n − 4.

When k = 0, if n ≡ 1(mod2), let G = G26 shown in Fig.2.7. Using Lemma 2.2

repeatedly, after n−3
2 steps, we get C3. Hence η(G) = η(C3) = 0. If n ≡ 0(mod2), let

G = G27 shown in Fig.2.7. Using Lemma 2.2 repeatedly, after n−2
2 steps, we get P2. Hence

η(G) = η(P2)= 0; When 1≤k≤n − 6, let G = G28 shown in Fig.2.7. Using Lemma 2.2

repeatedly, if n�=k(mod2), after n−k−3
2 steps, we get kK1

⋃
C3. Hence η(G) = η(kK1

⋃
C3)=

k. If n≡k(mod2), after n−k−2
2 steps, we get kK1

⋃
P2. Hence η(G) = η(kK1

⋃
P2)= k; When

k = n − 5, let G = G29 shown in Fig.2.7. By Lemma 2.2, we get (n − 6)K1
⋃

H4, where

H4 is shown in Fig.2.7. Hence η(G) = η((n − 6)K1
⋃

H4)= n − 6 + 1 = n − 5; When

k = n − 6, let G = G30 shown in Fig.2.7. By Lemma 2.2, we get (n − 5)K1
⋃

P3. Hence

η(G) = η((n − 6)K1
⋃

P3)= n − 5 + 1 = n − 4.
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3 The bicyclic graph with maximal nullity

Theorem 3.1. Let G ∈B+
n (n ≥ 10). Then η(G) = n− 6 if and only if G∼=G∗

1 or G∼=G∗
2 or

G∼=G∗
3, where G∗

1, G∗
2 and G∗

3 are shown in Fig.3.1.
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Proof. If G∼=G∗
i (i = 1, 2, 3), it is easy to check that η(G) = n−6. So it is suffices to prove

the converse side of the theorem.

Let Ck, Cl be two vertex-disjoint cycles in G, we first prove the following two claims.

Claim 1. If G ∈B+
n (n ≥ 10), η(G) = n − 6, then k, l ∈ {3, 4}.

Otherwise, without loss of generality, we assume that k ≥ 5. We can find H2 shown in

Fig.3.2 as a vertex-induced subgraph of G. By Lemma 2.2 and 2.4, we easy get

η((H2)) =

{
0 k �= 0(mod4)
2 k ≡ 0(mod4)

Then

γ(A((H2))) =

{
k + 2 k �= 0(mod4)
k k ≡ 0(mod4)

Since k ≥ 5, we have γ(A((H2))) ≥ 7. Hence η(G)≤n − 7 < n − 6, a contradiction. So

Claim 1 holds.

k
C

2
H

Fig.3.2

Claim 2. If η(G) = n − 6 (n > 9) and k, l ∈ {3, 4}, then there exists at least one pendent

vertex in G.
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Otherwise, G must be the one of graphs shown in Fig.2.1 since G ∈B+
n and n > 9. By

Lemma 2.3, for each Gi (i = 1, 2, 3), we have η(Gi) < n − 6, a contradiction. So Claim 2

holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let G1 = G11
⋃

G12
⋃

. . .
⋃

G1t

be the graph obtained by deleting x, y from G, where G11, G12, . . . , G1t are connected com-

ponents of G1. At least one of G1i (i = 1, 2, . . . , t) is nontrivial. Otherwise, G would be a

star.

In fact, there are at most two nontrivial components in G1. Otherwise, we assume

that G11, G12, G13 are three nontrivial components in G1. Let v(G11) = n1, v(G12) = n2

and v(G13) = n3. At least one of G11, G12, G13 contains pendant vertices since G ∈B+
n .

On the other hand, at least two of G11, G12, G13 contains pendant vertices, without loss of

generality, we assume that G11 and G12 contain pendent vertices. Let v be a pendent vertex

of G11 and u the adjacent vertex of v. Let G21 be the graph obtained by deleting u, v from

G11. Let w be a pendent vertex of G12 and p the adjacent vertex of w. Let G31 be the graph

obtained by deleting w, p from G12. Denote the graph G21
⋃

G31
⋃

G13
⋃

. . .
⋃

G1t by G2, and

obviously, v(G2) = n − 6. By Lemma 2.2, we have η(G) = n − 6 = η(G1) = η(G2). By

proposition 1.1, G2 is the null graph. Therefore, G13 is trivial, a contradiction. So only one

of G11, G12, G13 contains pendant vertices. We assume that G11 contains a pendent vertex

v and u is the adjacent vertex of v. Let G′
21 be the graph obtained by deleting u, v from

G11. Denote the graph G′
21

⋃
G12

⋃
G13

⋃
. . .

⋃
G1t by G′

2, and v(G′
2) = n − 4. Since G12, G13

no contain pendent vertices, and G ∈B+
n , G12, G13 must be Cn2 , Cn3 , respectively, where

n2, n3 ∈ {3, 4}. By Lemma 2.4, we have

η((Cn2)) =

{
2 n2 = 4
0 n2 = 3

η((Cn3)) =

{
2 n3 = 4
0 n3 = 3

Hence η(G) = η(G1) = η(G′
2) ≤n1−2+η(C2)+η(C3)+(n−2−n1−n2−n3)≤n−8 < n−6,

a contradiction.

We distinguish the following two cases:

Case 1. There is a unique nontrivial component in G1. Without loss of generality, we

assume that G11 is nontrivial. Let v(G11) = n1. Then G1 = G11
⋃

(n − 2 − n1)K1. It is

easy to see that deleting x, y destroy at most one cycle since G ∈B+
n . Hence G11 contains

cycles. By Lemma 2.2, we have η(G) = n − 6 = η(G1) = η(G11) + (n − 2 − n1). Thus

η(G11) = n1 − 4. If G11 ∈B+
n1

, by Lemma 2.6, we have η(G11) ≤n1 − 6 < n1 − 4, a con-

tradiction. Thus G11 ∈ Un1 . By Theorem 1.4, η(G11) = n1 − 4 if and only if G11
∼=U∗

1 or
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G11
∼=U∗

2 or G11
∼=U∗

3 , where U∗
1 , U∗

2 and U∗
3 are shown in Fig.1.1. If G11

∼=U∗
1 or G11

∼=U∗
2 , we

can’t get two vertex-disjoint cycles by recovering x, y to G1. This is impossible. Therefore,

G11
∼=U∗

3 , and G1 = U∗
3

⋃
(n − 2 − n1)K1. Now recover x, y to G1, we need to insert edges

from y to each n − 2 − n1 isolated vertices of G1. This gives a star Sn−n1 . In order to

produce two vertex-disjoint cycles in G, two edges must be added from the center of Sn−n1

to G1. If we select the center and a pendant vertex in U∗
3 as two ends of these two edges,

then G∼=G∗
1; If both ends chosen in U∗

3 are pendant vertices, then G∼=G∗
2.

Case 2. There are two nontrivial components in G1. Without loss of generality, we

assume that G11 and G12 are nontrivial. Let v(G11) = n1 and v(G12) = n2. Then

G1 = G11
⋃

G12
⋃

(n − 2 − n1 − n2)K1. Now we consider the following three subcases:

Subcase 2.1. Both G11 and G12 contain pendent vertex. Let v be a pendent vertex of G11

and u the adjacent vertex of v. Let G21 be the graph obtained by deleting u, v from G11.

Let w be a pendent vertex of G12 and p the adjacent vertex of w. Let G31 be the graph

obtained by deleting w, p from G12. Denote the graph G21
⋃

G31
⋃

(n − 2 − n1 − n2)K1 by

G2 and obviously v(G2) = n − 6. By Lemma 2.2, we have η(G) = n − 6 = η(G1) = η(G2).

By proposition 1.1, G2 is the null graph, Hence G21 = (n1 − 2)K1, G31 = (n2 − 2)K1. In

order to recover G11, G12, respectively, return u, v to G21, G11 must be a star Sn1 , return

w, p to G31, G12 must be a star Sn2 , and G1 = Sn1

⋃
Sn2

⋃
(n − 2 − n1 − n2)K1. We can’t

get two vertex-disjoint cycles by adding x, y to G1, a contradiction.

Subcase 2.2. Only one of G11, G12 contains pendent vertices. Without loss of generality,

we assume that G11 contains pendent vertices. Let v be a pendent vertex of G11 and u

the adjacent vertex of v. Let G21 be the graph obtained by deleting u, v from G11. Denote

the graph G21
⋃

G12
⋃

(n − 2 − n1 − n2)K1 by G2 and obviously v(G2) = n − 4. By Lemma

2.2, we have η(G) = n − 6 = η(G1) = η(G2)≤n1 − 2 + η(G12) + (n − 2 − n1 − n2). Then

η(G12) ≥n2 − 2. Since G12 no contain pendent vertices, if G12 ∈B+
n2

, By Lemma 2.6, we

have η(G12) ≤n2 − 6 < n2 − 2, a contradiction; If G12 ∈ Un2 , G12 must be Cn2 , where

n2 ∈ {3, 4}. It is easy to check that η(G12) ≥n2 − 2 holds only if n2 = 4. Then G12 = C4.

Since n− 6 = η(G2)≤n1 − 2 + 2 + (n− 2− n1 − 4) = n− 6, then G21 = (n1 − 2)K1, return

u, v to G21, G11 must be a star Sn1 , and G1 = Sn1

⋃
C4

⋃
(n − 2 − n1 − 4)K1. Now recover

x, y to G1, we get G∼=G∗
1 or G∼=G∗

2.

subcase 2.3. G11 and G12 no contain pendent vertices. Since G ∈B+
n , G11, G12 must be

Cn1 , Cn2 , respectively, where n1, n2 ∈ {3, 4}. G1 = Cn1

⋃
Cn2

⋃
(n − 2 − n1 − n2)K1, By

Lemma 2.2, we have η(G) = n − 6 = η(G1) = η(Cn1) + η(Cn2) + (n − 2 − n1 − n2). Then

n1 − η(Cn1)+n2 − η(Cn2) = 4. It is easy to check that n1 − η(Cn1)+n2 − η(Cn2) = 4 holds

only if n1 = n2 = 4. Then G1 = C4
⋃

C4
⋃

(n − 2 − 8)K1. Now recover x, y to G1, we get
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G∼=G∗
3.

Theorem 3.2. Let G ∈B++
n (n ≥ 8). Then η(G) = n − 6 if and only if G∼=G∗

1 or G∼=G∗
2

or G∼=G∗
3 or G∼=G∗

4 or G∼=G∗
5 or G∼=G∗

6 or G∼=G∗
7 or G∼=G∗

8, where G∗
1, G∗

2, G∗
3, G∗

4, G∗
5, G∗

6,

G∗
7 and G∗

8 are shown in Fig.3.3.
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Proof. If G∼=G∗
i (i = 1, 2, . . . , 8), It is easy to check that η(G) = n − 6. So it is suffices to

prove the converse side of the theorem.

Let Ck, Cl be two cycles in G, we first prove the following two claims.

Claim 1. If G ∈B++
n (n ≥ 8), η(G) = n − 6, then k, l ∈ {3, 4}.

Otherwise, without loss of generality, we assume that k ≥ 5. We distinguish the following

two cases:

Case 1. l ≥ 4. We can find H2 shown in Fig.3.2 as a vertex-induced subgraph of G. Similar

to the proof of Claim 1 in Theorem 3.1, we have γ(A(H2))≥ 7, Hence η(G)≤n− 7 < n− 6,

a contradiction.

Case 2. l = 3. If k ≥ 7, we can find H1 shown in Fig.2.3 as a vertex-induced subgraph of G,

Similar to the proof of Case 2 in Lemma 2.6, we have γ(A(H1))≥ 8. Hence η(G)≤n − 8 <

n − 6, a contradiction; If k = 5, 6, these must exists one of the following graphs shown

in Fig.3.4 as a vertex-induced subgraph of G since n ≥ 8. It is easy to calculate that

η(G31) = η(G32) = η(G33) = η(G34) = η(G35) = 0. For each Gi (i = 31, . . . , 35), we have

γ(A(Gi)) = 8 > 6. Hence η(G)≤n − γ(A(Gi))≤n − 8 < n − 6, a contradiction.

Thus in each case we get contradiction, so Claim 1 holds.

31
G 33

G 34
G

35
G

32
G

Fig.3.4
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Claim 2. If G ∈B++
n , η(G) = n − 6 (n ≥ 8), and k, l ∈ {3, 4}, then there exists at least

one pendent vertex in G.

Otherwise, since n ≥ 8, G ∈B++
n , and k, l ∈ {3, 4}, this is impossible. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let G1 = G11
⋃

G12
⋃

. . .
⋃

G1t

be the graph obtained by deleting x, y from G, where G11, G12, . . . , G1t are connected com-

ponents of G1. At least one of G1i (i = 1, 2, . . . , t) is nontrivial. Otherwise, G would be a

star.

In fact, there are at most two nontrivial components in G1. Otherwise, we assume that

G11, G12, G13 are three nontrivial components in G1. Let v(G11) = n1, v(G12) = n2 and

v(G13) = n3. At most one of G11, G12, G13 contains cycle since G ∈B++
n . Then at least two

of G11, G12, G13 contain pendent vertices. Without loss of generality, we assume that G11

and G12 contain pendent vertices. Let v be a pendent vertex of G11 and u the adjacent

vertex of v. Let G21 be the graph obtained by deleting u, v from G11. Let w be a pendent

vertex of G12 and p the adjacent vertex of w. Let G31 be the graph obtained by deleting w, p

from G12. Denote the graph G21
⋃

G31
⋃

G13
⋃

. . .
⋃

G1t by G2, and obviously v(G2) = n − 6.

By Lemma 2.2, we have η(G) = n − 6 = η(G1) = η(G2). By proposition 1.1, G2 is the null

graph. Therefore, G13 is trivial, a contradiction.

We distinguish the following two cases:

Case 1. There is a unique nontrivial component in G1. Without loss of generality, we assume

that G11 is nontrivial. Let v(G11) = n1. Then G1 = G11
⋃

(n−2−n1)K1. G11 must contains

cycles since G ∈B++
n . By Lemma 2.2, we have η(G) = n−6 = η(G1) = η(G11)+(n−2−n1).

Hence η(G11) = n1 − 4. Now, we consider the following two subcases:

Subcase 1.1. G11 ∈B++
n1

. If G11 contains pendent vertices, there must exists one of graphs

shown in Fig.2.4 as a vertex-induced subgraph of G11. Similar to the proof of Lemma

2.7, we have γ(A(Gi)) ≥ 6 (i = 6, . . . , 14). Hence γ(A(G11)) ≥ γ(A(Gi)) ≥ 6. Thus

η(G11)≤n1 − γ(A(Gi))≤n1 − 6 < n1 − 4, a contradiction; If G11 no contain pendent vertex,

there must one of graphs shown in Fig.3.5. It is easy to check that only graph which satis-

fies η(G11) = n1 − 4 is G38. Then G1 = G38
⋃

(n − 2 − n1)K1. Now recover x, y to G1 , we

get G∼=G∗
6 or G∼=G∗

7 or G∼=G∗
8.

Subcase 1.2. G11 ∈ Un1 . By lemma 1.4, η(G11) = n1 − 4 if and only if G11
∼=U∗

1 or G11
∼=U∗

2

or G11
∼=U∗

3 , where U∗
1 , U∗

2 and U∗
3 are shown in Fig.1.1. If G11

∼=U∗
1 , recover x, y to G1, we

get G∼=G∗
1 or G∼=G∗

2; if G11
∼=U∗

2 , recover x, y to G1, we get G∼=G∗
2 or G∼=G∗

4; if G11
∼=U∗

3 ,

recover x, y to G1, we get G∼=G∗
3 or G∼=G∗

5.
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Case 2. There are two nontrivial components in G1. Without loss of generality, we

assume that G11 and G12 are nontrivial. Let v(G11) = n1 and v(G12) = n2. Then

G1 = G11
⋃

G12
⋃

(n−2−n1−n2)K1. At least one of G11, G12 contains pendent vertices since

G ∈B++
n . Otherwise G11, G12 must be Cn1 ,Cn2 , respectively. We get two vertex-disjoint

cycles in G by recovering x, y to G1, a contradiction. Now, we consider the following two

subcases:

Subcase 2.1. Only one of G11, G12 contains pendent vertices. Without loss of generality,

we assume that G11 contains pendent vertices. Let v be a pendent vertex of G11 and u

the adjacent vertex of v. Let G21 be the graph obtained by deleting u, v from G11. Denote

the graph G21
⋃

G12
⋃

(n − 2 − n1 − n2)K1 by G2 and obviously v(G2) = n − 4. By Lemma

2.2, we have η(G) = n − 6 = η(G1) = η(G2)≤n1 − 2 + η(G12) + (n − 2 − n1 − n2). Thus

η(G12) ≥n2 − 2. Since G12 no contain pendent vertices, when G12 ∈B++
n2

, G12 must be one

of graphs shown in Fig.3.5. It is easy to check that each Gi(i = 36, 37, 38) does not satisfy

η(G12) ≥n2 − 2, a contradiction. When G12 ∈Un2 , similar to the proof of Subcase 2.2 in

Theorem 3.1, G1 = Sn1

⋃
C4

⋃
(n − 2 − n1 − 4)K1. Since there is no edges jointing a vertex

in C4 to that of Sn1 , recover x, y to G1, only one edge be inserted from y to C4, we can’t

get two only one common vertex cycles in G, a contradiction.

36
G

37
G

38
G

Fig.3.5

Subcase 2.2. Both G11 and G12 contain pendent vertices. Similar to the proof of Subcase

2.1 in Theorem 3.1. G1 = Sn1

⋃
Sn2

⋃
(n− 2−n1 −n2)K1. Recover x, y to G1, we get G∼=G∗

1

or G∼=G∗
2 or G∼=G∗

4.

Theorem 3.3. Let G ∈ θn (n ≥ 6). Then η(G) = n − 4 if and only if G∼=G∗
1 or G∼=G∗

2

or G∼=G∗
3 or G∼=G∗

4 or G∼=G∗
5 or G∼=G∗

6, where G∗
1, G∗

2, G∗
3, G∗

4, G∗
5 and G∗

6 are shown in

Fig.3.6.
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Proof. If G∼=G∗
i (i = 1, 2, . . . , 6), it is easy to check that η(G) = n − 4. So it is suffices to

prove the converse side of the theorem.

Let Ck, Cl be two elementary cycles in G, we first prove the following two claims.

Claim 1. If G ∈ θn (n ≥ 6) and η(G) = n − 4, then k, l ∈ {3, 4}.
Otherwise, without loss of generality, we assume that k ≥ 5. Then Ck is a vertex-induced

subgraph of G. By Lemma 2.5, we have γ(A(Ck)) ≥ 5. Then γ(A(G))≥γ(A(Ck)) ≥ 5.

Hence η(G)≤n − 5< n − 4, a contradiction. So Claim 1 holds.

Claim 2. If G ∈ θn, η(G) = n − 4 (n ≥ 6), and k, l ∈ {3, 4}, then there must exists a

pendent vertex in G.

Otherwise, since n ≥ 6, k, l ∈ {3, 4}, G must be G25 shown in Fig.2.6. Hence η(G25) =

0 �= 6 − 4, a contradiction. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let G1 = G11
⋃

G12
⋃

. . .
⋃

G1t

be the graph obtained by deleting x, y from G, where G11, G12, . . . , G1t are connected com-

ponents of G1. At least one of G1i (i = 1, 2, . . . , t) is nontrivial. Otherwise, G would be a

star.

In fact, there is a unique nontrivial components in G1. Otherwise , we assume that

G11, G12 are two nontrivial components in G1. Let v(G11) = n1 and v(G12) = n2. At least

one of G11, G12 contains pendent vertices since G ∈ θn. Without loss of generality, Let v

be a pendent vertex of G11 and u the adjacent vertex of v. Let G21 be the graph obtained

by deleting u, v from G11. Denoted G21
⋃

G12
⋃

. . .
⋃

G1t by G2 and obviously v(G2) = n− 4.

By Lemma 2.2, we have η(G) = η(G1) = η(G2) = n − 4. By proposition 1.1, G2 is the null

graph. Then G12 is trivial, a contradiction.

We assume that G11 is nontrivial. Let v(G11) = n1. Then G1 = G11
⋃

(n − 2 − n1)K1.

We distinguish the following two cases.

Case 1. The minimum degree of G11 is 1.

Let v be a pendent vertex of G11 and u the adjacent vertex of v. Let G21 be the graph

obtained by deleting u, v from G11. Denoted G21
⋃

(n − 2 − n1)K1 by G2 and obviously

v(G2) = n − 4. By Lemma 2.2, we have η(G) = n − 4 = η(G1) = η(G2). By proposition

1.1, G2 is the null graph. Hence G21 = (n1 − 2)K1, In order to recover G11, return u, v to

G21, G11 must be a Sn1 , and G1 = Sn1

⋃
(n − 2 − n1)K1. Now we add x, y to G1, we need

to insert edges from y to each of n− 2− n1 isolated vertices of G1. This gives another star

Sn−n1 . In order to assure that there are two edge-joint cycles in G, three edges must be

added from the center of Sn−n1 to Sn1 . If we select the center and two pendant vertices in

Sn1 as three ends of these three edges, then G∼=G∗
1; If three ends chosen in Sn1 are pendent
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vertices, then G∼=G∗
2.

Case 2. The minimum degree of G11 is equal or greater than 2.

Since the minimum degree of G11 is equal or greater than 2, G11 contains cycles. If

G11 ∈ Un1 , G11 must be Cn1 , where n1 ∈ {3, 4}. Hence G1 = Cn1

⋃
(n − 2 − n1)K1. By

Lemma 2.2, we have η(G) = n−4 = η(G1) = η(Cn1)+(n−2−n1). Then η(Cn1) = n1−2. It

is easy to check that η(Cn1) = n1−2 holds only if n1 = 4. Thus G1 = C4
⋃

(n−6)K1. To add

x, y to G1, we need to insert edges from y to each of n−6 isolated vertices of G1. This gives

a star Sn−4. In order to assure that there are two edge-joint cycles in G, two edges must be

added from the center of Sn−4 to C4. If we select two adjacent vertices in C4 as two ends

of these two edges, then G∼=G∗
3. If both ends chosen in C4 are nonadjacent vertices, then

G∼=G∗
4; If G11 ∈ θn1 , G11 must be one of the following graphs shown in Fig.3.7 since G ∈ θn

and k, l ∈ {3, 4}. By Lemma 2.2, we have η(G) = n − 4 = η(G1) = η(G11) + (n − 2 − n1).

Then η(G11) = n1 − 2. It is easy to check that η(G11) = n1 − 2 holds only if G11 = G41 .

Thus G1 = G41
⋃

(n − 7)K1. Now recover x, y to G1, we get G∼=G∗
5 or G∼=G∗

6.

42
G

41
G

39
G 40

G

Fig.3.7
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