On the Nullity of Bicyclic Graphs

Jianxi Li ${ }^{a, b}$, An Chang ${ }^{a}$ * Wai Chee Shiu ${ }^{b} \dagger$
${ }^{a}$ Department of Mathematics, Fuzhou University
Fuzhou, Fujian 350002, P.R. China
${ }^{b}$ Department of Mathematics, Hong Kong Baptist University Hong Kong, P.R. China

(Received July 30, 2007)

Abstract

The nullity of a graph is the multiplicity of the eigenvalues zero in its spectrum. In this papers, we obtain the nullity set of n-vertex bicyclic graphs, and characterize the bicyclic graphs with maximal nullity.

1 Introduction

Let G be a simple undirected graph with vertex set V and edge set E. The number of vertices of G is denoted by $v(G)$. For any $v \in V$, the degree and neighborhood of v are denoted by $d(v)$ and $N(v)$, respectively. If W is a subset of V, the subgraph induced by W is the subgraph of G by tacking the vertices in W and joining those pairs of vertices in W which are joined in G. We write $G-\left\{v_{1}, v, \ldots, v_{k}\right\}$ for the graph obtained from G by removing the vertices $v_{1}, v_{2}, \ldots, v_{k}$ and all edges incident to any of them. The disjoint union of two graphs G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$. The null graph of order n is the

[^0]graph with n vertices and no edges. As usual, the complete graph, cycle, path and star of order n denoted by K_{n}, C_{n}, P_{n} and S_{n}, respectively. An isolated vertex is sometimes denoted by K_{1}.

The adjacency matrix $A(G)$ of a graph G with the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the $n \times n$ symmetric matrix $\left[a_{i j}\right]$, such that $a_{i j}=1$ if v_{i} and v_{j} are adjacent and 0 , otherwise. A graph is said to be singular(nonsingular) if its adjacency matrix A is a singular (nonsingular) matrix. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A(G)$ are said to be the eigenvalues of the graph G, and to form the spectrum of this graph. The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by $\eta(G)$. Let $\gamma(A(G))$ be the rank of $A(G)$. Clearly, $\eta(G)=n-\gamma(A(G))$. The following result is obvious.
Proposition 1.1. Let G be a graph of order n. Then $\eta(G)=n$ if and only if G is a null graph.
Proposition 1.2. Let $G=G_{1} \cup G_{2} \cup \cdots \cup G_{t}$, where $G_{1}, G_{2}, \ldots, G_{t}$ are connected components of G. Then $\eta(G)=\sum_{i=1}^{t} \eta\left(G_{i}\right)$.
Definition 1.1[13]. An elementary graph is a simple graph, each component of which is regular has degree 1 or 2 . In other words, each component is a single edge $\left(K_{2}\right)$ or a $\operatorname{cycle}\left(C_{r}\right)$. A spanning elementary subgraph of G is an elementary subgraph which contains all vertices of G.
Proposition 1.3[13]. Let A be the adjacency matrix of a graph G. Then

$$
\operatorname{det} A=\sum(-1)^{r(H)} 2^{s(H)},
$$

where the summation is over all spanning elementary subgraphs H of G.
In [1], Collatz and Sinogowitz first posed the problem of characterizing all graphs which satisfy $\eta(G)>0$. This question is of great interest in both chemistry and mathematics. For a bipartite graph G, which correspond to an alternant hydrocarbon in chemistry, if $\eta(G)>0$, it is indicated in [2] that the corresponding molecule is unstable. The nullity of a graph is also meaningful in mathematics since it is related to the singularity of $A(G)$. The problem has not yet been solved completely. Some results on trees, bipartite graphs and unicyclic graphs are known (see[2,3,4]). More recent results can be fond in [5-12].

For trees the following theorem gives a concise formula.
Theorem 1.1[3]. If T is a tree of order n and m is the size of its maximum matchings, then $\eta(T)=n-2 m$.

If a tree contains a perfect matching, we call it a PM-tree for convenience. In fact, Theorem 1.1 implies the following corollary.
Corollary 1.1. Let T be a tree of order n. The nullity $\eta(T)$ of T is zero if and only if T is a PM-tree.

A unicyclic graph is a simple connected graph with equal number of vertices and edges. Denote by \mathcal{U}_{n} the set of all unicyclic graphs of order n.
Theorem 1.2[4]. For any $U \in \mathcal{U}_{n}(n \geq 5), \eta(U) \leq n-4$.
Let \mathcal{G}_{n} be the set of all graphs of order n, and let $[0, n]=\{0,1,2, \ldots, n\}$. A subset N of $[0, n]$ is said to be the nullity set of \mathcal{G}_{n} provided that for any $k \in N$, there exists at least one graph $G \in \mathcal{G}_{n}$ such that $\eta(G)=k$.
Theorem 1.3[4]. The nullity set of $\mathcal{U}_{n}(n \geq 5)$ is $[0, n-4]$.
Theorem 1.4[4]. Let $U \in \mathcal{U}_{n}(n \geq 5)$. Then $\eta(U)=n-4$ if and only if $U \cong U_{1}^{*}$ or $U \cong U_{2}^{*}$ or $U \cong U_{3}^{*}$, where U_{1}^{*}, U_{2}^{*} and U_{3}^{*} are shown in Fig.1.1.

A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices plus one. Denoted by \mathcal{B}_{n} the set of all bicyclic graphs of order n. Let C_{k} and C_{l} be two vertex-disjoint cycles. Suppose that v_{1} is a vertex of C_{k} and v_{q} is a vertex of C_{l}. Joining v_{1} and v_{q} by a path $v_{1} v_{2} \ldots v_{q}$ of length $q-1$, where $q \geq 1$ and $q=1$ means identifying v_{1} with v_{q}, the resulting graph, denoted by $B(k, q, l)$ shown in Fig.1.2, is called an ∞-graph; Let P_{l+1}, P_{p+1} and P_{q+1} be three vertex-disjoint paths, where $l, p, q \geq 1$, and at most one of them is 1 . Identifying the three initial vertices and terminal vertices of them, respectively, the resulting graph, denoted by $P(l, p, q)$ shown in Fig.1.2, is called a θ-graph. Obviously, \mathcal{B}_{n} consists of three types of graphs: first type denoted by B_{n}^{+}is the set of those graphs each of which is an ∞-graph with trees attached when $q>1$; second type denoted by B_{n}^{++}is the set of those graphs each of which is an ∞-graph with trees attached when $q=1$; third type denoted by θ_{n} is the set of those graphs each of which is an θ-graph with trees attached. Then $\mathcal{B}_{n}=B_{n}^{+} \cup B_{n}^{++} \bigcup \theta_{n}$.

In section 2, we determine the nullity set of \mathcal{B}_{n}. In section 3, we characterize the bicyclic graphs with maximal nullity.

$B(k, q, l)$

$P(l, p, q)$

2 The nullity set of \mathcal{B}_{n}

First, we introduce some lemmas.
Lemma 2.1[3]. A path with four vertices of degree 2 in a bipartite graph G can be replaced by an edges without changing the value of $\eta(G)$.
Lemma 2.2[3]. For a graph G containing a vertex of degree 1, if the induced subgraph H of G is obtained by deleting this vertex together with the vertex adjacent to it, then the relation $\eta(H)=\eta(G)$ holds.
Lemma 2.3. Let G_{1}, G_{2} and G_{3} be the graphs of order n shown in Fig.2.1, respectively. Then $\eta\left(G_{1}\right)=0, \eta\left(G_{2}\right)=1$ and $\eta\left(G_{3}\right)=\left\{\begin{array}{ll}2 & n \equiv 0(\bmod 2) \\ 3 & n \equiv 1(\bmod 2)\end{array}\right.$.

Proof. We can easy calculate that $\gamma\left(A\left(G_{1}\right)\right)=n, \gamma\left(A\left(G_{2}\right)\right)=n-1$. Then $\eta\left(G_{1}\right)=0$, $\eta\left(G_{2}\right)=1$. For the graph G_{3}, if $p \in[0,3]$, it must be one of the following graphs shown in Fig.2.2. If $p \geq 4$, since it is a bipartite graph, it can be transformed into one of the graphs shown in Fig.2.2 by Lemma 2.1 without changing its nullity. It is not difficult to get that $\eta\left(G_{3}^{1}\right)=\eta\left(G_{3}^{3}\right)=2$ and $\eta\left(G_{3}^{2}\right)=\eta\left(G_{3}^{4}\right)=3$. Therefore $\eta\left(G_{3}\right)=\left\{\begin{array}{ll}2 & n \equiv 0(\bmod 2) \\ 3 & n \equiv 1(\bmod 2)\end{array}\right.$.

Lemma 2.5. $\gamma\left(A\left(C_{n}\right)\right)=\left\{\begin{array}{ll}n-2 & n \equiv 0(\bmod 4) \\ n & \text { otherwise }\end{array}\right.$.
Lemma 2.6. For any $G \in B_{n}^{+}(n \geq 7), \eta(G) \leq n-6$.
Proof. Let C_{k}, C_{l} are two vertex-disjoint cycles in G, we distinguish the following two cases:

Case 1. $k, l \in\{3,4\}$. There must exists one of graphs shown in Fig.2.1 as a vertex-induced subgraph of G since $G \in B_{n}^{+}$. By Lemma 2.3, for each $G_{i}(i=1,2,3)$, we have $\gamma\left(A\left(G_{i}\right)\right) \geq 6$.
Hence $\gamma(A(G)) \geq \gamma\left(A\left(G_{i}\right)\right) \geq 6$. Thus $\eta(G) \leq n-\gamma\left(A\left(G_{i}\right)\right) \leq n-6$.
Case 2. $k \geq 5$ or $l \geq 5$. Without loss of generally, we assume that $k \geq 5$. There must exists H_{1} shown in Fig.2.3 as a vertex-induced subgraph of G since $G \in B_{n}^{+}$. By Lemma 2.2, it is easy to get that

$$
\eta\left(\left(H_{1}\right)\right)= \begin{cases}1 & \text { if } k \equiv 0(\bmod 2) \\ 0 & \text { if } k \equiv 1(\bmod 2)\end{cases}
$$

Hence

$$
\gamma\left(A\left(H_{1}\right)\right)= \begin{cases}k & \text { if } n \equiv 0(\bmod 2) \\ k+1 & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

Since $k \geq 5$, we have $\gamma\left(A\left(H_{1}\right)\right) \geq 6$. Therefore $\gamma(A(G)) \geq \gamma\left(A\left(H_{1}\right)\right) \geq 6$. Thus $\eta(G) \leq n-$ $\gamma\left(A\left(H_{1}\right)\right) \leq n-6$.

Theorem 2.1. The nullity set of $B_{n}^{+}(n \geq 7)$ is $[0, n-6]$.
Proof. By Lemma 2.6, it suffices to show that for each $k \in[0, n-6]$, there exist a graph $G \in B_{n}^{+}$such that $\eta(G)=n-6$.

When $k=0$, let $G=G_{1}$ shown in Fig.2.1, we have $\eta\left(G_{1}\right)=0$; When $1 \leq k \leq n-7$, let $G=G_{4}$ shown in Fig.2.3. Using Lemma 2.2 repeatedly, if $n \neq k(\bmod 2)$, after $\frac{n-k-5}{2}$ steps, we get $P_{2} \cup C_{3} \cup k K_{1}$. Hence $\eta(G)=\eta\left(P_{2} \cup C_{3} \cup k K_{1}\right)=k$. If $n \equiv k(\bmod 2)$, after $\frac{n-k-4}{2}$ steps, we get $P_{2} \cup P_{2} \cup k K_{1}$. Hence $\eta(G)=\eta\left(P_{2} \cup P_{2} \cup k K_{1}\right)=k$; When $k=n-6$, let $G=G_{5}$ shown in Fig.2.3. By Lemma 2.2, we get $P_{2} \cup C_{4} \bigcup(n-8) K_{1}$. Hence $\eta(G)=\eta\left(P_{2} \cup C_{4} \bigcup(n-8) K_{1}\right)=$ $n-8+2=n-6$.

Fig.2.3
Lemma 2.7. For any $G \in B_{n}^{++}(n \geq 8), \eta(G) \leq n-6$.

Proof. Let C_{k}, C_{l} are two cycles in G, we distinguish the following two cases:
Case 1. $k, l \in\{3,4\}$. There must exists one of the graphs shown in Fig.2.4 as a vertexinduced subgraph of G since $n \geq 8$. It is easy to calculate that $\eta\left(G_{6}\right)=\eta\left(G_{7}\right)=\eta\left(G_{10}\right)=$ $0, \eta\left(G_{8}\right)=\eta\left(G_{9}\right)=\eta\left(G_{11}\right)=1$ and $\eta\left(G_{12}\right)=\eta\left(G_{13}\right)=\eta\left(G_{14}\right)=2$. For each G_{i} $(i=6,7, \ldots, 14)$, we have $\gamma\left(A\left(G_{i}\right)\right) \geq 6$. Hence $\gamma(A(G)) \geq \gamma\left(A\left(G_{i}\right)\right) \geq 6$. Thus $\eta(G) \leq n-$ $\gamma\left(A\left(G_{i}\right)\right) \leq n-6$.
Case 2. $k \geq 5$ or $l \geq 5$. Without loss of generally, we assume that $k \geq 5$, There must exists H_{1} shown in Fig.2.3 as a vertex-induced subgraph of G since $G \in B_{n}^{++}$. Similar to the proof of Case 2 in Lemma 2.6, we have $\gamma\left(A\left(H_{1}\right)\right) \geq 6$. Hence $\gamma(A(G)) \geq \gamma\left(A\left(H_{1}\right)\right) \geq 6$. Thus $\eta(G) \leq n-\gamma\left(A\left(H_{1}\right)\right) \leq n-6$.

Fig.2.4
Theorem 2.2. The nullity set of $B_{n}^{++}(n \geq 8)$ is $[0, n-6]$.
Proof. By Lemma 2.7, it suffices to show that for each $k \in[0, n-6]$, there exists a graph $G \in B_{n}^{++}$such that $\eta(G)=n-6$.

When $k=0$, if $n \equiv 1(\bmod 2)$, let $G=G_{15}$ shown in Fig.2.5, Using Lemma 2.2 repeatedly, after $\frac{n-5}{2}$ steps, we get H_{3} shown in Fig.2.5. Hence $\eta(G)=\eta\left(H_{3}\right)=0$. If $n \equiv 0(\bmod 2)$, let $G=G_{16}$ shown in Fig.2.5, Using Lemma 2.2 repeatedly, after $\frac{n-4}{2}$ steps, we get $P_{2} \cup P_{2}$. Hence $\eta(G)=\eta\left(P_{2} \cup P_{2}\right)=0$; When $1 \leq k \leq n-6$, if $n \neq k(\bmod 2)$, let $G=G_{17}$ shown in Fig.2.5. Using Lemma 2.2 repeatedly, after $\frac{n-k-5}{2}$ steps, we get $k K_{1} \cup H_{3}$. Hence $\eta(G)=$ $\eta\left(k K_{1} \cup H_{3}\right)=k$. If $n \equiv k(\bmod 2)$, let $G=G_{18}$ shown in Fig.2.5. Using Lemma 2.2 repeatedly, after $\frac{n-k-4}{2}$ steps, we get $k K_{1} \bigcup P_{2} \cup P_{2}$. Hence $\eta(G)=\eta\left(k K_{1} \cup P_{2} \cup P_{2}\right)=k$.

Fig. 2.5

Lemma 2.8. For any $G \in \theta_{n}(n \geq 6), \eta(G) \leq n-4$.
Proof. Let C_{k}, C_{l} are two elementary cycles in G, we distinguish the following two cases: Case 1. $k, l \in\{3,4\}$, There must exists one of the graphs shown in Fig.2.6 as a vertexinduced subgraph of G since $n \geq 6$. It is easy to calculate that $\eta\left(G_{19}\right)=\eta\left(G_{25}\right)=0$, $\eta\left(G_{20}\right)=\eta\left(G_{21}\right)=1$ and $\eta\left(G_{22}\right)=\eta\left(G_{23}\right)=\eta\left(G_{24}\right)=2$. For each $G_{i}(i=19,20, \ldots, 25)$, we have $\gamma\left(A\left(G_{i}\right)\right) \geq 4$. Hence $\gamma(A(G)) \geq \gamma\left(A\left(G_{i}\right)\right) \geq 4$. Thus $\eta(G) \leq n-\gamma\left(A\left(G_{i}\right)\right) \leq n-4$. Case 2. $k \geq 5$ or $l \geq 5$. Without loss of generally, we assume that $k \geq 5$. Since C_{k} is a vertex-induced subgraph of G, by Lemma 2.5, $\gamma(A(G)) \geq \gamma\left(A\left(C_{k}\right)\right) \geq 4$. Hence $\eta(G) \leq n-4$.

Theorem 2.3. The nullity set of $\theta_{n}(n \geq 6)$ is $[0, n-4]$.
Proof. By Lemma 2.8, it suffices to show that for each $k \in[0, n-4]$, there exists a graph $G \in \theta_{n}$ such that $\eta(G)=n-4$.

When $k=0$, if $n \equiv 1(\bmod 2)$, let $G=G_{26}$ shown in Fig.2.7. Using Lemma 2.2 repeatedly, after $\frac{n-3}{2}$ steps, we get C_{3}. Hence $\eta(G)=\eta\left(C_{3}\right)=0$. If $n \equiv 0(\bmod 2)$, let $G=G_{27}$ shown in Fig.2.7. Using Lemma 2.2 repeatedly, after $\frac{n-2}{2}$ steps, we get P_{2}. Hence $\eta(G)=\eta\left(P_{2}\right)=0$; When $1 \leq k \leq n-6$, let $G=G_{28}$ shown in Fig.2.7. Using Lemma 2.2 repeatedly, if $n \neq k(\bmod 2)$, after $\frac{n-k-3}{2}$ steps, we get $k K_{1} \cup C_{3}$. Hence $\eta(G)=\eta\left(k K_{1} \cup C_{3}\right)=$ k. If $n \equiv k(\bmod 2)$, after $\frac{n-k-2}{2}$ steps, we get $k K_{1} \bigcup P_{2}$. Hence $\eta(G)=\eta\left(k K_{1} \bigcup P_{2}\right)=k$; When $k=n-5$, let $G=G_{29}$ shown in Fig.2.7. By Lemma 2.2, we get $(n-6) K_{1} \cup H_{4}$, where H_{4} is shown in Fig.2.7. Hence $\eta(G)=\eta\left((n-6) K_{1} \cup H_{4}\right)=n-6+1=n-5$; When $k=n-6$, let $G=G_{30}$ shown in Fig.2.7. By Lemma 2.2, we get $(n-5) K_{1} \cup P_{3}$. Hence $\eta(G)=\eta\left((n-6) K_{1} \cup P_{3}\right)=n-5+1=n-4$.

Fig.2.7

3 The bicyclic graph with maximal nullity

Theorem 3.1. Let $G \in B_{n}^{+}(n \geq 10)$. Then $\eta(G)=n-6$ if and only if $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$ or $G \cong G_{3}^{*}$, where G_{1}^{*}, G_{2}^{*} and G_{3}^{*} are shown in Fig.3.1.

Fig. 3.1
Proof. If $G \cong G_{i}^{*}(i=1,2,3)$, it is easy to check that $\eta(G)=n-6$. So it is suffices to prove the converse side of the theorem.

Let C_{k}, C_{l} be two vertex-disjoint cycles in G, we first prove the following two claims.
Claim 1. If $G \in B_{n}^{+}(n \geq 10), \eta(G)=n-6$, then $k, l \in\{3,4\}$.
Otherwise, without loss of generality, we assume that $k \geq 5$. We can find H_{2} shown in Fig.3.2 as a vertex-induced subgraph of G. By Lemma 2.2 and 2.4, we easy get

$$
\eta\left(\left(H_{2}\right)\right)= \begin{cases}0 & k \neq 0(\bmod 4) \\ 2 & k \equiv 0(\bmod 4)\end{cases}
$$

Then

$$
\gamma\left(A\left(\left(H_{2}\right)\right)\right)= \begin{cases}k+2 & k \neq 0(\bmod 4) \\ k & k \equiv 0(\bmod 4)\end{cases}
$$

Since $k \geq 5$, we have $\gamma\left(A\left(\left(H_{2}\right)\right)\right) \geq 7$. Hence $\eta(G) \leq n-7<n-6$, a contradiction. So Claim 1 holds.

Fig. 3.2

Claim 2. If $\eta(G)=n-6(n>9)$ and $k, l \in\{3,4\}$, then there exists at least one pendent vertex in G.

Otherwise, G must be the one of graphs shown in Fig.2.1 since $G \in B_{n}^{+}$and $n>9$. By Lemma 2.3, for each $G_{i}(i=1,2,3)$, we have $\eta\left(G_{i}\right)<n-6$, a contradiction. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let $G_{1}=G_{11} \cup G_{12} \cup \ldots \cup G_{1 t}$ be the graph obtained by deleting x, y from G, where $G_{11}, G_{12}, \ldots, G_{1 t}$ are connected components of G_{1}. At least one of $G_{1 i}(i=1,2, \ldots, t)$ is nontrivial. Otherwise, G would be a star.

In fact, there are at most two nontrivial components in G_{1}. Otherwise, we assume that G_{11}, G_{12}, G_{13} are three nontrivial components in G_{1}. Let $v\left(G_{11}\right)=n_{1}, v\left(G_{12}\right)=n_{2}$ and $v\left(G_{13}\right)=n_{3}$. At least one of G_{11}, G_{12}, G_{13} contains pendant vertices since $G \in B_{n}^{+}$. On the other hand, at least two of G_{11}, G_{12}, G_{13} contains pendant vertices, without loss of generality, we assume that G_{11} and G_{12} contain pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting w, p from G_{12}. Denote the graph $G_{21} \cup G_{31} \cup G_{13} \cup \ldots \cup G_{1 t}$ by G_{2}, and obviously, $v\left(G_{2}\right)=n-6$. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{2}\right)$. By proposition 1.1, G_{2} is the null graph. Therefore, G_{13} is trivial, a contradiction. So only one of G_{11}, G_{12}, G_{13} contains pendant vertices. We assume that G_{11} contains a pendent vertex v and u is the adjacent vertex of v. Let G_{21}^{\prime} be the graph obtained by deleting u, v from G_{11}. Denote the graph $G_{21}^{\prime} \cup G_{12} \cup G_{13} \cup \ldots \cup G_{1 t}$ by G_{2}^{\prime}, and $v\left(G_{2}^{\prime}\right)=n-4$. Since G_{12}, G_{13} no contain pendent vertices, and $G \in B_{n}^{+}, G_{12}, G_{13}$ must be $C_{n_{2}}, C_{n_{3}}$, respectively, where $n_{2}, n_{3} \in\{3,4\}$. By Lemma 2.4, we have

$$
\begin{aligned}
& \eta\left(\left(C_{n_{2}}\right)\right)= \begin{cases}2 & n_{2}=4 \\
0 & n_{2}=3\end{cases} \\
& \eta\left(\left(C_{n_{3}}\right)\right)= \begin{cases}2 & n_{3}=4 \\
0 & n_{3}=3\end{cases}
\end{aligned}
$$

Hence $\eta(G)=\eta\left(G_{1}\right)=\eta\left(G_{2}^{\prime}\right) \leq n_{1}-2+\eta\left(C_{2}\right)+\eta\left(C_{3}\right)+\left(n-2-n_{1}-n_{2}-n_{3}\right) \leq n-8<n-6$, a contradiction.

We distinguish the following two cases:
Case 1. There is a unique nontrivial component in G_{1}. Without loss of generality, we assume that G_{11} is nontrivial. Let $v\left(G_{11}\right)=n_{1}$. Then $G_{1}=G_{11} \cup\left(n-2-n_{1}\right) K_{1}$. It is easy to see that deleting x, y destroy at most one cycle since $G \in B_{n}^{+}$. Hence G_{11} contains cycles. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{11}\right)+\left(n-2-n_{1}\right)$. Thus $\eta\left(G_{11}\right)=n_{1}-4$. If $G_{11} \in B_{n_{1}}^{+}$, by Lemma 2.6, we have $\eta\left(G_{11}\right) \leq n_{1}-6<n_{1}-4$, a contradiction. Thus $G_{11} \in \mathcal{U}_{n_{1}}$. By Theorem 1.4, $\eta\left(G_{11}\right)=n_{1}-4$ if and only if $G_{11} \cong U_{1}^{*}$ or
$G_{11} \cong U_{2}^{*}$ or $G_{11} \cong U_{3}^{*}$, where U_{1}^{*}, U_{2}^{*} and U_{3}^{*} are shown in Fig.1.1. If $G_{11} \cong U_{1}^{*}$ or $G_{11} \cong U_{2}^{*}$, we can't get two vertex-disjoint cycles by recovering x, y to G_{1}. This is impossible. Therefore, $G_{11} \cong U_{3}^{*}$, and $G_{1}=U_{3}^{*} \cup\left(n-2-n_{1}\right) K_{1}$. Now recover x, y to G_{1}, we need to insert edges from y to each $n-2-n_{1}$ isolated vertices of G_{1}. This gives a star $S_{n-n_{1}}$. In order to produce two vertex-disjoint cycles in G, two edges must be added from the center of $S_{n-n_{1}}$ to G_{1}. If we select the center and a pendant vertex in U_{3}^{*} as two ends of these two edges, then $G \cong G_{1}^{*}$; If both ends chosen in U_{3}^{*} are pendant vertices, then $G \cong G_{2}^{*}$.
Case 2. There are two nontrivial components in G_{1}. Without loss of generality, we assume that G_{11} and G_{12} are nontrivial. Let $v\left(G_{11}\right)=n_{1}$ and $v\left(G_{12}\right)=n_{2}$. Then $G_{1}=G_{11} \bigcup G_{12} \bigcup\left(n-2-n_{1}-n_{2}\right) K_{1}$. Now we consider the following three subcases:
Subcase 2.1. Both G_{11} and G_{12} contain pendent vertex. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting w, p from G_{12}. Denote the graph $G_{21} \cup G_{31} \cup\left(n-2-n_{1}-n_{2}\right) K_{1}$ by G_{2} and obviously $v\left(G_{2}\right)=n-6$. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{2}\right)$. By proposition 1.1, G_{2} is the null graph, Hence $G_{21}=\left(n_{1}-2\right) K_{1}, G_{31}=\left(n_{2}-2\right) K_{1}$. In order to recover G_{11}, G_{12}, respectively, return u, v to G_{21}, G_{11} must be a star $S_{n_{1}}$, return w, p to G_{31}, G_{12} must be a star $S_{n_{2}}$, and $G_{1}=S_{n_{1}} \cup S_{n_{2}} \cup\left(n-2-n_{1}-n_{2}\right) K_{1}$. We can't get two vertex-disjoint cycles by adding x, y to G_{1}, a contradiction.
Subcase 2.2. Only one of G_{11}, G_{12} contains pendent vertices. Without loss of generality, we assume that G_{11} contains pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Denote the graph $G_{21} \cup G_{12} \cup\left(n-2-n_{1}-n_{2}\right) K_{1}$ by G_{2} and obviously $v\left(G_{2}\right)=n-4$. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{2}\right) \leq n_{1}-2+\eta\left(G_{12}\right)+\left(n-2-n_{1}-n_{2}\right)$. Then $\eta\left(G_{12}\right) \geq n_{2}-2$. Since G_{12} no contain pendent vertices, if $G_{12} \in B_{n_{2}}^{+}$, By Lemma 2.6, we have $\eta\left(G_{12}\right) \leq n_{2}-6<n_{2}-2$, a contradiction; If $G_{12} \in \mathcal{U}_{n_{2}}, G_{12}$ must be $C_{n_{2}}$, where $n_{2} \in\{3,4\}$. It is easy to check that $\eta\left(G_{12}\right) \geq n_{2}-2$ holds only if $n_{2}=4$. Then $G_{12}=C_{4}$. Since $n-6=\eta\left(G_{2}\right) \leq n_{1}-2+2+\left(n-2-n_{1}-4\right)=n-6$, then $G_{21}=\left(n_{1}-2\right) K_{1}$, return u, v to G_{21}, G_{11} must be a star $S_{n_{1}}$, and $G_{1}=S_{n_{1}} \cup C_{4} \cup\left(n-2-n_{1}-4\right) K_{1}$. Now recover x, y to G_{1}, we get $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$.
subcase 2.3. G_{11} and G_{12} no contain pendent vertices. Since $G \in B_{n}^{+}, G_{11}, G_{12}$ must be $C_{n_{1}}, C_{n_{2}}$, respectively, where $n_{1}, n_{2} \in\{3,4\} . G_{1}=C_{n_{1}} \cup C_{n_{2}} \cup\left(n-2-n_{1}-n_{2}\right) K_{1}$, By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(C_{n_{1}}\right)+\eta\left(C_{n_{2}}\right)+\left(n-2-n_{1}-n_{2}\right)$. Then $n_{1}-\eta\left(C_{n_{1}}\right)+n_{2}-\eta\left(C_{n_{2}}\right)=4$. It is easy to check that $n_{1}-\eta\left(C_{n_{1}}\right)+n_{2}-\eta\left(C_{n_{2}}\right)=4$ holds only if $n_{1}=n_{2}=4$. Then $G_{1}=C_{4} \cup C_{4} \bigcup(n-2-8) K_{1}$. Now recover x, y to G_{1}, we get
$G \cong G_{3}^{*}$.
Theorem 3.2. Let $G \in B_{n}^{++}(n \geq 8)$. Then $\eta(G)=n-6$ if and only if $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$ or $G \cong G_{3}^{*}$ or $G \cong G_{4}^{*}$ or $G \cong G_{5}^{*}$ or $G \cong G_{6}^{*}$ or $G \cong G_{7}^{*}$ or $G \cong G_{8}^{*}$, where $G_{1}^{*}, G_{2}^{*}, G_{3}^{*}, G_{4}^{*}, G_{5}^{*}, G_{6}^{*}$, G_{7}^{*} and G_{8}^{*} are shown in Fig.3.3.

G_{1}^{*}

G_{2}^{*}

G_{3}^{*}

Fig. 3.3
Proof. If $G \cong G_{i}^{*}(i=1,2, \ldots, 8)$, It is easy to check that $\eta(G)=n-6$. So it is suffices to prove the converse side of the theorem.

Let C_{k}, C_{l} be two cycles in G, we first prove the following two claims.
Claim 1. If $G \in B_{n}^{++}(n \geq 8), \eta(G)=n-6$, then $k, l \in\{3,4\}$.
Otherwise, without loss of generality, we assume that $k \geq 5$. We distinguish the following two cases:
Case 1. $l \geq 4$. We can find H_{2} shown in Fig.3.2 as a vertex-induced subgraph of G. Similar to the proof of Claim 1 in Theorem 3.1, we have $\gamma\left(A\left(H_{2}\right)\right) \geq 7$, Hence $\eta(G) \leq n-7<n-6$, a contradiction.
Case 2. $l=3$. If $k \geq 7$, we can find H_{1} shown in Fig.2.3 as a vertex-induced subgraph of G, Similar to the proof of Case 2 in Lemma 2.6, we have $\gamma\left(A\left(H_{1}\right)\right) \geq 8$. Hence $\eta(G) \leq n-8<$ $n-6$, a contradiction; If $k=5,6$, these must exists one of the following graphs shown in Fig.3.4 as a vertex-induced subgraph of G since $n \geq 8$. It is easy to calculate that $\eta\left(G_{31}\right)=\eta\left(G_{32}\right)=\eta\left(G_{33}\right)=\eta\left(G_{34}\right)=\eta\left(G_{35}\right)=0$. For each $G_{i}(i=31, \ldots, 35)$, we have $\gamma\left(A\left(G_{i}\right)\right)=8>6$. Hence $\eta(G) \leq n-\gamma\left(A\left(G_{i}\right)\right) \leq n-8<n-6$, a contradiction.

Thus in each case we get contradiction, so Claim 1 holds.

Claim 2. If $G \in B_{n}^{++}, \eta(G)=n-6(n \geq 8)$, and $k, l \in\{3,4\}$, then there exists at least one pendent vertex in G.

Otherwise, since $n \geq 8, G \in B_{n}^{++}$, and $k, l \in\{3,4\}$, this is impossible. So Claim 2 holds.
Let x be a pendant vertex in G and y the adjacent vertex of x. Let $G_{1}=G_{11} \cup G_{12} \cup \ldots \cup G_{1 t}$ be the graph obtained by deleting x, y from G, where $G_{11}, G_{12}, \ldots, G_{1 t}$ are connected components of G_{1}. At least one of $G_{1 i}(i=1,2, \ldots, t)$ is nontrivial. Otherwise, G would be a star.

In fact, there are at most two nontrivial components in G_{1}. Otherwise, we assume that G_{11}, G_{12}, G_{13} are three nontrivial components in G_{1}. Let $v\left(G_{11}\right)=n_{1}, v\left(G_{12}\right)=n_{2}$ and $v\left(G_{13}\right)=n_{3}$. At most one of G_{11}, G_{12}, G_{13} contains cycle since $G \in B_{n}^{++}$. Then at least two of G_{11}, G_{12}, G_{13} contain pendent vertices. Without loss of generality, we assume that G_{11} and G_{12} contain pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting w, p from G_{12}. Denote the graph $G_{21} \cup G_{31} \cup G_{13} \cup \ldots \cup G_{1 t}$ by G_{2}, and obviously $v\left(G_{2}\right)=n-6$. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{2}\right)$. By proposition 1.1, G_{2} is the null graph. Therefore, G_{13} is trivial, a contradiction.

We distinguish the following two cases:
Case 1. There is a unique nontrivial component in G_{1}. Without loss of generality, we assume that G_{11} is nontrivial. Let $v\left(G_{11}\right)=n_{1}$. Then $G_{1}=G_{11} \bigcup\left(n-2-n_{1}\right) K_{1} . G_{11}$ must contains cycles since $G \in B_{n}^{++}$. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{11}\right)+\left(n-2-n_{1}\right)$. Hence $\eta\left(G_{11}\right)=n_{1}-4$. Now, we consider the following two subcases:
Subcase 1.1. $G_{11} \in B_{n_{1}}^{++}$. If G_{11} contains pendent vertices, there must exists one of graphs shown in Fig.2.4 as a vertex-induced subgraph of G_{11}. Similar to the proof of Lemma 2.7, we have $\gamma\left(A\left(G_{i}\right)\right) \geq 6(i=6, \ldots, 14)$. Hence $\gamma\left(A\left(G_{11}\right)\right) \geq \gamma\left(A\left(G_{i}\right)\right) \geq 6$. Thus $\eta\left(G_{11}\right) \leq n_{1}-\gamma\left(A\left(G_{i}\right)\right) \leq n_{1}-6<n_{1}-4$, a contradiction; If G_{11} no contain pendent vertex, there must one of graphs shown in Fig.3.5. It is easy to check that only graph which satisfies $\eta\left(G_{11}\right)=n_{1}-4$ is G_{38}. Then $G_{1}=G_{38} \bigcup\left(n-2-n_{1}\right) K_{1}$. Now recover x, y to G_{1}, we get $G \cong G_{6}^{*}$ or $G \cong G_{7}^{*}$ or $G \cong G_{8}^{*}$.
Subcase 1.2. $G_{11} \in \mathcal{U}_{n_{1}}$. By lemma 1.4, $\eta\left(G_{11}\right)=n_{1}-4$ if and only if $G_{11} \cong U_{1}^{*}$ or $G_{11} \cong U_{2}^{*}$ or $G_{11} \cong U_{3}^{*}$, where U_{1}^{*}, U_{2}^{*} and U_{3}^{*} are shown in Fig.1.1. If $G_{11} \cong U_{1}^{*}$, recover x, y to G_{1}, we get $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$; if $G_{11} \cong U_{2}^{*}$, recover x, y to G_{1}, we get $G \cong G_{2}^{*}$ or $G \cong G_{4}^{*}$; if $G_{11} \cong U_{3}^{*}$, recover x, y to G_{1}, we get $G \cong G_{3}^{*}$ or $G \cong G_{5}^{*}$.

Case 2. There are two nontrivial components in G_{1}. Without loss of generality, we assume that G_{11} and G_{12} are nontrivial. Let $v\left(G_{11}\right)=n_{1}$ and $v\left(G_{12}\right)=n_{2}$. Then $G_{1}=G_{11} \bigcup G_{12} \bigcup\left(n-2-n_{1}-n_{2}\right) K_{1}$. At least one of G_{11}, G_{12} contains pendent vertices since $G \in B_{n}^{++}$. Otherwise G_{11}, G_{12} must be $C_{n_{1}}, C_{n_{2}}$, respectively. We get two vertex-disjoint cycles in G by recovering x, y to G_{1}, a contradiction. Now, we consider the following two subcases:

Subcase 2.1. Only one of G_{11}, G_{12} contains pendent vertices. Without loss of generality, we assume that G_{11} contains pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Denote the graph $G_{21} \cup G_{12} \cup\left(n-2-n_{1}-n_{2}\right) K_{1}$ by G_{2} and obviously $v\left(G_{2}\right)=n-4$. By Lemma 2.2, we have $\eta(G)=n-6=\eta\left(G_{1}\right)=\eta\left(G_{2}\right) \leq n_{1}-2+\eta\left(G_{12}\right)+\left(n-2-n_{1}-n_{2}\right)$. Thus $\eta\left(G_{12}\right) \geq n_{2}-2$. Since G_{12} no contain pendent vertices, when $G_{12} \in B_{n_{2}}^{++}, G_{12}$ must be one of graphs shown in Fig.3.5. It is easy to check that each $G_{i}(i=36,37,38)$ does not satisfy $\eta\left(G_{12}\right) \geq n_{2}-2$, a contradiction. When $G_{12} \in \mathcal{U}_{n_{2}}$, similar to the proof of Subcase 2.2 in Theorem 3.1, $G_{1}=S_{n_{1}} \cup C_{4} \cup\left(n-2-n_{1}-4\right) K_{1}$. Since there is no edges jointing a vertex in C_{4} to that of $S_{n_{1}}$, recover x, y to G_{1}, only one edge be inserted from y to C_{4}, we can't get two only one common vertex cycles in G, a contradiction.

Subcase 2.2. Both G_{11} and G_{12} contain pendent vertices. Similar to the proof of Subcase 2.1 in Theorem 3.1. $G_{1}=S_{n_{1}} \cup S_{n_{2}} \cup\left(n-2-n_{1}-n_{2}\right) K_{1}$. Recover x, y to G_{1}, we get $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$ or $G \cong G_{4}^{*}$.

Theorem 3.3. Let $G \in \theta_{n}(n \geq 6)$. Then $\eta(G)=n-4$ if and only if $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$ or $G \cong G_{3}^{*}$ or $G \cong G_{4}^{*}$ or $G \cong G_{5}^{*}$ or $G \cong G_{6}^{*}$, where $G_{1}^{*}, G_{2}^{*}, G_{3}^{*}, G_{4}^{*}, G_{5}^{*}$ and G_{6}^{*} are shown in Fig.3.6.

G_{1}^{*}

$G_{2}{ }^{*}$

G_{3}^{*}

G_{4}^{*}

G_{5}^{*}

$G_{6}{ }^{*}$

Fig.3.6

Proof. If $G \cong G_{i}^{*}(i=1,2, \ldots, 6)$, it is easy to check that $\eta(G)=n-4$. So it is suffices to prove the converse side of the theorem.

Let C_{k}, C_{l} be two elementary cycles in G, we first prove the following two claims.
Claim 1. If $G \in \theta_{n}(n \geq 6)$ and $\eta(G)=n-4$, then $k, l \in\{3,4\}$.
Otherwise, without loss of generality, we assume that $k \geq 5$. Then C_{k} is a vertex-induced subgraph of G. By Lemma 2.5, we have $\gamma\left(A\left(C_{k}\right)\right) \geq 5$. Then $\gamma(A(G)) \geq \gamma\left(A\left(C_{k}\right)\right) \geq 5$. Hence $\eta(G) \leq n-5<n-4$, a contradiction. So Claim 1 holds.
Claim 2. If $G \in \theta_{n}, \eta(G)=n-4(n \geq 6)$, and $k, l \in\{3,4\}$, then there must exists a pendent vertex in G.

Otherwise, since $n \geq 6, k, l \in\{3,4\}, G$ must be G_{25} shown in Fig.2.6. Hence $\eta\left(G_{25}\right)=$ $0 \neq 6-4$, a contradiction. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let $G_{1}=G_{11} \cup G_{12} \cup \ldots \cup G_{1 t}$ be the graph obtained by deleting x, y from G, where $G_{11}, G_{12}, \ldots, G_{1 t}$ are connected components of G_{1}. At least one of $G_{1 i}(i=1,2, \ldots, t)$ is nontrivial. Otherwise, G would be a star.

In fact, there is a unique nontrivial components in G_{1}. Otherwise, we assume that G_{11}, G_{12} are two nontrivial components in G_{1}. Let $v\left(G_{11}\right)=n_{1}$ and $v\left(G_{12}\right)=n_{2}$. At least one of G_{11}, G_{12} contains pendent vertices since $G \in \theta_{n}$. Without loss of generality, Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Denoted $G_{21} \cup G_{12} \cup \ldots \cup G_{1 t}$ by G_{2} and obviously $v\left(G_{2}\right)=n-4$. By Lemma 2.2, we have $\eta(G)=\eta\left(G_{1}\right)=\eta\left(G_{2}\right)=n-4$. By proposition 1.1, G_{2} is the null graph. Then G_{12} is trivial, a contradiction.

We assume that G_{11} is nontrivial. Let $v\left(G_{11}\right)=n_{1}$. Then $G_{1}=G_{11} \bigcup\left(n-2-n_{1}\right) K_{1}$. We distinguish the following two cases.
Case 1. The minimum degree of G_{11} is 1 .
Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11}. Denoted $G_{21} \bigcup\left(n-2-n_{1}\right) K_{1}$ by G_{2} and obviously $v\left(G_{2}\right)=n-4$. By Lemma 2.2, we have $\eta(G)=n-4=\eta\left(G_{1}\right)=\eta\left(G_{2}\right)$. By proposition 1.1, G_{2} is the null graph. Hence $G_{21}=\left(n_{1}-2\right) K_{1}$, In order to recover G_{11}, return u, v to G_{21}, G_{11} must be a $S_{n_{1}}$, and $G_{1}=S_{n_{1}} \cup\left(n-2-n_{1}\right) K_{1}$. Now we add x, y to G_{1}, we need to insert edges from y to each of $n-2-n_{1}$ isolated vertices of G_{1}. This gives another star $S_{n-n_{1}}$. In order to assure that there are two edge-joint cycles in G, three edges must be added from the center of $S_{n-n_{1}}$ to $S_{n_{1}}$. If we select the center and two pendant vertices in $S_{n_{1}}$ as three ends of these three edges, then $G \cong G_{1}^{*}$; If three ends chosen in $S_{n_{1}}$ are pendent
vertices, then $G \cong G_{2}^{*}$.
Case 2. The minimum degree of G_{11} is equal or greater than 2.
Since the minimum degree of G_{11} is equal or greater than $2, G_{11}$ contains cycles. If $G_{11} \in \mathcal{U}_{n_{1}}, G_{11}$ must be $C_{n_{1}}$, where $n_{1} \in\{3,4\}$. Hence $G_{1}=C_{n_{1}} \cup\left(n-2-n_{1}\right) K_{1}$. By Lemma 2.2, we have $\eta(G)=n-4=\eta\left(G_{1}\right)=\eta\left(C_{n_{1}}\right)+\left(n-2-n_{1}\right)$. Then $\eta\left(C_{n_{1}}\right)=n_{1}-2$. It is easy to check that $\eta\left(C_{n_{1}}\right)=n_{1}-2$ holds only if $n_{1}=4$. Thus $G_{1}=C_{4} \cup(n-6) K_{1}$. To add x, y to G_{1}, we need to insert edges from y to each of $n-6$ isolated vertices of G_{1}. This gives a star S_{n-4}. In order to assure that there are two edge-joint cycles in G, two edges must be added from the center of S_{n-4} to C_{4}. If we select two adjacent vertices in C_{4} as two ends of these two edges, then $G \cong G_{3}^{*}$. If both ends chosen in C_{4} are nonadjacent vertices, then $G \cong G_{4}^{*}$; If $G_{11} \in \theta_{n_{1}}, G_{11}$ must be one of the following graphs shown in Fig.3.7 since $G \in \theta_{n}$ and $k, l \in\{3,4\}$. By Lemma 2.2, we have $\eta(G)=n-4=\eta\left(G_{1}\right)=\eta\left(G_{11}\right)+\left(n-2-n_{1}\right)$. Then $\eta\left(G_{11}\right)=n_{1}-2$. It is easy to check that $\eta\left(G_{11}\right)=n_{1}-2$ holds only if $G_{11}=G_{41}$. Thus $G_{1}=G_{41} \bigcup(n-7) K_{1}$. Now recover x, y to G_{1}, we get $G \cong G_{5}^{*}$ or $G \cong G_{6}^{*}$.

References

[1] L. Collatz, U. Sinogowitz, Spektren endicher Grafen, Abh.Math.Sem.Univ.Hamburg 21(1957) 63-77.
[2] H. C. Longuet-Higgins, Resonance structures and MO in unsaturated hydrocarbons, J.Chem.Phys. 18(1950) 265-274.
[3] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York,1980.
[4] Xuezhong Tan, Bolian Liu, On the nullity of unicyclic graphs, Linear Algebra Appl. 408(2005) 212-220.
[5] S. Fiorini, I. Gutman, I. Sciriha, Trees with maximum nullity, Linear Algebra Appl. 397(2005) 245-251.
[6] W. Li, A. Chang, On the trees with maximum nullity, MATCH Commun. Math. Comput. Chem. 56(2006) 501-508.
[7] M. N. Ellingham, Basic subgraphs and graph spectra, Australas.J.Combin. 8(1993) 245-265.
[8] I. Sciriha, On the contruction of graphs of nullity one, Discrete Math. 18(1998) 193-221.
[9] I. Sciriha, On the rank of graphs, in:Y.Alavi, D.R.Lick,A.Schwenk (Eds), Combinatorics.Graph Theory and Algorithms, vol.2,Michigan, 1999,pp.769-778.
[10] I. Sciriha, On singular line graphs of trees, Congr Numer. 135(1998) 73-91.
[11] I. Sciriha, I. Gutman, On the nullity of line graphs of trees, Discrete Math. 232(2001) 35-45.
[12] I. Sciriha, I. Gutman, Nut graphs-maximally extending cores, Util Math. 54(1998) 257-272.
[13] N. Biggs, Algebraic Graph Theory, Cambridge University, 1974.

[^0]: *E-mail: anchang@fzu.edu.cn; Partially supported by the Natural National Science Foundation of China (NO. 10371019) and NSFFJ(NO. Z0511016)
 ${ }^{\dagger}$ E-mail: wcshiu@hkbu.edu.hk; Partially supported by Research Grant Council of Hong Kong

