MATCH Commun. Math. Comput. Chem. 60 (2008) 21-36

MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

On the Nullity of Bicyclic Graphs

Jianxi Li^{*a,b*}, An Chang^{*a*}, Wai Chee Shiu^{*b*†} ^{*a*}Department of Mathematics, Fuzhou University Fuzhou, Fujian 350002, P.R. China ^{*b*}Department of Mathematics, Hong Kong Baptist University Hong Kong, P.R. China

(Received July 30, 2007)

Abstract

The nullity of a graph is the multiplicity of the eigenvalues zero in its spectrum. In this papers, we obtain the nullity set of n-vertex bicyclic graphs, and characterize the bicyclic graphs with maximal nullity.

1 Introduction

Let G be a simple undirected graph with vertex set V and edge set E. The number of vertices of G is denoted by v(G). For any $v \in V$, the degree and neighborhood of v are denoted by d(v) and N(v), respectively. If W is a subset of V, the subgraph induced by W is the subgraph of G by tacking the vertices in W and joining those pairs of vertices in W which are joined in G. We write $G - \{v_1, v, \ldots, v_k\}$ for the graph obtained from G by removing the vertices v_1, v_2, \ldots, v_k and all edges incident to any of them. The disjoint union of two graphs G_1 and G_2 is denoted by $G_1 \cup G_2$. The null graph of order n is the

^{*}E-mail: anchang@fzu.edu.cn; Partially supported by the Natural National Science Foundation of China (NO. 10371019) and NSFFJ(NO. Z0511016)

[†]E-mail: wcshiu@hkbu.edu.hk; Partially supported by Research Grant Council of Hong Kong

graph with n vertices and no edges. As usual, the complete graph, cycle, path and star of order n denoted by K_n, C_n, P_n and S_n , respectively. An isolated vertex is sometimes denoted by K_1 .

The adjacency matrix A(G) of a graph G with the vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ is the $n \times n$ symmetric matrix $[a_{ij}]$, such that $a_{ij} = 1$ if v_i and v_j are adjacent and 0, otherwise. A graph is said to be singular(nonsingular) if its adjacency matrix A is a singular(nonsingular) matrix. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of A(G) are said to be the eigenvalues of the graph G, and to form the spectrum of this graph. The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by $\eta(G)$. Let $\gamma(A(G))$ be the rank of A(G). Clearly, $\eta(G) = n - \gamma(A(G))$. The following result is obvious.

Proposition 1.1. Let G be a graph of order n. Then $\eta(G) = n$ if and only if G is a null graph.

Proposition 1.2. Let $G = G_1 \cup G_2 \cup \cdots \cup G_t$, where G_1, G_2, \ldots, G_t are connected components of G. Then $\eta(G) = \sum_{i=1}^t \eta(G_i)$.

Definition 1.1[13]. An elementary graph is a simple graph, each component of which is regular has degree 1 or 2. In other words, each component is a single $edge(K_2)$ or a $cycle(C_r)$. A spanning elementary subgraph of G is an elementary subgraph which contains all vertices of G.

Proposition 1.3[13]. Let A be the adjacency matrix of a graph G. Then

$$detA = \sum (-1)^{r(H)} 2^{s(H)},$$

where the summation is over all spanning elementary subgraphs H of G.

In [1], Collatz and Sinogowitz first posed the problem of characterizing all graphs which satisfy $\eta(G) > 0$. This question is of great interest in both chemistry and mathematics. For a bipartite graph G, which correspond to an alternant hydrocarbon in chemistry, if $\eta(G) > 0$, it is indicated in [2] that the corresponding molecule is unstable. The nullity of a graph is also meaningful in mathematics since it is related to the singularity of A(G). The problem has not yet been solved completely. Some results on trees, bipartite graphs and unicyclic graphs are known (see[2,3,4]). More recent results can be fond in [5-12].

For trees the following theorem gives a concise formula.

Theorem 1.1[3]. If T is a tree of order n and m is the size of its maximum matchings, then $\eta(T) = n - 2m$.

If a tree contains a perfect matching, we call it a PM-tree for convenience. In fact, Theorem 1.1 implies the following corollary.

Corollary 1.1. Let T be a tree of order n. The nullity $\eta(T)$ of T is zero if and only if T is a PM-tree.

A unicyclic graph is a simple connected graph with equal number of vertices and edges. Denote by \mathcal{U}_n the set of all unicyclic graphs of order n.

Theorem 1.2[4]. For any $U \in \mathcal{U}_n$ $(n \ge 5)$, $\eta(U) \le n - 4$.

Let \mathcal{G}_n be the set of all graphs of order n, and let $[0,n] = \{0, 1, 2, ..., n\}$. A subset N of [0,n] is said to be the nullity set of \mathcal{G}_n provided that for any $k \in N$, there exists at least one graph $G \in \mathcal{G}_n$ such that $\eta(G) = k$.

Theorem 1.3[4]. The nullity set of $\mathcal{U}_n (n \ge 5)$ is [0, n-4].

Theorem 1.4[4]. Let $U \in \mathcal{U}_n$ $(n \ge 5)$. Then $\eta(U) = n - 4$ if and only if $U \cong U_1^*$ or $U \cong U_2^*$ or $U \cong U_3^*$, where U_1^* , U_2^* and U_3^* are shown in Fig.1.1.

A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices plus one. Denoted by \mathcal{B}_n the set of all bicyclic graphs of order n. Let C_k and C_l be two vertex-disjoint cycles. Suppose that v_1 is a vertex of C_k and v_q is a vertex of C_l . Joining v_1 and v_q by a path $v_1v_2...v_q$ of length q-1, where $q \ge 1$ and q=1 means identifying v_1 with v_q , the resulting graph, denoted by B(k,q,l) shown in Fig.1.2, is called an ∞ -graph; Let P_{l+1} , P_{p+1} and P_{q+1} be three vertex-disjoint paths, where $l, p, q \ge 1$, and at most one of them is 1. Identifying the three initial vertices and terminal vertices of them, respectively, the resulting graph, denoted by P(l, p, q) shown in Fig.1.2, is called a θ -graph. Obviously, \mathcal{B}_n consists of three types of graphs: first type denoted by B_n^+ is the set of those graphs each of which is an ∞ -graph with trees attached when q > 1; second type denoted by B_n^{++} is the set of those graphs each of which is an ∞ -graph with trees attached when q = 1; third type denoted by θ_n is the set of those graphs each of which is an θ -graph with trees attached. Then $\mathcal{B}_n = B_n^+ \cup B_n^{++} \cup \theta_n$.

In section 2, we determine the nullity set of \mathcal{B}_n . In section 3, we characterize the bicyclic graphs with maximal nullity.

Fig.1.2

2 The nullity set of \mathcal{B}_n

First, we introduce some lemmas.

Lemma 2.1[3]. A path with four vertices of degree 2 in a bipartite graph G can be replaced by an edges without changing the value of $\eta(G)$.

Lemma 2.2[3]. For a graph G containing a vertex of degree 1, if the induced subgraph H of G is obtained by deleting this vertex together with the vertex adjacent to it, then the relation $\eta(H) = \eta(G)$ holds.

Lemma 2.3. Let G_1 , G_2 and G_3 be the graphs of order n shown in Fig.2.1, respectively. Then $\eta(G_1) = 0$, $\eta(G_2) = 1$ and $\eta(G_3) = \begin{cases} 2 & n \equiv 0 \pmod{2} \\ 3 & n \equiv 1 \pmod{2} \end{cases}$.

Proof. We can easy calculate that $\gamma(A(G_1)) = n$, $\gamma(A(G_2)) = n - 1$. Then $\eta(G_1) = 0$, $\eta(G_2) = 1$. For the graph G_3 , if $p \in [0,3]$, it must be one of the following graphs shown in *Fig.2.2*. If $p \ge 4$, since it is a bipartite graph, it can be transformed into one of the graphs shown in *Fig.2.2* by Lemma 2.1 without changing its nullity. It is not difficult to get that $\eta(G_3^1) = \eta(G_3^2) = 2$ and $\eta(G_3^2) = \eta(G_3^4) = 3$. Therefore $\eta(G_3) = \begin{cases} 2 & n \equiv 0 \pmod{2} \\ 3 & n \equiv 1 \pmod{2} \end{cases}$.

Lemma 2.4. $\eta(C_n) = \begin{cases} 2 & n \equiv 0 \pmod{4} \\ 0 & otherwise \end{cases}$. **Proof.** When $n \equiv 0 \pmod{2}$, by Lemma 2.1, since C_n is a bipartite graph, we can get that

$$\eta(C_n) = \begin{cases} 2 & \text{if } n \equiv 0 \pmod{4} \\ 0 & \text{if } n \equiv 2 \pmod{4} \end{cases}$$

When $n \equiv 1 \pmod{2}$, the spanning elementary subgraph of C_n is itself. Since $r(C_n) = 0$, $s(C_n) = 1$, $det A(C_n) = 2 \neq 0$ by Proposition 1.3. Thus $\eta(C_n) = 0$.

Lemma 2.4 is equivalent to the following

Lemma 2.5. $\gamma(A(C_n)) = \begin{cases} n-2 & n \equiv 0 \pmod{4} \\ n & otherwise \end{cases}$.

Lemma 2.6. For any $G \in \dot{B}_n^+$ $(n \ge 7), \eta(G) \le n - 6$.

Proof. Let C_k, C_l are two vertex-disjoint cycles in G, we distinguish the following two cases:

Case 1. $k, l \in \{3, 4\}$. There must exists one of graphs shown in Fig.2.1 as a vertex-induced subgraph of G since $G \in B_n^+$. By Lemma 2.3, for each G_i (i = 1, 2, 3), we have $\gamma(A(G_i)) \ge 6$. Hence $\gamma(A(G)) \ge \gamma(A(G_i)) \ge 6$. Thus $\eta(G) \le n - \gamma(A(G_i)) \le n - 6$.

Case 2. $k \ge 5$ or $l \ge 5$. Without loss of generally, we assume that $k \ge 5$. There must exists H_1 shown in Fig.2.3 as a vertex-induced subgraph of G since $G \in B_n^+$. By Lemma 2.2, it is easy to get that

$$\eta((H_1)) = \begin{cases} 1 & \text{if } k \equiv 0 \pmod{2} \\ 0 & \text{if } k \equiv 1 \pmod{2} \end{cases}$$

Hence

$$\gamma(A(H_1)) = \begin{cases} k & \text{if } n \equiv 0 \pmod{2} \\ k+1 & \text{if } n \equiv 1 \pmod{2} \end{cases}$$

Since $k \ge 5$, we have $\gamma(A(H_1)) \ge 6$. Therefore $\gamma(A(G)) \ge \gamma(A(H_1)) \ge 6$. Thus $\eta(G) \le n - \gamma(A(H_1)) \le n - 6$.

Theorem 2.1. The nullity set of B_n^+ $(n \ge 7)$ is [0, n-6].

Proof. By Lemma 2.6, it suffices to show that for each $k \in [0, n-6]$, there exist a graph $G \in B_n^+$ such that $\eta(G) = n - 6$.

When k = 0, let $G = G_1$ shown in Fig.2.1, we have $\eta(G_1) = 0$; When $1 \le k \le n - 7$, let $G = G_4$ shown in Fig.2.3. Using Lemma 2.2 repeatedly, if $n \ne k \pmod{2}$, after $\frac{n-k-5}{2}$ steps, we get $P_2 \bigcup C_3 \bigcup kK_1$. Hence $\eta(G) = \eta(P_2 \bigcup C_3 \bigcup kK_1) = k$. If $n \equiv k \pmod{2}$, after $\frac{n-k-4}{2}$ steps, we get $P_2 \bigcup P_2 \bigcup kK_1$. Hence $\eta(G) = \eta(P_2 \bigcup P_2 \bigcup kK_1) = k$; When k = n - 6, let $G = G_5$ shown in Fig.2.3. By Lemma 2.2, we get $P_2 \bigcup C_4 \bigcup (n-8)K_1$. Hence $\eta(G) = \eta(P_2 \bigcup C_4 \bigcup (n-8)K_1$. Hence $\eta(G) = n - 8 + 2 = n - 6$.

Lemma 2.7. For any $G \in B_n^{++}$ $(n \ge 8), \eta(G) \le n - 6$.

Proof. Let C_k, C_l are two cycles in G, we distinguish the following two cases:

Case 1. $k, l \in \{3, 4\}$. There must exists one of the graphs shown in Fig.2.4 as a vertexinduced subgraph of G since $n \ge 8$. It is easy to calculate that $\eta(G_6) = \eta(G_7) = \eta(G_{10}) = 0$, $\eta(G_8) = \eta(G_9) = \eta(G_{11}) = 1$ and $\eta(G_{12}) = \eta(G_{13}) = \eta(G_{14}) = 2$. For each G_i $(i = 6, 7, \ldots, 14)$, we have $\gamma(A(G_i)) \ge 6$. Hence $\gamma(A(G)) \ge \gamma(A(G_i)) \ge 6$. Thus $\eta(G) \le n - \gamma(A(G_i)) \le n - 6$.

Case 2. $k \ge 5$ or $l \ge 5$. Without loss of generally, we assume that $k \ge 5$, There must exists H_1 shown in Fig.2.3 as a vertex-induced subgraph of G since $G \in B_n^{++}$. Similar to the proof of Case 2 in Lemma 2.6, we have $\gamma(A(H_1)) \ge 6$. Hence $\gamma(A(G)) \ge \gamma(A(H_1)) \ge 6$. Thus $\eta(G) \le n - \gamma(A(H_1)) \le n - 6$.

Theorem 2.2. The nullity set of $B_n^{++}(n \ge 8)$ is [0, n-6]. **Proof.** By Lemma 2.7, it suffices to show that for each $k \in [0, n-6]$, there exists a graph $G \in B_n^{++}$ such that $\eta(G) = n - 6$.

When k = 0, if $n \equiv 1 \pmod{2}$, let $G = G_{15}$ shown in Fig.2.5, Using Lemma 2.2 repeatedly, after $\frac{n-5}{2}$ steps, we get H_3 shown in Fig.2.5. Hence $\eta(G) = \eta(H_3) = 0$. If $n \equiv 0 \pmod{2}$, let $G = G_{16}$ shown in Fig.2.5, Using Lemma 2.2 repeatedly, after $\frac{n-4}{2}$ steps, we get $P_2 \cup P_2$. Hence $\eta(G) = \eta(P_2 \cup P_2) = 0$; When $1 \le k \le n - 6$, if $n \ne k \pmod{2}$, let $G = G_{17}$ shown in Fig.2.5. Using Lemma 2.2 repeatedly, after $\frac{n-k-5}{2}$ steps, we get $kK_1 \cup H_3$. Hence $\eta(G) =$ $\eta(kK_1 \cup H_3) = k$. If $n \equiv k \pmod{2}$, let $G = G_{18}$ shown in Fig.2.5. Using Lemma 2.2 repeatedly, after $\frac{n-k-4}{2}$ steps, we get $kK_1 \cup P_2 \cup P_2$. Hence $\eta(G) = \eta(kK_1 \cup P_2 \cup P_2) = k$.

Lemma 2.8. For any $G \in \theta_n$ $(n \ge 6)$, $\eta(G) \le n - 4$.

Proof. Let C_k, C_l are two elementary cycles in G, we distinguish the following two cases: Case 1. $k, l \in \{3, 4\}$, There must exists one of the graphs shown in Fig.2.6 as a vertexinduced subgraph of G since $n \ge 6$. It is easy to calculate that $\eta(G_{19}) = \eta(G_{25}) = 0$, $\eta(G_{20}) = \eta(G_{21}) = 1$ and $\eta(G_{22}) = \eta(G_{23}) = \eta(G_{24}) = 2$. For each G_i $(i = 19, 20, \dots, 25)$, we have $\gamma(A(G_i)) \ge 4$. Hence $\gamma(A(G)) \ge \gamma(A(G_i)) \ge 4$. Thus $\eta(G) \le n - \gamma(A(G_i)) \le n - 4$. Case 2. $k \ge 5$ or $l \ge 5$. Without loss of generally, we assume that $k \ge 5$. Since C_k is a vertex-induced subgraph of G, by Lemma 2.5, $\gamma(A(G)) \ge \gamma(A(C_k)) \ge 4$. Hence $\eta(G) \le n - 4$. \Box

Theorem 2.3. The nullity set of $\theta_n (n \ge 6)$ is [0, n-4].

Proof. By Lemma 2.8, it suffices to show that for each $k \in [0, n-4]$, there exists a graph $G \in \theta_n$ such that $\eta(G) = n - 4$.

When k = 0, if $n \equiv 1 \pmod{2}$, let $G = G_{26}$ shown in Fig.2.7. Using Lemma 2.2 repeatedly, after $\frac{n-3}{2}$ steps, we get C_3 . Hence $\eta(G) = \eta(C_3) = 0$. If $n \equiv 0 \pmod{2}$, let $G = G_{27}$ shown in Fig.2.7. Using Lemma 2.2 repeatedly, after $\frac{n-2}{2}$ steps, we get P_2 . Hence $\eta(G) = \eta(P_2) = 0$; When $1 \le k \le n - 6$, let $G = G_{28}$ shown in Fig.2.7. Using Lemma 2.2 repeatedly, if $n \ne k \pmod{2}$, after $\frac{n-k-3}{2}$ steps, we get $kK_1 \bigcup C_3$. Hence $\eta(G) = \eta(kK_1 \bigcup C_3) = k$. If $n \equiv k \pmod{2}$, after $\frac{n-k-2}{2}$ steps, we get $kK_1 \bigcup P_2$. Hence $\eta(G) = \eta(kK_1 \bigcup P_2) = k$; When k = n - 5, let $G = G_{29}$ shown in Fig.2.7. By Lemma 2.2, we get $(n - 6)K_1 \bigcup H_4$, where H_4 is shown in Fig.2.7. Hence $\eta(G) = \eta((n - 6)K_1 \bigcup H_4) = n - 6 + 1 = n - 5$; When k = n - 6, let $G = G_{30}$ shown in Fig.2.7. By Lemma 2.2, we get $(n - 5)K_1 \bigcup P_3$. Hence $\eta(G) = \eta((n - 6)K_1 \bigcup P_3) = n - 5 + 1 = n - 4$.

3 The bicyclic graph with maximal nullity

Theorem 3.1. Let $G \in B_n^+$ $(n \ge 10)$. Then $\eta(G) = n - 6$ if and only if $G \cong G_1^*$ or $G \cong G_2^*$ or $G \cong G_3^*$, where G_1^* , G_2^* and G_3^* are shown in Fig.3.1.

Proof. If $G \cong G_i^*$ (i = 1, 2, 3), it is easy to check that $\eta(G) = n - 6$. So it is suffices to prove the converse side of the theorem.

Let C_k , C_l be two vertex-disjoint cycles in G, we first prove the following two claims. **Claim 1.** If $G \in B_n^+$ $(n \ge 10)$, $\eta(G) = n - 6$, then $k, l \in \{3, 4\}$.

Otherwise, without loss of generality, we assume that $k \ge 5$. We can find H_2 shown in Fig.3.2 as a vertex-induced subgraph of G. By Lemma 2.2 and 2.4, we easy get

$$\eta((H_2)) = \begin{cases} 0 & k \neq 0 \pmod{4} \\ 2 & k \equiv 0 \pmod{4} \end{cases}$$

Then

$$\gamma(A((H_2))) = \begin{cases} k+2 & k \neq 0 \pmod{4} \\ k & k \equiv 0 \pmod{4} \end{cases}$$

Since $k \ge 5$, we have $\gamma(A((H_2))) \ge 7$. Hence $\eta(G) \le n - 7 < n - 6$, a contradiction. So Claim 1 holds.

Claim 2. If $\eta(G) = n - 6$ (n > 9) and $k, l \in \{3, 4\}$, then there exists at least one pendent vertex in G.

Otherwise, G must be the one of graphs shown in Fig.2.1 since $G \in B_n^+$ and n > 9. By Lemma 2.3, for each G_i (i = 1, 2, 3), we have $\eta(G_i) < n - 6$, a contradiction. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let $G_1 = G_{11} \bigcup G_{12} \bigcup \ldots \bigcup G_{1t}$ be the graph obtained by deleting x, y from G, where $G_{11}, G_{12}, \ldots, G_{1t}$ are connected components of G_1 . At least one of G_{1i} $(i = 1, 2, \ldots, t)$ is nontrivial. Otherwise, G would be a star.

In fact, there are at most two nontrivial components in G_1 . Otherwise, we assume that G_{11}, G_{12}, G_{13} are three nontrivial components in G_1 . Let $v(G_{11}) = n_1, v(G_{12}) = n_2$ and $v(G_{13}) = n_3$. At least one of G_{11}, G_{12}, G_{13} contains pendant vertices since $G \in B_n^+$. On the other hand, at least two of G_{11}, G_{12}, G_{13} contains pendant vertices, without loss of generality, we assume that G_{11} and G_{12} contain pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting u, v from G_{11} . Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting w, p from G_{12} . Denote the graph $G_{21} \bigcup G_{31} \bigcup G_{13} \bigcup \ldots \bigcup G_{1t}$ by G_2 , and obviously, $v(G_2) = n - 6$. By Lemma 2.2, we have $\eta(G) = n - 6 = \eta(G_1) = \eta(G_2)$. By proposition 1.1, G_2 is the null graph. Therefore, G_{13} is trivial, a contradiction. So only one of G_{11}, G_{12}, G_{13} contains pendant vertices. We assume that G_{11} contains a pendent vertex v and u is the adjacent vertex of v. Let G'_{21} be the graph obtained by deleting u, v from G_{11} . Denote the graph $G'_{21} \bigcup G_{12} \bigcup G_{13} \bigcup \ldots \bigcup G_{1t}$ by G'_2 , and $v(G'_2) = n - 4$. Since G_{12}, G_{13} no contain pendent vertices, and $G \in B_n^+$, G_{12}, G_{13} must be C_{n_2}, C_{n_3} , respectively, where $n_2, n_3 \in \{3, 4\}$. By Lemma 2.4, we have

$$\eta((C_{n_2})) = \begin{cases} 2 & n_2 = 4 \\ 0 & n_2 = 3 \end{cases}$$
$$\eta((C_{n_3})) = \begin{cases} 2 & n_3 = 4 \\ 0 & n_3 = 3 \end{cases}$$

Hence $\eta(G) = \eta(G_1) = \eta(G'_2) \le n_1 - 2 + \eta(C_2) + \eta(C_3) + (n - 2 - n_1 - n_2 - n_3) \le n - 8 < n - 6$, a contradiction.

We distinguish the following two cases:

Case 1. There is a unique nontrivial component in G_1 . Without loss of generality, we assume that G_{11} is nontrivial. Let $v(G_{11}) = n_1$. Then $G_1 = G_{11} \bigcup (n-2-n_1)K_1$. It is easy to see that deleting x, y destroy at most one cycle since $G \in B_n^+$. Hence G_{11} contains cycles. By Lemma 2.2, we have $\eta(G) = n - 6 = \eta(G_1) = \eta(G_{11}) + (n - 2 - n_1)$. Thus $\eta(G_{11}) = n_1 - 4$. If $G_{11} \in B_{n_1}^+$, by Lemma 2.6, we have $\eta(G_{11}) \leq n_1 - 6 < n_1 - 4$, a contradiction. Thus $G_{11} \in \mathcal{U}_{n_1}$. By Theorem 1.4, $\eta(G_{11}) = n_1 - 4$ if and only if $G_{11} \cong U_1^+$ or

- 30 -

 $G_{11} \cong U_2^*$ or $G_{11} \cong U_3^*$, where U_1^* , U_2^* and U_3^* are shown in Fig.1.1. If $G_{11} \cong U_1^*$ or $G_{11} \cong U_2^*$, we can't get two vertex-disjoint cycles by recovering x, y to G_1 . This is impossible. Therefore, $G_{11} \cong U_3^*$, and $G_1 = U_3^* \bigcup (n-2-n_1)K_1$. Now recover x, y to G_1 , we need to insert edges from y to each $n-2-n_1$ isolated vertices of G_1 . This gives a star S_{n-n_1} . In order to produce two vertex-disjoint cycles in G, two edges must be added from the center of S_{n-n_1} to G_1 . If we select the center and a pendant vertex in U_3^* as two ends of these two edges, then $G \cong G_1^*$; If both ends chosen in U_3^* are pendant vertices, then $G \cong G_2^*$.

Case 2. There are two nontrivial components in G_1 . Without loss of generality, we assume that G_{11} and G_{12} are nontrivial. Let $v(G_{11}) = n_1$ and $v(G_{12}) = n_2$. Then $G_1 = G_{11} \bigcup G_{12} \bigcup (n-2-n_1-n_2)K_1$. Now we consider the following three subcases:

Subcase 2.1. Both G_{11} and G_{12} contain pendent vertex. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting w, p from G_{12} . Denote the graph $G_{21} \cup G_{31} \cup (n-2-n_1-n_2)K_1$ by G_2 and obviously $v(G_2) = n - 6$. By Lemma 2.2, we have $\eta(G) = n - 6 = \eta(G_1) = \eta(G_2)$. By proposition 1.1, G_2 is the null graph, Hence $G_{21} = (n_1 - 2)K_1$, $G_{31} = (n_2 - 2)K_1$. In order to recover G_{11}, G_{12} , respectively, return u, v to G_{21}, G_{11} must be a star S_{n_1} , return w, p to G_{31}, G_{12} must be a star S_{n_2} , and $G_1 = S_{n_1} \cup S_{n_2} \cup (n-2-n_1-n_2)K_1$. We can't get two vertex-disjoint cycles by adding x, y to G_1 , a contradiction.

Subcase 2.2. Only one of G_{11} , G_{12} contains pendent vertices. Without loss of generality, we assume that G_{11} contains pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Denote the graph $G_{21} \bigcup G_{12} \bigcup (n-2-n_1-n_2)K_1$ by G_2 and obviously $v(G_2) = n-4$. By Lemma 2.2, we have $\eta(G) = n-6 = \eta(G_1) = \eta(G_2) \le n_1 - 2 + \eta(G_{12}) + (n-2-n_1-n_2)$. Then $\eta(G_{12}) \ge n_2 - 2$. Since G_{12} no contain pendent vertices, if $G_{12} \in B_{n_2}^+$, By Lemma 2.6, we have $\eta(G_{12}) \le n_2 - 6 < n_2 - 2$, a contradiction; If $G_{12} \in \mathcal{U}_{n_2}$, G_{12} must be C_{n_2} , where $n_2 \in \{3, 4\}$. It is easy to check that $\eta(G_{12}) \ge n_2 - 2$ holds only if $n_2 = 4$. Then $G_{12} = C_4$. Since $n-6 = \eta(G_2) \le n_1 - 2 + 2 + (n-2-n_1-4) = n-6$, then $G_{21} = (n_1-2)K_1$, return u, v to G_{21} , G_{11} must be a star S_{n_1} , and $G_1 = S_{n_1} \bigcup C_4 \bigcup (n-2-n_1-4)K_1$. Now recover x, y to G_1 , we get $G \cong G_1^*$ or $G \cong G_2^*$.

subcase 2.3. G_{11} and G_{12} no contain pendent vertices. Since $G \in B_n^+$, G_{11}, G_{12} must be C_{n_1}, C_{n_2} , respectively, where $n_1, n_2 \in \{3, 4\}$. $G_1 = C_{n_1} \bigcup C_{n_2} \bigcup (n-2-n_1-n_2)K_1$, By Lemma 2.2, we have $\eta(G) = n - 6 = \eta(G_1) = \eta(C_{n_1}) + \eta(C_{n_2}) + (n-2-n_1-n_2)$. Then $n_1 - \eta(C_{n_1}) + n_2 - \eta(C_{n_2}) = 4$. It is easy to check that $n_1 - \eta(C_{n_1}) + n_2 - \eta(C_{n_2}) = 4$ holds only if $n_1 = n_2 = 4$. Then $G_1 = C_4 \bigcup C_4 \bigcup (n-2-8)K_1$. Now recover x, y to G_1 , we get

 $G \cong G_3^*$.

Theorem 3.2. Let $G \in B_n^{++}$ $(n \ge 8)$. Then $\eta(G) = n - 6$ if and only if $G \cong G_1^*$ or $G \cong G_2^*$ or $G \cong G_3^*$ or $G \cong G_4^*$ or $G \cong G_5^*$ or $G \cong G_6^*$ or $G \cong G_7^*$ or $G \cong G_8^*$, where G_1^* , G_2^* , G_3^* , G_4^* , G_5^* , G_6^* , G_7^* and G_8^* are shown in Fig.3.3.

Proof. If $G \cong G_i^*$ (i = 1, 2, ..., 8), It is easy to check that $\eta(G) = n - 6$. So it is suffices to prove the converse side of the theorem.

Let C_k , C_l be two cycles in G, we first prove the following two claims.

Claim 1. If $G \in B_n^{++}$ $(n \ge 8)$, $\eta(G) = n - 6$, then $k, l \in \{3, 4\}$.

Otherwise, without loss of generality, we assume that $k \ge 5$. We distinguish the following two cases:

Case 1. $l \ge 4$. We can find H_2 shown in Fig.3.2 as a vertex-induced subgraph of G. Similar to the proof of Claim 1 in Theorem 3.1, we have $\gamma(A(H_2)) \ge 7$, Hence $\eta(G) \le n - 7 < n - 6$, a contradiction.

Case 2. l = 3. If $k \ge 7$, we can find H_1 shown in Fig.2.3 as a vertex-induced subgraph of G, Similar to the proof of Case 2 in Lemma 2.6, we have $\gamma(A(H_1)) \ge 8$. Hence $\eta(G) \le n - 8 < n - 6$, a contradiction; If k = 5, 6, these must exists one of the following graphs shown in Fig.3.4 as a vertex-induced subgraph of G since $n \ge 8$. It is easy to calculate that $\eta(G_{31}) = \eta(G_{32}) = \eta(G_{33}) = \eta(G_{34}) = \eta(G_{35}) = 0$. For each G_i $(i = 31, \ldots, 35)$, we have $\gamma(A(G_i)) = 8 > 6$. Hence $\eta(G) \le n - \gamma(A(G_i)) \le n - 8 < n - 6$, a contradiction.

Thus in each case we get contradiction, so Claim 1 holds.

Claim 2. If $G \in B_n^{++}$, $\eta(G) = n - 6$ $(n \ge 8)$, and $k, l \in \{3, 4\}$, then there exists at least one pendent vertex in G.

Otherwise, since $n \ge 8$, $G \in B_n^{++}$, and $k, l \in \{3, 4\}$, this is impossible. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let $G_1 = G_{11} \bigcup G_{12} \bigcup \ldots \bigcup G_{1t}$ be the graph obtained by deleting x, y from G, where $G_{11}, G_{12}, \ldots, G_{1t}$ are connected components of G_1 . At least one of G_{1i} $(i = 1, 2, \ldots, t)$ is nontrivial. Otherwise, G would be a star.

In fact, there are at most two nontrivial components in G_1 . Otherwise, we assume that G_{11}, G_{12}, G_{13} are three nontrivial components in G_1 . Let $v(G_{11}) = n_1, v(G_{12}) = n_2$ and $v(G_{13}) = n_3$. At most one of G_{11}, G_{12}, G_{13} contains cycle since $G \in B_n^{++}$. Then at least two of G_{11}, G_{12}, G_{13} contain pendent vertices. Without loss of generality, we assume that G_{11} and G_{12} contain pendent vertices. Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Let w be a pendent vertex of G_{12} and p the adjacent vertex of w. Let G_{31} be the graph obtained by deleting w, p from G_{12} . Denote the graph $G_{21} \bigcup G_{31} \bigcup G_{13} \bigcup \ldots \bigcup G_{1t}$ by G_2 , and obviously $v(G_2) = n - 6$. By Lemma 2.2, we have $\eta(G) = n - 6 = \eta(G_1) = \eta(G_2)$. By proposition 1.1, G_2 is the null graph. Therefore, G_{13} is trivial, a contradiction.

We distinguish the following two cases:

Case 1. There is a unique nontrivial component in G_1 . Without loss of generality, we assume that G_{11} is nontrivial. Let $v(G_{11}) = n_1$. Then $G_1 = G_{11} \bigcup (n-2-n_1)K_1$. G_{11} must contains cycles since $G \in B_n^{++}$. By Lemma 2.2, we have $\eta(G) = n-6 = \eta(G_1) = \eta(G_{11}) + (n-2-n_1)$. Hence $\eta(G_{11}) = n_1 - 4$. Now, we consider the following two subcases:

Subcase 1.1. $G_{11} \in B_{n_1}^{++}$. If G_{11} contains pendent vertices, there must exists one of graphs shown in Fig.2.4 as a vertex-induced subgraph of G_{11} . Similar to the proof of Lemma 2.7, we have $\gamma(A(G_i)) \geq 6$ (i = 6, ..., 14). Hence $\gamma(A(G_{11})) \geq \gamma(A(G_i)) \geq 6$. Thus $\eta(G_{11}) \leq n_1 - \gamma(A(G_i)) \leq n_1 - 6 < n_1 - 4$, a contradiction; If G_{11} no contain pendent vertex, there must one of graphs shown in Fig.3.5. It is easy to check that only graph which satisfies $\eta(G_{11}) = n_1 - 4$ is G_{38} . Then $G_1 = G_{38} \bigcup (n - 2 - n_1)K_1$. Now recover x, y to G_1 , we get $G \cong G_6^*$ or $G \cong G_7^*$ or $G \cong G_8^*$.

Subcase 1.2. $G_{11} \in \mathcal{U}_{n_1}$. By lemma 1.4, $\eta(G_{11}) = n_1 - 4$ if and only if $G_{11} \cong U_1^*$ or $G_{11} \cong U_2^*$ or $G_{11} \cong U_3^*$, where U_1^* , U_2^* and U_3^* are shown in Fig.1.1. If $G_{11} \cong U_1^*$, recover x, y to G_1 , we get $G \cong G_1^*$ or $G \cong G_2^*$; if $G_{11} \cong U_2^*$, recover x, y to G_1 , we get $G \cong G_2^*$ or $G \cong G_4^*$; if $G_{11} \cong U_3^*$, recover x, y to G_1 , we get $G \cong G_3^*$ or $G \cong G_3^*$ or $G \cong G_5^*$. Case 2. There are two nontrivial components in G_1 . Without loss of generality, we assume that G_{11} and G_{12} are nontrivial. Let $v(G_{11}) = n_1$ and $v(G_{12}) = n_2$. Then $G_1 = G_{11} \bigcup G_{12} \bigcup (n-2-n_1-n_2)K_1$. At least one of G_{11}, G_{12} contains pendent vertices since $G \in B_n^{++}$. Otherwise G_{11}, G_{12} must be C_{n_1}, C_{n_2} , respectively. We get two vertex-disjoint cycles in G by recovering x, y to G_1 , a contradiction. Now, we consider the following two subcases:

Subcase 2.1. Only one of G_{11} , G_{12} contains pendent vertices. Without loss of generality, we assume that G_{11} contains pendent vertices. Let v be a pendent vertex of G_{11} and uthe adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Denote the graph $G_{21}\bigcup G_{12}\bigcup (n-2-n_1-n_2)K_1$ by G_2 and obviously $v(G_2) = n-4$. By Lemma 2.2, we have $\eta(G) = n-6 = \eta(G_1) = \eta(G_2) \leq n_1 - 2 + \eta(G_{12}) + (n-2-n_1-n_2)$. Thus $\eta(G_{12}) \geq n_2 - 2$. Since G_{12} no contain pendent vertices, when $G_{12} \in B_{n_2}^{++}$, G_{12} must be one of graphs shown in Fig.3.5. It is easy to check that each $G_i(i = 36, 37, 38)$ does not satisfy $\eta(G_{12}) \geq n_2 - 2$, a contradiction. When $G_{12} \in \mathcal{U}_{n_2}$, similar to the proof of Subcase 2.2 in Theorem 3.1, $G_1 = S_{n_1} \bigcup C_4 \bigcup (n-2-n_1-4)K_1$. Since there is no edges jointing a vertex in C_4 to that of S_{n_1} , recover x, y to G_1 , only one edge be inserted from y to C_4 , we can't get two only one common vertex cycles in G, a contradiction.

Subcase 2.2. Both G_{11} and G_{12} contain pendent vertices. Similar to the proof of Subcase 2.1 in Theorem 3.1. $G_1 = S_{n_1} \bigcup S_{n_2} \bigcup (n-2-n_1-n_2)K_1$. Recover x, y to G_1 , we get $G \cong G_1^*$ or $G \cong G_2^*$ or $G \cong G_4^*$.

Theorem 3.3. Let $G \in \theta_n$ $(n \ge 6)$. Then $\eta(G) = n - 4$ if and only if $G \cong G_1^*$ or $G \cong G_2^*$ or $G \cong G_3^*$ or $G \cong G_4^*$ or $G \cong G_5^*$ or $G \cong G_6^*$, where G_1^* , G_2^* , G_3^* , G_4^* , G_5^* and G_6^* are shown in *Fig.3.6.*

Proof. If $G \cong G_i^*$ (i = 1, 2, ..., 6), it is easy to check that $\eta(G) = n - 4$. So it is suffices to prove the converse side of the theorem.

Let C_k , C_l be two elementary cycles in G, we first prove the following two claims. Claim 1. If $G \in \theta_n$ $(n \ge 6)$ and $\eta(G) = n - 4$, then $k, l \in \{3, 4\}$.

Otherwise, without loss of generality, we assume that $k \ge 5$. Then C_k is a vertex-induced subgraph of G. By Lemma 2.5, we have $\gamma(A(C_k)) \ge 5$. Then $\gamma(A(G)) \ge \gamma(A(C_k)) \ge 5$. Hence $\eta(G) \le n - 5 < n - 4$, a contradiction. So Claim 1 holds.

Claim 2. If $G \in \theta_n$, $\eta(G) = n - 4$ $(n \ge 6)$, and $k, l \in \{3, 4\}$, then there must exists a pendent vertex in G.

Otherwise, since $n \ge 6$, $k, l \in \{3, 4\}$, G must be G_{25} shown in Fig.2.6. Hence $\eta(G_{25}) = 0 \ne 6 - 4$, a contradiction. So Claim 2 holds.

Let x be a pendant vertex in G and y the adjacent vertex of x. Let $G_1 = G_{11} \bigcup G_{12} \bigcup \ldots \bigcup G_{1t}$ be the graph obtained by deleting x, y from G, where $G_{11}, G_{12}, \ldots, G_{1t}$ are connected components of G_1 . At least one of G_{1i} $(i = 1, 2, \ldots, t)$ is nontrivial. Otherwise, G would be a star.

In fact, there is a unique nontrivial components in G_1 . Otherwise, we assume that G_{11}, G_{12} are two nontrivial components in G_1 . Let $v(G_{11}) = n_1$ and $v(G_{12}) = n_2$. At least one of G_{11}, G_{12} contains pendent vertices since $G \in \theta_n$. Without loss of generality, Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Denoted $G_{21} \bigcup G_{12} \bigcup \ldots \bigcup G_{1t}$ by G_2 and obviously $v(G_2) = n - 4$. By Lemma 2.2, we have $\eta(G) = \eta(G_1) = \eta(G_2) = n - 4$. By proposition 1.1, G_2 is the null graph. Then G_{12} is trivial, a contradiction.

We assume that G_{11} is nontrivial. Let $v(G_{11}) = n_1$. Then $G_1 = G_{11} \bigcup (n-2-n_1)K_1$. We distinguish the following two cases.

Case 1. The minimum degree of G_{11} is 1.

Let v be a pendent vertex of G_{11} and u the adjacent vertex of v. Let G_{21} be the graph obtained by deleting u, v from G_{11} . Denoted $G_{21} \bigcup (n-2-n_1)K_1$ by G_2 and obviously $v(G_2) = n-4$. By Lemma 2.2, we have $\eta(G) = n-4 = \eta(G_1) = \eta(G_2)$. By proposition 1.1, G_2 is the null graph. Hence $G_{21} = (n_1 - 2)K_1$, In order to recover G_{11} , return u, v to G_{21}, G_{11} must be a S_{n_1} , and $G_1 = S_{n_1} \bigcup (n-2-n_1)K_1$. Now we add x, y to G_1 , we need to insert edges from y to each of $n-2-n_1$ isolated vertices of G_1 . This gives another star S_{n-n_1} . In order to assure that there are two edge-joint cycles in G, three edges must be added from the center of S_{n-n_1} to S_{n_1} . If we select the center and two pendant vertices in S_{n_1} as three ends of these three edges, then $G \cong G_1^*$; If three ends chosen in S_{n_1} are pendent vertices, then $G \cong G_2^*$.

Case 2. The minimum degree of G_{11} is equal or greater than 2.

Since the minimum degree of G_{11} is equal or greater than 2, G_{11} contains cycles. If $G_{11} \in \mathcal{U}_{n_1}, G_{11}$ must be C_{n_1} , where $n_1 \in \{3, 4\}$. Hence $G_1 = C_{n_1} \bigcup (n-2-n_1)K_1$. By Lemma 2.2, we have $\eta(G) = n-4 = \eta(G_1) = \eta(C_{n_1}) + (n-2-n_1)$. Then $\eta(C_{n_1}) = n_1 - 2$. It is easy to check that $\eta(C_{n_1}) = n_1 - 2$ holds only if $n_1 = 4$. Thus $G_1 = C_4 \bigcup (n-6)K_1$. To add x, y to G_1 , we need to insert edges from y to each of n-6 isolated vertices of G_1 . This gives a star S_{n-4} . In order to assure that there are two edge-joint cycles in G, two edges must be added from the center of S_{n-4} to C_4 . If we select two adjacent vertices in C_4 as two ends of these two edges, then $G \cong G_3^*$. If both ends chosen in C_4 are nonadjacent vertices, then $G \cong G_4^*$; If $G_{11} \in \theta_{n_1}, G_{11}$ must be one of the following graphs shown in Fig.3.7 since $G \in \theta_n$ and $k, l \in \{3, 4\}$. By Lemma 2.2, we have $\eta(G) = n - 4 = \eta(G_1) = \eta(G_{11}) + (n - 2 - n_1)$. Then $\eta(G_{11}) = n_1 - 2$. It is easy to check that $\eta(G_{11}) = n_1 - 2$ holds only if $G_{11} = G_{41}$. Thus $G_1 = G_{41} \bigcup (n-7)K_1$. Now recover x, y to G_1 , we get $G \cong G_5^*$ or $G \cong G_6^*$.

References

 L. Collatz, U. Sinogowitz, Spektren endicher Grafen, Abh.Math.Sem.Univ.Hamburg 21(1957) 63-77.

[2] H. C. Longuet-Higgins, Resonance structures and MO in unsaturated hydrocarbons, J.Chem.Phys. 18(1950) 265-274.

[3] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.

[4] Xuezhong Tan, Bolian Liu, On the nullity of unicyclic graphs, Linear Algebra Appl. 408(2005) 212-220.

[5] S. Fiorini, I. Gutman, I. Sciriha, Trees with maximum nullity, Linear Algebra Appl. 397(2005) 245-251.

[6] W. Li, A. Chang, On the trees with maximum nullity, MATCH Commun. Math. Comput. Chem. 56(2006) 501-508.

[7] M. N. Ellingham, Basic subgraphs and graph spectra, Australas.J.Combin. 8(1993) 245-265. [8] I. Sciriha, On the contruction of graphs of nullity one, Discrete Math. 18(1998) 193-221.

[9] I. Sciriha, On the rank of graphs, in:Y.Alavi, D.R.Lick, A.Schwenk (Eds), Combinatorics.Graph Theory and Algorithms, vol.2, Michigan, 1999, pp.769-778.

[10] I. Sciriha, On singular line graphs of trees, Congr Numer. 135(1998) 73-91.

[11] I. Sciriha, I. Gutman, On the nullity of line graphs of trees, Discrete Math. 232(2001) 35-45.

[12] I. Sciriha, I. Gutman, Nut graphs-maximally extending cores, Util Math. 54(1998) 257-272.

[13] N. Biggs, Algebraic Graph Theory, Cambridge University, 1974.