A Novel Method for Sequence Alignment and Mutation Analysis

Guohua Huang, Bo Liao¹, Wu Zhang, Fei Gong

School of Computer and Communication, Hunan University, Changsha, Hunan 410082, China

(Received September 25, 2007)

Abstract

We introduced a representation of DNA sequences and outlined an approach to search optimal alignments and to judge mutations based on the presented representation.

Introduction

Molecular biologists are currently engaged in some of the most impressive data collection projects. Recent genome sequencing projects are generating an enormous amount of data related to the function and the structure of biological molecules and sequences. Other complementary high-throughput technologies, such as DNA microarrays, are rapidly generating large amounts of data that are too overwhelming for conventional approaches to biological data analysis[1]. Mathematical analysis of the large volume genomic DNA sequence data is one of the challenges for bio-scientists. Graphical representation of DNA sequences provides a single way of sorting and comparing various gene sequences, initiated by Hamori and Ruskin[2,3], and by Gates[4,5]. In recent years, many authors have present different representations of DNA sequences based on 2-D,3-D, even higher dimension space [6-21] .Most representations are applied to these cases as follows: (i) similarity analysis . The invariants of D/D matrix[9,15,19], M/M matrix[10], L/L matrix [7,10,14], covariance matrix, even ‘higher order’ matrices [7,9-10,15] (such as eigenvalues[10,14], leading eigenvalue[7,9,15], or average band width[14,16,18]), are used to compute the similarity between sequences. (ii) sequence alignment. Recently, Liao[20] and Randić [21] utilize the representation of sequences to make alignment between two DNA sequences that is one of the crucial sequence-comparison operation in the bioinformatics and genetic research . (iii) mutation analysis. The characteristic vectors are used to measure the mutation between bases in the representations [6, 20].

In the paper, we propose a representation of DNA sequences, and introduce an

¹Corresponding author: dragonbw@163.com
approach to search optimal alignment based on the presented representation. Our alignment algorithm improves the efficiency of alignment [21], and predigest the difficulty of alignment [20]. Based on our proposed representation, we also can judge base mutations between sequences.

Representation of DNA sequences

Recently, Milan Randić [21] put forward a representation of DNA sequence that the four base types of DNA sequences are assigned to four horizontal lines separated by a unit distance interval in a plane. The bases consisting of DNA sequences are represented by dots along the horizontal lines. Associating adjacent dots with short lines, one can obtain a zigzag curve. Here, we will present a universal representation of DNA sequence.

Let sequence \(a = a_1a_2 \cdots a_n, a_i \in \{A,C,G,T,\} \), \(1 \leq i \leq n \), we define a map \(\rho \) as follows:

\[
\rho(a_i) = \begin{cases}
(i, h_i) & a_i = A \\
(i, h_2) & a_i = T \\
(i, h_3) & a_i = G \\
(i, h_4) & a_i = C \\
(i, \infty) & a_i = '-'
\end{cases}
\]

where \(n \) is the length of the studied sequence, \(h_i \) (i=1,2,3 and 4) are integers and are not equal with the others. For example, we can denote \(h_1(h_2, h_3 \text{ and } h_4) \) as \(1,2,4 \text{ and 8} \) respectively, \(-1,0,2 \text{ and 6} \) respectively or \(0,1,3 \text{ and 7} \) respectively, and so on. In order to express the result of alignment, we suppose that the character ‘-’ is defined as \((i, \infty) \) which corresponds to an empty dot. Obviously, each base of sequence corresponds to a dot in Cartesian coordinate system in the plane. For example, let

\[
h_1 = 1, h_2 = 2, h_3 = 4, h_4 = 8,
\]

then the sequence \(g = \text{ATGGCATTGACAAACTCG} \) will be represented as an ordered array \{\((1,1), (2,2), (3,4), (4,4), (5,8), (6,1), (7,2), (8,2), (9,4), (10,1), (11,8), (12,1), (13,1), (14,1), (15,8), (16,2), (17,8), (18,4)\} \). The array is shown in Fig.1.
Fig. 1. The representation of sequence ATGGCATTGACAAACTCCG

There is a distinct characteristic as follows: the corresponding representation is simple for a DNA sequence. In addition, we only can reconstruct a unique DNA sequence. There is no loss of information in the process of transforming from sequence to representation or from representation to sequence. The representation of sequence can viewed as a “signature” of the sequence.

Suppose two arbitrary sequences \(a = a_1a_2\cdots a_n\) and \(b = b_1b_2\cdots b_m\), where \(n\) and \(m\) are the lengths of sequences \(a\) and \(b\), respectively. We can obtain two Theorems as follows:

Theorem 1 If \(\rho(a_i) - \rho(b_i) = (0, 0)\), where \(1 \leq i \leq \min(n, m)\), then \(a_i\) should match \(b_i\).

Proof. Let \(\rho(a_i) = (i, \lambda), \rho(b_i) = (i, \mu), \lambda, \mu \in \{h_1, h_2, h_3, h_4\}\), if \(a_i\) doesn’t match \(b_i\), then \(\lambda \neq \mu\), so there is a contradiction with the equation \(\rho(a_i) - \rho(b_i) = (0, 0)\). So the above proposition is true.

Theorem 2 If the representation of the sequence \(a = a_1a_2\cdots a_n\) shifts \(s\) (a positive integer) units paralleling to the x-axis, then we can obtain a new sequence \(c = c_1 + s, c_2 + s, \cdots, c_n + s\) and it satisfied \(\rho(c_{i+s}) - \rho(a_i) = (s, 0)\), or \(\rho(c_{i+s}) = (s, 0) + \rho(a_i)\), for any \(i\), \(1 \leq i \leq n\).

Proof. Suppose the arbitrary base \(a_i\) corresponds to the dot \((i, \lambda)\), \(1 \leq i \leq n\), if the dot
(i, \lambda) \text{ shifts } s \text{ units paralleling to the x-axes, then it should arrive at the dot }
(i + s, \lambda) \text{ corresponding to (i+s)th base of the new sequence, and there should be an equation } \rho(c_{i+s}) = (s,0) + \rho(a_i).

Corollary 1. For any \(i \), \(1 \leq i \leq \min \{m,n\} \), if \(\rho(b_i) - \rho(a_i) = (0,0) \), then sequence \(a \) is the subsequence of sequence \(b \) or sequence \(b \) is the subsequence of sequence \(a \).

Corollary 2. Suppose the representation of the sequence \(b \) moves \(s \) units paralleling to the x-axis to be transformed into a new representation corresponding to a new sequence \(c = c_{1+s}c_{2+s} \cdots c_{m+s} \), where \(c_i = b_{i+s}, 1+s \leq i \leq m+s \).

(i) If \(\rho(c_i) - \rho(a_i) = (0,0) \), where \(\max(1,s+1) \leq i \leq \min(n,s+m) \), then \(a_i \) should match \(b_{i+s} \).

(ii) If \(\rho(c_i) - \rho(a_i) = (0,0) \), for any \(i, \max(1,s+1) \leq d_1 \leq i \leq d_2 \leq \min(n,s+m) \), then the subsequence \(a_{d_1}a_{d_1+1} \cdots a_{d_2} \) of the sequence \(a \) should match the subsequence \(b_{d_1-s}b_{d_1+1-s} \cdots b_{d_2-s} \) of the sequence \(b \).

Corollary 3. If the subsequence \(a_{i+1} \cdots a_{i+d} \) would match the subsequence \(b_{i+1} \cdots b_{i+d} \), and if there would not exist \(s \) (an integer) to make the new sequence \(c = c_{1+s}c_{2+s} \cdots c_{m+s} \) satisfied that \(\rho(c_k) - \rho(a_k) = (0,0) \), for any \(k, \max(1,s+1) \leq d_1 \leq k \leq d_2 \leq \min(n,s+m) \), and \(d_2 - d_1 > d \), where \(c_i = b_{i+s}, 1+s \leq i \leq m+s \), then the sequences \(a \) and \(b \) should have the longest common (matching) subsequence \(a_{i+1} \cdots a_{i+d} \) (or \(b_{j+1} \cdots b_{j+d} \)).

Alignment of DNA sequences

According to Corollary 1, Corollary 2 and Corollary 3, we can draw a conclusion that both arbitrary sequences \(a \) and \(b \) have the longest common subsequence. We can obtain the longest common subsequence by moving the representation of the sequence \(b \) along the horizontal direction for the sequence \(a \). That is to say, for arbitrary sequences \(a = a_1a_2 \cdots a_n \) and \(b = b_1b_2 \cdots b_m \), where \(n \) and \(m \) are the lengths of sequences \(a \) and \(b \) respectively, we should obtain a new sequence \(c = c_{1+s}c_{2+s} \cdots c_{m+s} \) by moving sequence \(b \) which satisfies \(\rho(c_i) - \rho(a_i) = (0,0) \), for any \(i, \max(1,s+1) \leq d_1 \leq i \leq d_2 \leq \min(n,s+m) \). Then sequences \(a \) and \(b \) should have the longest common subsequence. We suppose that the longest common subsequence is \(a_{d_1}a_{d_1+1} \cdots a_{d_2} \) (or \(b_{d_1-s}b_{d_1+1-s} \cdots b_{d_2-s} \)). So that sequence \(a = a_1a_2 \cdots a_{d_1}a_{d_1+1} \cdots a_{d_2}a_{d_2+1} \cdots a_n \), \(b = b_{j+1}b_{j+2} \cdots b_{j+1-s}b_{j+2+s} \cdots b_{m} \), where \(a_j = b_{j+s}, d_1 \leq j \leq d_2 \).

Next, we introduce an approach to search optimal alignment based on the
proposed representation of DNA sequences. Assume sequence \(a=a_1a_2\cdots a_n \) and sequence \(b=b_1b_2\cdots b_m \), where \(n \) and \(m \) are the lengths of sequences \(a \) and \(b \) respectively. First, according to Corollary 1, Corollary 2 and Corollary 3, we can obtain the longest common subsequence \(t \) by moving the representation of the sequence \(b \) along the horizontal direction, right and left. Let \(t=a_{i+1}\cdots a_{i+d}=b_{j+1}\cdots b_{j+d} \). So the sequence \(a \) is generally divided into three parts \(A_1=a_1\cdots a_i \), \(A_2=a_{i+1}\cdots a_{i+d} \) and \(A_3=a_{i+d+1}\cdots a_n \), and the sequence \(b \) corresponds to the next three parts \(B_1=b_1\cdots b_j \), \(B_2=b_{j+1}\cdots b_{j+d} \) and \(B_3=b_{j+d+1}\cdots b_m \). The subsequence \(A_1 \) will align with the subsequence \(B_1 \) and the subsequence \(A_3 \) with the subsequence \(B_3 \) in the following. Second, in the same way we can obtain the two longest common subsequences between the representation of \(A_1 \) and the representation of \(B_1 \), and between the representation of \(A_3 \) and the representation of \(B_3 \). Don't terminate this process until the two corresponding short subsequences match completely or don't match at all. In the result, we obtain the optimal alignment.

For example, let sequence \(a=\text{CTCTACTTGGAAACGACATC} \) and sequence \(b=\text{CTGATGCTTGGAAATTCAT} \). The corresponding representations are \(\{(1,h_4),(2,h_2),(3,h_3),(4,h_2),(5,h_1),(6,h_2),(7,h_2),(8,h_2),(9,h_3),(10,h_3),(11,h_1),(12,h_1),(13,h_1)\} \) and \(\{(1,h_4),(2,h_2),(3,h_3),(4,h_1),(5,h_2),(6,h_1),(7,h_4),(8,h_2),(9,h_2),(10,h_3),(11,h_3),(12,h_1),(13,h_1)\} \), respectively. We depict their corresponding curves respectively in Fig. 2.

First of all, moving the representation of the sequence \(b \) along the horizontal direction, right and left, we can obtain the longest common representation which corresponds to subsequence \(S=\text{CTTGGAA} \), so that the sequence \(a=a_1a_2a_3a_4a_5a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}a_{20} \) and the sequence \(b=b_1b_2b_3b_4b_5b_6b_{14}b_{15}b_{16}b_{17}b_{18} \),
where \(a_1a_2a_3a_4a_5=CTCTA\) \(a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}a_{20}=ACGACATC\), \(b_1b_2b_3b_4b_5b_6=CTGATG\) and \(b_{14}b_{15}b_{16}b_{17}b_{18}=TTCAT\). Next, in the same way, we can obtain the longest common representation of \(a_1a_2a_3a_4a_5\) and \(b_1b_2b_3b_4b_5b_6\) by moving the corresponding representation of \(b_1b_2b_3b_4b_5b_6\) along the horizontal direction, and the longest common representation corresponds to the subsequence \(S_1=CT\), and \(a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}a_{20}=\) \(a_{13}a_{14}a_{15}a_{16}S_2 a_{20}\), and \(b_{14}b_{15}b_{16}b_{17}b_{18}=b_{14}b_{15}S_2\). Obviously, \(a_{13}a_{14}a_{15}a_{16}\) does not match with \(b_{14}b_{15}\) at all while for \(a_{20}\) there does not exist alignment. Moving the representation of \(b_1b_2b_3b_4b_5b_6\), we can obtain the longest common representation \(S_3\) of \(a_3a_4a_5\) and \(b_3b_4b_5b_6\), where \(S_3=T\) \(a_3a_4a_5=a_3S_3a_5\), and \(b_3b_4b_5b_6=b_3S_3b_6\). However, \(b_3b_4\) does not match \(a_3\), and \(b_6\) doesn’t match \(a_5\). In the result, \(a=S_1a_3S_3a_5S_3a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}a_{20}\), \(b=S_1b_3S_3b_6S_3b_{14}b_{15}S_2\). Obviously, one of \(b_3\) and \(b_4\) should correspond to an insertion with respect to the sequence \(a\), and the bases of \(a_{13}a_{14}a_{15}a_{16}\) should correspond to deletions with respect to the sequence \(b\). There are \(C_4^1 \times C_4^2\) different alignments in all. In Table 1, we list six different alignments.

| Sequence a | C T - C T A C T T G G A A A C G A C A T C |
| Sequence b | C T G A T G C T T G G A A T T - - C A T - |

(i)

| Sequence a | C T C - T A C T T G G A A A C G A C A T C |
| Sequence b | C T G A T G C T T G G A A T T - - C A T - |

(ii)

| Sequence a | C T C - T A C T T G G A A A C G A C A T C |
| Sequence b | C T G A T G C T T G G A A T T - - C A T - |

(iii)

| Sequence a | C T C - T A C T T G G A A A C G A C A T C |
| Sequence b | C T G A T G C T T G G A A T T - - C A T - |

(iv)

| Sequence a | C T C - T A C T T G G A A A C G A C A T C |
| Sequence b | C T G A T G C T T G G A A T T - - C A T - |

(v)

| Sequence a | C T C - T A C T T G G A A A C G A C A T C |
| Sequence b | C T G A T G C T T G G A A T T - - C A T - |

(vi)

| Sequence a | - C T C T A C T T G G A A A C G A C A T C |
| Sequence b | - C T C T A C T T G G A A A C G A C A T C |

(vii)

Table 1. (i)-(vi): the result of alignment by our approach. (vii): the result of alignment using programming Clustalx(1.83).

For the two same sequences \(a\) and \(b\), we use a tool (a aligning programming that is called Clustalx(1.83)) to obtain the alignment shown in Table 1.(vii). In order to compare two methods each other, we define a function of score as follows:
\[
\phi(sseq_1, sseq_2) = \begin{cases}
1 & sseq_1 = ' -' \text{ or } sseq_2 = ' -' \\
2 & sseq_1 = sseq_2 \\
-1 & sseq_1 \neq sseq_2
\end{cases}
\]

(2)

where \(sseq_1 \) and \(sseq_2 \) denote the \(i \)th base in seq1 and seq2, respectively. The total score of alignment between the two sequences are computed by the following equation:

\[
\text{Score} = \sum \phi(sseq_1, sseq_2)
\]

(3)

The total score of alignment by using the aligning programming is 22, while the score is 26 by using our method.

Mutation analysis based on the presented representation

Biological mutations can be generally classified into four types: substitutions, transpositions, insertions and deletions. The first two types of mutations result in errors and the last two types of mutations change the lengths of input DNA (RNA) sequences [22]. Liao [20] proposed an approach of mutation analysis based on the graphical representation, where a sequence is depicted as three different curves in the three patterns \{A,T\}, \{A,G\} and \{A,C\} respectively. It can help judge the mutations but the computation is complicated.

Next, we introduce an approach to judge the mutations between sequences based on the new representation. In the following, we discuss mutations in the case of only considering substitutions, insertions and deletions between corresponding positions in sequences \(a \) and \(b \) respectively. We suppose that \(h_2 - h_1 \neq h_1 - h_2 \neq h_2 - h_1 \neq h_1 - h_2 \neq h_1 - h_2 \neq h_2 - h_1 \), and let sequence \(a = a_1 a_2 \cdots a_n \), \(b = b_1 b_2 \cdots b_m \), where \(n \) and \(m \) are lengths of the sequences \(a \) and \(b \), respectively. Obviously, there are some conclusions as follows:

Theorem 3 (i) If \(\rho(b_i) - \rho(a_i) = (0, h_2 - h_1) \), then the \(i \)th base A of the sequence \(a \) should be replaced by T;

(ii) If \(\rho(b_i) - \rho(a_i) = (0, h_1 - h_2) \), then the \(i \)th base T of the sequence \(a \) should be replaced by A;

Theorem 4 (i) If \(\rho(b_i) - \rho(a_i) = (0, h_3 - h_2) \), then the \(i \)th base T of the sequence \(a \) should be replaced by G;

(ii) If \(\rho(b_i) - \rho(a_i) = (0, h_2 - h_3) \), then the \(i \)th base G of the sequence \(a \) should be replaced by T;

Theorem 5 (i) If \(\rho(b_i) - \rho(a_i) = (0, h_3 - h_1) \), then the \(i \)th base A of the sequence \(a \) should be replaced by
should be substituted by G;
(ii) If \(\rho(b_i) - \rho(a_i) = (0, h_1 - h_2) \), then the \(i \)th base G of the sequence \(a \) should be substituted by A;

Theorem 6
(i) If \(\rho(b_i) - \rho(a_i) = (0, h_4 - h_3) \), then the \(i \)th base G of the sequence \(a \) should be substituted by C;
(ii) If \(\rho(b_i) - \rho(a_i) = (0, h_3 - h_4) \), then the \(i \)th base C of the sequence \(a \) should be substituted by G;

Theorem 7
(i) If \(\rho(b_i) - \rho(a_i) = (0, h_4 - h_2) \), then the \(i \)th base T of the sequence \(a \) should be substituted by C;
(ii) If \(\rho(b_i) - \rho(a_i) = (0, h_2 - h_4) \), then the \(i \)th base C of the sequence \(a \) should be substituted by T;

Theorem 8
(i) If \(\rho(b_i) - \rho(a_i) = (0, h_4 - h_1) \), then the \(i \)th base A of the sequence \(a \) should be substituted by C;
(ii) If \(\rho(b_i) - \rho(a_i) = (0, h_1 - h_4) \), then the \(i \)th base C of the sequence \(a \) should be substituted by A;

Theorem 9
If \(\rho(b_i) - \rho(a_i) = (0, \infty) \), then the \(i \)th base of the sequence \(a \) should be insertion or deletion.

(i) If \(\rho(a_i) = (i, h_1), (i, h_2), (i, h_3) \) or \((i, h_4) \), then the corresponding base A, T, G or C should be deleted.
(ii) If \(\rho(b_i) = (i, h_1), (i, h_2), (i, h_3) \) or \((i, h_4) \), then the corresponding base A, T, G or C should be inserted.

Proof of Theorem 3: we suppose \(a_i \neq A, T, a_i \in \{ A, C, G, T \}, b_i \neq A, T, b_i \in \{ A, C, G, T \} \), then \(a_i = G \) or \(C, b_i = C \) or \(G \), \(\rho(b_i) - \rho(a_i) \neq (0, h_2 - h_1) \) and \(\rho(b_i) - \rho(a_i) \neq (0, h_1 - h_2) \), obviously, there is a contradiction with the condition \(\rho(b_i) - \rho(a_i) = (0, h_2 - h_1) \) or \(\rho(b_i) - \rho(a_i) = (0, h_1 - h_2) \), so the conclusion is true.

Using a similar method, we can prove the other theorems. Based on the above mentioned theorems, we can quickly judge mutations by moving different vectors (such as \((0, h_2 - h_1) \), \((0, h_1 - h_2) \), \((0, h_2 - h_4) \) and \((0, h_2 - h_3) \) and \((0, h_4 - h_3) \) and so on) along the horizontal line between two representations of the sequences.
For example, let sequences $a = \text{GTTCGACGGT}$ and $b = \text{GCTCAATAT}$, and we suppose $h_1 = 1$, $h_2 = 2$, $h_3 = 4$, $h_4 = 8$. The corresponding curves are shown in Fig.3.

Moving the vector $(0,6)$ on the two representations, we can conclude that T at the 2th position of the sequence a should be substituted by C; Moving the vector $(0,-2)$, we can obtain that the 9th base G of sequence a should be substituted by T; Moving the vector $(0,-3)$, we can obtain that the 5th and the 8th base G should be replaced by A; Moving the vector $(0,-6)$, we can obtain that the 7th base C should be replaced by T.

![Fig.3. The corresponding curves of sequences a and b.](image)

Conclusion

In this article, we outlined an approach to search optimal alignment based on the new representation of DNA sequence. Compared to other alignment algorithms, the advantage of our method is that it is simple and efficient. By separating the four lines to be not unit distance intervals, we offered an approach to judge mutations quickly between bases in sequences.

Acknowledgment This work is supported in part by the National Nature Science Foundation of China (Grant 10571019) and the National Natural Science Foundation of Hunan University. The authors thank the anonymous referees for many valuable suggestions, which have improved this manuscript.
References

[20] B. Liao, K. Q. Ding, Graphical approach to analyzing DNA sequences, J.