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1. Introduction

Let G be a simple graph with n vertices. Let A(G) be the adjacency matrix of G. The

characteristic polynomial of G is

φ(G,λ) = det(λI − A) =
n∑

i=0

aiλ
n−i

,

Sachs theorem states that [12] for i � 1,

ai =
∑
S∈Li

(−1)p(S)2c(S)
,

where Li denotes the set of Sachs graphs of G with i vertices, that is, the graphs in which

every component is either a K2 or a cycle, p(S) is the number of components of S and

c(S) is the number of cycles contained in S. In addition a0 = 1. The roots λ1, . . . , λn of

φ(G,λ) are called the eigenvalues of G. Since A(G) is symmetric, all eigenvalues of G are

real. Let Cn denote a cycle of length n. Other undefined notation may refer to [2, 12].

The energy of G, denoted by E(G), is then defined as E(G) =
∑n

i=1 |λi|. Since the

energy of a graph can be used to approximate the total π-electron energy of the molecule

(e.g., see [11, 12]), there are numerous results on E(G) (e.g., see [1,3,4,5-11,13-27,29-33,35-

42]), including graphs with extremal energies [3,7,17,18,20,21,23-26,30,31,33,35-40,43-47].

It is known that [12] E(G) can be expressed as the Coulson integral formula

E(G) =
1
π

∫ +∞

0

dx

x2
ln

⎡⎢⎣
⎛⎝�n

2
�∑

i=0

(−1)ia2ix
2i

⎞⎠2

+

⎛⎝�n

2
�∑

i=0

(−1)ia2i+1x
2i+1

⎞⎠2
⎤⎥⎦ . (1.1)

Let b2i(G) = (−1)ia2i and b2i+1(G) = (−1)ia2i+1 for 0 � i � �

n
2 �. Clearly, b0(G) = 1 and

b2(G) equals the number of edges of G. Thus, by (1.1), E(G) is a strictly monotonically
increasing function of bi(G), i = 1, . . . , �n/2�. A quasi-order is introduced (see [12]): if G1

and G2 are two graphs, then

G1 � G2 ⇔ bi(G1) � bi(G2) for all i � 0.

If G1 � G2, and there exists one j such that bj(G1) > bj(G2), then we write G1 � G2.
Therefore,

G1 � G2 ⇒ E(G1) > E(G2).

Many results on the minimal energy have been obtained for various classes of graphs.
In [3], Caporossi et al. gave the following conjecture.
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Conjecture 1.1. Connected graphs G with n � 6 vertices, n − 1 � e � 2(n − 2) edges

and minimum energy are star with e − n + 1 additional edges all connected to the same

vertex for e � n + �

n−7
2 �, and bipartite graphs with two vertices on one side, one of which

is connected to all vertices on the other side otherwise.

This conjecture is true when e = n − 1, 2(n − 2) [3, Theorem 1], and when e = n for

n � 6 [17], e = n + 1 for n � 9 [39]. In this paper, we consider the above conjecture for

the case e = n + 2 for n � 7.
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Figure 1: Graphs G
0
n and G

1
n

A connected simple graph with n vertices and e = n+2 edges is called a tricyclic graph.

Let Gn be the class of tricyclic graph G with n vertices and containing no disjoint two odd

cycles Cp, Cq with p + q ≡ 2 (mod 4). Let G
0
n be the graph formed by joining 3 pendent

vertices to a vertex of degree one of the K1,n−1 (e.g., see Figure 1), and G
1
n be the graph

formed by joining n− 6 pendent vertices to a vertex of degree 4 of the complete bipartite

graph K2,4 (e.g., see Figure 1). In this paper, we show that G
0
n, G

1
n have, respectively,

minimal and the second-minimal energies in Gn for n � 11 and G
1
n has the minimal energy

in Gn for 7 � n � 10.

The following two lemmas are needed in our paper.

Lemma 1.2 ([39]). Let G be a graph with n vertices and let uv be a pendent edge of G

with pendent vertex v. Then for 2 � i � n, bi(G) = bi(G − v) + bi−2(G − u − v).

Lemma 1.3 ([39]). Let G be any graph. Then b4(G) = m(G, 2) − 2s, where m(G, 2) is

the number of 2-matchings of G and s is the number of quadrangles in G.
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2. Lemmas and main results

In this section, we shall determine the tricyclic graphs in Gn (n � 11) having the minimal

and the second-minimal energies. Our idea is, at first, to show E(G) > E(G1
n) for any

G ∈ Gn with G � G
0
n, G

1
n, Rn,Wn, Sn, Qn; and proceed to show that E(G0

n) < E(G1
n),

where Rn, Sn, Qn are as shown in Figure 2. For Gn with 7 � n � 10, we characterize the

graph with minimal energy. The following fact is immediate.

Fact 1. For any G ∈ Gn, there are at most three edge-disjoint cycles contained in G.

Lemma 2.1. If G ∈ Gn, then b2i � 0 for 0 � i � �

n
2 �.

Proof. Let Li be the set of Sachs graphs of G with i vertices. By Sachs theorem,

b2i =
∑

S∈L2i

(−1)p(S)+i2c(S) =
∑

S∈L1
2i

(−1)p(S)+i +
∑

S∈L2
2i

(−1)p(S)+i2c(S)
,

where L
1
2i is the set of graphs with no cycles in L2i, and L

2
2i = L2i \ L

1
2i.

If every S in L2i has no cycle, then p(S) = i, and so

b2i(G) =
∑

S∈L2i

1 � 0.

Otherwise, there exists S
′ in L2i such that S

′ contains cycles. If S
′ has no odd cycles, then

b2i(G) � 0 [14]; otherwise, together with Fact 1, S
′ must contain two edge-disjoint odd

cycles, say Ck, Cl. Since G ∈ Gn, we have k + l ≡ 0 (mod 4). If S
′ has no cycle except Ck

and Cl, then

p(S′) + i = 2 +
2i − (k + l)

2
+ i ≡ 0 (mod 2).

If S
′ has another cycle Cm, then Cm must be even. Thus its corresponding term in b2i is

the following

(−1)p(S′)+i23
.

On the other hand, since Cm is an even cycle, it has exactly two perfect matching, say

M1,M2, therefore there exist Sachs graphs S
′′
1 , S

′′
2 in L2i such that S

′′
1 := (S′

\Cm)∪Ck ∪

Cl ∪ M1 and S
′′
2 := (S′

\ Cm) ∪ Ck ∪ Cl ∪ M2, respectively. Its corresponding term in b2i

is the following

(−1)p(S′′
1 )+i

· 22 + (−1)p(S′′
2 )+i

· 22
,
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where p(S′′
1 )+ i = p(S′′

2 )+ i = 2+ 2i−(k+l)
2 + i ≡ 0 (mod 2). It is easy to see |L

1
2i| � 2|L2

2i|,

and so

b2i �
Cm⊆S′∈L2

2i∑
M1,M2⊆Cm

[
(−1)p(S′′

1 )+i
· 22 + (−1)p(S′′

2 )+i
· 22 + (−1)p(S′)+i

· 23
]
≥ 0,

where S
′′
1 = (S′

\ Cm) ∪ Ck ∪ Cl ∪ M1 and S
′′
2 = (S′

\ Cm) ∪ Ck ∪ Cl ∪ M2.

In Gn, there exist four special graphs, namely that Rn,Wn, Sn, Qn; see Figure 2, where

Rn has n − 7 pendent vertices, Wn has n − 6 pendent vertices, Sn has n − 5 pendent

vertices and Qn has n − 4 pendent vertices. In the following lemmas, we shall repeatedly

use these graphs.

.

.

.

nR

.   .   . .   .   . 

nS nQ

.   .   . 

nW

Figure 2: Graphs Rn,Wn, Sn and Qn.

It is straightforward to check that graph G ∈ Gn has at least 3 cycles and at most 7

cycles. Furthermore, there do not exist five cycles in G.

Let m(G, 2) denote the number of 2-matchings of a graph G. Obviously, m(Pn, 2) =

(n − 2)(n − 3)/2 and m(Cn, 2) = n(n − 3)/2.

Lemma 2.2. If G ∈ Gn has exactly three cycles with G � Rn, then b4(G) > b4(G1
n) for

n � 7.

)(a )(c )(d

. . . 

)(b

. . . . . . . . . 

)(e

Figure 3: Five possible cases for the arrangement of three cycles in G.
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Proof. Since G ∈ Gn contains exactly three cycles, say Ca, Cb, Cc, then these must be

edge-disjoint; see Figure 3. It is immediate that n + 2 − a − b − c � 0. By induction on

n + 2− a− b− c. If n + 2− a− b− c = 0, then either Ca, Cb, Cc has exactly one vertex in

common (e.g., see (c) in Figure 3), or there exist two pairs of cycles in {Ca, Cb, Cc}, such

that each pair of cycles, say {Ca, Cb} (respectively, {Cb, Cc}) have a vertex in common,

say v1 (respectively, v2) satisfying v1 
= v2 (e.g., see (c) in Figure 3). For the latter, by

Lemma 1.2, we have

b4(G) = m(G, 2) − 2s � m(G, 2) − 6

=
a(a − 3)

2
+

b(b − 3)
2

+
c(c − 3)

2
+ (a − 2)(n + 2 − a)

+2(n + 2 − a − 2) + (b − 2)c + 2(c − 2) − 6

=
1
2
(a + b + c)2 −

3
2
(a + b + c) − 14

=
1
2
n

2 +
1
2
n − 15.

and so

b4(G) − b4(G1
n) � 1

2
n

2 +
1
2
n − 15 − (4n − 24) =

1
2
n

2
−

7
2
n + 9 > 0,

and hence b4(G) > b4(G1
n). Similarly, for the former, namely that for (c) in Figure 3, we

can also prove b4(G) > b4(G1
n) when p = k � 1.

Suppose it is true for all graphs G ∈ Gn having exactly three cycles and G � Rn with

n + 2 − a − b − c < p (p � 1), and suppose n + 2 − a − b − c = p.

Case 1. There are no pendent edges in G. Then there are at most two cycles having

a vertex in common.

Subcase 1.1. If there are exactly two cycles, say Cb and Cc, having exactly one vertex

in common; see (b), (e) in Figure 3. For (b) in Figure 3, if p = k � 1, then Cb (or, Cc)

connects Ca by a path of length k. Without loss of generality, let Cb connect Ca by a path

of length k. By Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 6

=
a(a − 3)

2
+

b(b − 3)
2

+
c(c − 3)

2
+

(k − 1)(k − 2)
2

+ (a − 2)(n + 2 − a)

+ 2(n + 2 − a − 1) + (k − 1)(b + c) + (b − 2 + c)
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+(b − 2)c + 2(c − 2) − 6

=
1
2
(a + b + c)2 −

3
2
(a + b + c) + k(a + b + c) +

(k − 1)(k − 2)
2

− 14

=
1
2
n

2 +
1
2
n − 14,

and thus

b4(G) − b4(G1
n) � 1

2
n

2 +
1
2
n − 14 − (4n − 24) =

1
2
n

2 +
7
2
n + 10 > 0,

and therefore b4(G) > b4(G1
n). Similarly, for the former, namely that for (e) in Figure 1,

we can also prove b4(G) > b4(G1
n) when p = k � 1.

Subcase 1.2 If there does not exist two cycles in {Ca, Cb, Cc} having exactly one

vertex in common, then set n + 2 − a − b − c = k � 2. Hence there exist two pairs of

cycles in {Ca, Cb, Cc}, say {Ca, Cb} and {Cb, Cc}, such that each pair of such two cycles

are connected by a path. Without loss of generality, assume that Ca (respectively, Cc)

connects Cb by Pr+1 (respectively, Pl+1), where r � 1 (respectively, l � 1). Then by

Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 6

=
a(a − 3)

2
+

b(b − 3)
2

+
c(c − 3)

2
+

(r − 1)(r − 2)
2

+
(l − 1)(l − 2)

2

+ (a − 2)(n + 2 − a) + 2(n + 2 − a − 1) + (r − 1)(b + c + l) − 6

+ (b + c + l − 2) + (b − 2)(c + l) + 2(c + l − 1) + (l − 1)c + (c − 2)

=
1
2
(a + b + c)2 −

3
2
(a + b + c) + k(a + b + c) +

1
2
(k − 2)(k − 3) − 15

=
1
2
n

2 +
1
2
n − 13,

and so

b4(G) − b4(G1
n) � 1

2
n

2 +
1
2
n − 13 − (4n − 24) =

1
2
n

2
−

7
2
n + 11 > 0.

It is immediate that b4(G) > b4(G1
n).

Case 2. uv is a pendent edge of G with pendent vertex v. By Lemma 1.1,

b4(G) = b4(G − v) + b2(G − u − v), b4(G1
n) = b4(G1

n−1) + b2(K1,4).
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Note that G− v has exactly three cycles on n− 1 vertices and G � Rn, therefore G− v �

G
0
n−1, G

1
n−1,Wn−1, Sn−1, Qn−1, Rn−1, by induction hypothesis, b4(G − v) > b4(G1

n−1). It

is easy to see G � G
0
n, G

1
n,Wn, Sn, Qn, Rn, we have b2(G − u − v) � b2(K1,4) = 4. It is

immediate that b4(G) > b4(G1
n) with G � Rn.

By combing Cases 1 and 2, this lemma follows.

Remark. In Case 2 above, if G ∼= Rn, then b2(G − u − v) = 3 < b2(K1,4) = 4. This is

just the reason why we consider G ∈ Gn with G � Rn.

Lemma 2.3. If G ∈ Gn has exactly four cycles with G � Wn, then b4(G) > b4(G1
n) for

n � 7.

Proof. Since G has exactly four cycles, by Fact 1, there are two cycles, say Ca and Cb,

having t (t � 1) common edges and there exists exactly one cycle, say Cc, which is edge-

disjoint with the rest cycles contained in G (e.g., see Figure 4.). So n+2−a−b+ t−c � 0.

By induction on n + 2 − a − b + t − c. If n + 2 − a − b + t − c = 0, then either all of the

four cycles have a vertex in common, or there exists exactly one cycle, say Cb, connecting

Cc by a vertex, that is, only Cb and Cc have exactly one vertex in common.

. . . 
. . . 

( a ) ( b ) ( c ) ( d ) 

Figure 4: Four possible cases for the arrangement of four cycles in G

When t = 1, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 8

=
(a + b − 2)(a + b − 5)

2
+

c(c − 3)
2

+ (a + b − 2 − 4 + c)

+(a + b − 2 − 2)c + 2(c − 2) − 8

=
(a + b)2

2
−

5
2
(a + b) + (a + b)c +

c
2
− 5c
2

− 13.

- 404 -



Since n + 2 − a − b + 1 − c = 0, thus a + b = n + 3 − c. And so

b4(G) − b4(G1
n) � (n + 3 − c)2

2
−

5
2
(n + 3 − c) + (n + 3 − c)c +

c
2
− 5c
2

−13 − (4n − 24)

=
1
2
n

2
−

7
2
n + 8 > 0,

and hence b4(G) > b4(G1
n).

When t � 2, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 8

=
(a + b − 2t)(a + b − 2t − 3)

2
+

c(c − 3)
2

+
(t − 1)(t − 2)

2
+ 2(c − 2) − 8

+2(a + b − 2t − 2 + c) + (t − 2)(a + b − 2t + c) + (a + b − 2t − 2)c

=
(a + b)2

2
− (t +

3
2
)(a + b) + (a + b)c +

c
2
− 3c
2

+
(t − 1)(t − 2)

2

+3t − tc − 16.

Since n + 2 − a − b + t − c = 0, thus a + b = n + 2 + t − c. And so

b4(G) − b4(G1
n) �

{
1
2n

2
−

7
2n + 14, if t = 2;

1
2n

2
−

7
2n + 8, if t � 3.

and therefore b4(G) > b4(G1
n) for n � 7. Similarly, in the case that all of the four cycles

have exactly one vertex in common when n � 7, the result b4(G) > b4(G1
n) also holds for

n + 2 − a − b + t − c = 0.

Suppose it is true for all graphs G ∈ Gn having exactly four cycles and G � Wn with

n + 2 − a − b + t − c < p (p � 1), and suppose n + 2 − a − b + t − c = p.

Case 1. There is no pendent edges in G. Then either there exactly one cycle, say

Cb, connecting the separated cycle, say Cc, by a path of length p, or the separated cycle

connects the rest three cycles by a path of length p, that is, one end vertex of this path is

in the separated cycle, the other end vertex is a common vertex of the rest cycles. Here we

show our result only for the former, similarly we can prove our result for the latter case.
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Subcase 1.1. t = 1. Then by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 8

=
(a + b − 2)(a + b − 5)

2
+

c(c − 3)
2

+
(p − 1)(p − 2)

2
+ (a + b − 2 − 2) − 8

+(a + b − 2)(c + p − 1) + (a + b − 2 − 4 + c + p) + (p − 1)c + (c − 2)

=
(a + b)2

2
−

5
2
(a + b) + (a + b)(c + p) +

c
2
− 5c
2

+
p
2
− 5p
2

+ pc − 12.

Since n + 2 − a − b + 1 − c = p, we a + b = n + 3 − p − c. And so

b4(G) − b4(G1
n) � (n + 3 − p − c)2

2
−

5
2
(n + 3 − p − c) + (n + 3 − p − c)(c + p)

+
c
2
− 5c
2

+
p
2
− 5p
2

+ pc − 12 − (4n − 24)

=
1
2
n

2
−

7
2
n + 9 > 0,

and thereby b4(G) > b4(G1
n).

Subcase 1.2. t = 2. Then by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 8

=
(a + b − 4)(a + b − 7)

2
+

c(c − 3)
2

+
(p − 1)(p − 2)

2
+ 2(a + b − 4 − 2 + c + p)

+(a + b − 4 − 2)(c + p) + 2(c + p − 1) + (p − 1)c + (c − 2) − 8

=
(a + b)2

2
−

7
2
(a + b) + (a + b)(c + p) +

c
2
− 7c
2

+
p
2
− 7p
2

+ pc − 9.

Since n + 2 − a − b + 2 − c = p, we have a + b = n + 4 − c − p. And so

b4(G) − b4(G1
n) � (n + 4 − c − p)2

2
−

7
2
(n + 4 − c − p) + (n + 4 − c − p)(c + p)

+
c
2
− 7c
2

+
p
2
− 7p
2

+ pc − 9 − (4n − 24)

=
1
2
n

2
−

7
2
n + 9 > 0,

and hence b4(G) > b4(G1
n).

Subcase 1.3. t � 3. Then by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 8

=
(a + b − 2t)(a + b − 2t − 3)

2
+

c(c − 3)
2

+
(t − 1)(t − 2)

2
+

(p − 1)(p − 2)
2

+2(a + b − 2t − 2 + c + p) + (t − 2)(a + b − 2t + c + p)

+(a + b − 2t − 2)(c + p) + 2(c + p − 1) + (p − 1)c + (c − 2) − 8
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=
(a + b)2

2
− (t +

3
2
)(a + b) + (a + b)(c + p) +

c
2
− 3c
2

+
t
2 + 3t

2
+

p
2
− 3p
2

+ pc − tc − pt − 14.

Since n + 2 − a − b + t − c = p, we have a + b = n + 2 + t − c − p. And so

b4(G) − b4(G1
n) � (n + 2 + t − c − p)2

2
− (t +

3
2
)(n + 2 + t − c − p)

+(n + 2 + t − c − p)(c + p) +
c
2
− 3c
2

+
t
2 + 3t

2
+

p
2
− 3p
2

+pc − tc − pt − 14 − (4n − 24).

=
1
2
n

2
−

7
2
n + 9 > 0,

and therefore b4(G) > b4(G1
n).

Subcase 2. uv is a pendent edge of G with pendent vertex v. By Lemma 1.1,

b4(G) = b4(G − v) + b2(G − u − v), b4(G1
n) = b4(G1

n−1) + b2(K1,4).

Note that G− v has exactly four cycles on n− 1 vertices and G � Wn, therefore G− v �

G
0
n−1, G

1
n−1, Rn−1, Sn−1, Qn−1,Wn−1, by induction hypothesis, b4(G − v) > b4(G1

n−1). It

is easy to see G � G
0
n, G

1
n,Wn, Sn, Qn, Rn, we have b2(G − u − v) � b2(K1,4) = 4. It is

immediate that b4(G) > b4(G1
n) with G � Wn.

By combing Cases 1 and 2, this lemma follows.

Lemma 2.4. If G ∈ Gn has exactly six cycles and G � G
0
n, G

1
n, Sn, then b4(G) > b4(G1

n)

for n � 7.

Proof. Since G has six cycles, then it is straightforward to check that either any two of

the six cycles have exactly two vertices in common, or there are two cycles either having

exactly one vertex in common, or having no vertex in common; see Figure 5.

Case 1. Any two of the six cycles have exactly two vertices in common. Thus choose

three cycles Ca, Cb and Cc having t edges in common. Then n + 2 − a − b − c + 2t � 0.

By induction on n + 2 − a − b − c + 2t. Assume n + 2 − a − b − c + 2t = 0,
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( a ) ( b ) ( c ) 

Figure 5: Three possible cases for the arrangement of six cycles in G

When t = 1, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 12

=
(a + b − 2)(a + b − 5)

2
+

c(c − 3)
2

+ (a + b − 2 − 4)

+2(a + b − 2 − 2) + (c − 3)(a + b − 2) − 12

=
(a + b)2

2
−

7
2
(a + b) + (a + b)c +

c
2
− 7c
2

− 15.

Since n + 2 − a − b + 2 − c = 0, we have a + b = n + 4 − c. And so

b4(G) − b4(G1
n) � (n + 4 − c)2

2
−

7
2
(n + 4 − c) + (n + 4 − c)c +

c
2
− 7c
2

−15 − (4n − 24)

=
1
2
n

2
−

7
2
n + 3,

and hence b4(G) > b4(G1
n) for n � 7.

When t = 2. Let c = 2 + l, if l = 1, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 12

=
(a + b − 4)(a + b − 7)

2
+

c(c − 3)
2

+ 2(a + b − 4 − 2) + (a + b − 4 − 4) − 12

=
(a + b)2

2
−

5
2
(a + b) +

c
2
− 3c
2

− 14.

Since n + 2 − a − b + 4 − 3 = 0, then a + b = n + 3. And so

b4(G) − b4(G1
n) � (n + 3)2

2
−

5
2
(n + 3) +

c
2
− 3c
2

− 14 − (4n − 24)

=
1
2
n

2
−

7
2
n + 7 > 0,

and therefore b4(G) > b4(G1
n).
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If l � 2, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 12

=
(a + b − 4)(a + b − 7)

2
+

c(c − 3)
2

+ 2(a + b − 4 − 2)

+2(a + b − 4 − 2) + (c − 4)(a + b − 4) − 12

=
(a + b)2

2
−

11
2

(a + b) + (a + b)c +
c
2
− 11c
2

− 6.

Since n + 2 − a − b + 4 − c = 0, we have a + b = n + 6 − c. And so

b4(G) − b4(G1
n) � (n + 6 − c)2

2
+ (n + 6 − c)(c −

11
2

) +
c
2
− 11c
2

− 6 − (4n − 24)

=
1
2
n

2
−

7
2
n + 3,

and hence b4(G) > b4(G1
n) for n � 7.

When t � 3. Let c = t + l, then c = t + l. By Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 12

=
(a + b − 2t)(a + b − 2t − 3)

2
+

c(c − 3)
2

+ 2(a − t + b − t − 2)

+(t − 2)(a − t + b − t) + 2(a + b − 2t − 2) + (l − 2)(a + b − 2t) − 12

=
(a + b)2

2
− (t +

3
2
)(a + b) + (a + b)l +

c
2
− 3c
2

+ 3t − 2tl − 20.

Since n + 2 − a − b + 2t − c = 0, c = t + l, thus we have a + b = n + 2 + t − l. And so

b4(G) − b4(G1
n) � (n + 2 + t − l)2

2
− (t +

3
2
)(n + 2 + t − l) + (n + 2 + t − l)l

+
c
2
− 3c
2

+ 3t − 2tl − 20 − (4n − 24)

=
n

2

2
−

7
2
n + 3,

and hence b4(G) > b4(G1
n) for n � 7.

Suppose it is true for all graphs G ∈ Gn having exactly six cycles and G � G
0
n, G

1
n, Sn

with n + 2 − a − b + 2t − c < p (p � 1), and suppose n + 2 − a − b + 2t − c = p, then G

must have pendent edge, say uv, with pendent vertex v. By Lemma 1.1,

b4(G) = b4(G − v) + b2(G − u − v), b4(G1
n) = b4(G1

n−1) + b2(K1,4).
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Notice that G−v has exactly six cycles on n−1 vertices and G � G
0
n, G

1
n, Sn, therefore G−

v � G
0
n−1, G

1
n−1, Rn−1,Wn−1, Qn−1, Sn−1, by induction hypothesis, b4(G− v) > b4(G1

n−1).

It is easy to see G � G
0
n, G

1
n,Wn, Sn, Qn, Rn, we have b2(G − u − v) � b2(K1,4) = 4. It is

immediate that b4(G) > b4(G1
n) with G � G

0
n, G

1
n, Sn.

Case 2. There are two cycles contained in G having exactly one vertex in common.

Then choose three cycles, say Ca, Cb, Cc, such that Ca, Cb have exactly one vertex in

common and the number of edges in Cc \ (Ca ∪ Cb) is l. Then n + 2 − (a + b + l) � 0, by

induction on n + 2 − (a + b + l). If n + 2 − (a + b + l) = 0, then by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 12

=
a(a − 3)

2
+

b(b − 3)
2

+
(l − 1)(l − 2)

2
+ (a − 2)b + 2(b − 2)

+(l − 2)(a + b) + 2(a + b − 2) − 12

=
(a + b)2

2
−

3
2
(a + b) + l(a + b) +

l
2
− 3l
2

− 19.

Since n + 2 − a − b − l = 0, so a + b = n + 2 − l. And so

b4(G) − b4(G1
n) � (n + 2 − l)2

2
−

3
2
(n + 2 − l) + l(n + 2 − l) +

l
2
− 3l
2

− 9 − (4n − 24)

=
n

2

2
−

7
2
n + 4,

thus b4(G) > b4(G1
n) is immediate for n � 7..

Suppose it is true for all graphs G ∈ Gn having exactly six cycles and G � G
0
n, G

1
n, Sn

with n + 2− a− b− l < p (p � 1), and suppose n + 2− a− b− l = p, then G must have a

pendent edge, say uv, with pendent vertex v. By Lemma 1.1, we have

b4(G) = b4(G − v) + b2(G − u − v), b4(G1
n) = b4(G1

n−1) + b2(K1,4).

Note that G−v has exactly six cycles on n−1 vertices and G � G
0
n, G

1
n, Sn, therefore G−

v � G
0
n−1, G

1
n−1, Rn−1,Wn−1, Qn−1, Sn−1, by induction hypothesis, b4(G− v) > b4(G1

n−1).

It is easy to see G � G
0
n, G

1
n,Wn, Sn, Qn, Rn, we have b2(G − u − v) � b2(K1,4) = 4. It is

immediate that b4(G) > b4(G1
n) with G � G

0
n, G

1
n, Sn.

Case 3. There are two cycles contained in G having no vertex in common. Then choose

three cycles, say Ca, Cb, Cc, such that Ca, Cb have t edges in common and Cc, Cb have l
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edges in common. Then n+2−(a+b+c)+t+l � 0, by induction on n+2−(a+b+c)+t+l.

If n + 2 − (a + b + c) + t + l = 0, i.e., a + b + c = n + 2 + t + 1, then by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 12

=
(a + b + c − 2t − 2l)(a + b + c − 2t − 2l − 3)

2
+

(t − 1)(t − 2)
2

+(t − 2)(n + 2 − t) + 2(n + 2 − t − 2) +
(l − 1)(l − 2)

2

+(l − 2)(n + 2 − t − l) + 2(n + 2 − t − l − 2).

Since n + 2 − (a + b + c) + t + l = 0, so a + b + c = n + 2 + t + l. And so

b4(G) − b4(G1
n) � (n + 2 + t + l − 2t − 2l)(n + 2 + t + l − 2t − 2l − 3)

2

+
(t − 1)(t − 2)

2
+ (t − 2)(n + 2 − t) + 2(n + 2 − t − 2) − (4n − 24)

+(l − 2)(n + 2 − t − l) + 2(n + 2 − t − l − 2 +
(l − 1)(l − 2)

2
)

=
n

2

2
−

7
2
n + 17 > 0,

thus b4(G) > b4(G1
n) is immediate.

Suppose it is true for all graphs G ∈ Gn having exactly six cycles and G � G
0
n, G

1
n, Sn

with n + 2− a− b− l < p (p � 1), and suppose n + 2− a− b− l = p, then G must have a

pendent edge, say uv, with pendent vertex v. By Lemma 1.1, we have

b4(G) = b4(G − v) + b2(G − u − v), b4(G1
n) = b4(G1

n−1) + b2(K1,4).

Note that G−v has exactly six cycles on n−1 vertices and G � G
0
n, G

1
n, Sn, therefore G−

v � G
0
n−1, G

1
n−1, Rn−1,Wn−1, Qn−1, Sn−1, by induction hypothesis, b4(G− v) > b4(G1

n−1).

It is easy to see G � G
0
n, G

1
n,Wn, Sn, Qn, Rn, we have b2(G − u − v) � b2(K1,4) = 4. It is

immediate that b4(G) > b4(G1
n) with G � G

0
n, G

1
n, Sn.

Combining with Cases 1, 2 and 3, this lemma follows.

Lemma 2.5. If G ∈ Gn has exactly seven cycles and G � Qn, then b4(G) > b4(G1
n) for

n � 7.

Proof. The configuration of the seven cycles contained in G is as in Figure 6. Choose
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Figure 6: One possible case for the arrangement of seven cycles in G

three cycles, say Ca, Cb and Cc, such that Ca, Cb have exactly t edges in common, but all

of t edges are not contained in Cc. Denote the number of edges of Cc not contained in Ca

and Cb by l. Then n + 2 − (a + b − t + l) � 0. By induction on n + 2 − (a + b − t + l). If

n + 2 − (a + b − t + l) = 0.

When t = 1, by Lemma 1.2

b4(G) = m(G, 2) − 2s � m(G, 2) − 14

=
(a + b − 2)(a + b − 2 − 3)

2
+ (a − 1 + b − 1 − 4 + l) +

(l − 1)(l − 2)
2

+(l − 2)(a + b − 2) + 2(a + b − 2 − 2) − 14

=
(a + b)2

2
−

5
2
(a + b) +

l
2
− 5l
2

+ l(a + b) − 18.

Since n + 2 − a − b + 1 − l = 0, we have a + b = n + 3 − l. And so

b4(G) − b4(G1
n) � (n + 3 − l)2

2
−

5
2
(n + 3 − l) +

l
2
− 5l
2

+ l(n + 3 − l)

−18 − (4n − 24)

=
n

2

2
−

7
2
n + 3,

it follows that b4(G) > b4(G1
n) for n � 7.

When t = 2, by Lemma 1.2

b4(G) = m(G, 2) − 2s � m(G, 2) − 14

=
(a + b − 4)(a + b − 4 − 3)

2
+

(l − 1)(l − 2)
2

+ 2(a − 2 + b − 2 − 2 + l)

+(l − 2)(a − 2 + b − 2) + 2(a − 2 + b − 2 − 2) − 14

=
(a + b)2

2
−

7
2
(a + b) + l(a + b) +

l
2
− 7l
2

− 15.
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Since n + 2 − (a + b − 2 + l) = 0, we have a + b = n + 4 − l. Thus

b4(G) − b4(G1
n) � (n + 4 − l)2

2
−

7
2
(n + 4 − l) + l(n + 4 − l)

+
l
2
− 7l
2

− 15 − (4n − 24)

=
n

2

2
−

7
2
n + 3,

and hence b4(G) > b4(G1
n) for n � 7.

When t > 2, l = 1, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 14

=
(a + b − 2t)(a + b − 2t − 3)

2
+

(t − 1)(t − 2)
2

+ 2(a − t + b − t − 2 + 1)

+(t − 2)(a − t + b − t + 1) + (a − t + b − t − 4) − 14

=
(a + b)2

2
− (t +

1
2
)(a + b) +

t
2 + t

2
− 21.

Since n + 2 − (a − t + b + 1) = 0, we have a + b = n + 1 + t. And so

b4(G) − b4(G1
n) � (n + 1 + t)2

2
− (t +

1
2
)(n + 1 + t) +

t
2 + t

2
− 21 − (4n − 24)

=
n

2

2
−

7
2
n + 3,

and hence b4(G) > b4(G1
n) for n � 7.

When t > 2, l � 2, by Lemma 1.2,

b4(G) = m(G, 2) − 2s � m(G, 2) − 14

=
(a + b − 2t)(a + b − 2t − 3)

2
+

(t − 1)(t − 2)
2

+
(l − 1)(l − 2)

2

+2(a − t + b − t − 2) + (t − 2)(a − t + b − t + l) + (l − 2)(a − t + b − t)

+2(a − t + b − t − 2 + l) − 14

=
(a + b)2

2
− (t +

3
2
)(a + b) + l(a + b) +

l
2
− 3l
2

+
t
2 + 3t

2
− tl − 6.

Since n + 2 − (a + b − t + l) = 0, we have a + b = n + t + 2 − l. And so

b4(G) − b4(G1
n) � (n + t + 2 − l)2

2
− (t +

3
2
)(n + t + 2 − l) + l(n + t + 2 − l)

+
l
2
− 3l
2

+
t
2 + 3t

2
− tl − 6 − (4n − 24)

=
n

2

2
−

7
2
n + 17 > 0.
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Namely that b4(G) > b4(G1
n).

Suppose it is true for all graphs G ∈ Gn having exactly seven cycles and G � Qn with

n + 2 − (a + b − t + l) < p (p � 1), and suppose n + 2 − (a + b − t + l) = p, then G must

have a pendent edge, say uv, with pendent vertex v. By Lemma 1.1, we have

b4(G) = b4(G − v) + b2(G − u − v), b4(G1
n) = b4(G1

n−1) + b2(K1,4).

Notice that G−v has exactly seven cycles on n−1 vertices and G � Qn, therefore G−v �

G
0
n−1, G

1
n−1,Wn−1, Sn−1, Rn−1, Qn−1, by induction hypothesis, b4(G − v) > b4(G1

n−1). It

is easy to see G � G
0
n, G

1
n,Wn, Sn, Qn, Rn, we have b2(G − u − v) � b2(K1,4) = 4. It is

immediate that b4(G) > b4(G1
n) with G � Qn.

By Lemmas 2.2-2.5, we obtain the following proposition.

Proposition 2.6. If G ∈ Gnand G � G
0
n, G

1
n, Rn,Wn, Sn, Qn, then E(G) > E(G1

n) for

n � 7.

Proof. By Sachs theorem, b0(G) = b0(G1
n) = 1, b1(G) = b1(G1

n) = 0, b2(G) = b2(G1
n) =

n + 2, b3(G1
n) = 0, bi(G1

n) = 0 for i � 5. By Lemmas 2.2-2.5, b4(G) > b4(G1
n) for n � 7.

By Lemma 2.1, b2i(G) � 0 for 0 � i � �n/2�. Hence by Coulson integral formula (1.1)

E(G) =
1
π

∫ +∞

0

dx

x2
ln

⎡⎢⎣
⎛⎝�n

2
�∑

i=0

b2i(G)x2i

⎞⎠2

+

⎛⎝�n

2
�∑

i=0

b2i+1(G)x2i+1

⎞⎠2
⎤⎥⎦ ,

E(G1
n) =

1
π

∫ +∞

0

dx

x2
ln

⎡⎢⎣
⎛⎝�n

2
�∑

i=0

b2i(G1
n)x2i

⎞⎠2
⎤⎥⎦ .

From these formulas it is immediate to show that E(G) > E(G1
n).

Proposition 2.7. (i) E(G0
n) < E(G1

n) for n � 11.

(ii) E(G1
n) < E(G0

n), E(Rn), E(Wn), E(Sn), E(Qn) for 7 � n � 10.

Proof. (i) We want to determine the characteristic polynomial of G
0
n (respectively, G

1
n). In

fact, by Sachs theorem we can obtain a0 = 1, a1 = 0, a2 = −(n + 2), a3 = −6, a4 = 3n− 15

and ai = 0 for i � 5. It follows that

φ(G0
n, λ) = λ

n
− (n + 2)λn−2

− 6λn−3 + (3n − 15)λn−4
.

- 414 -



Similarly, for G
1
n, we obtain a

′
0 = 1, a′1 = 0, a′2 = −(n + 2), a′3 = 0, a′4 = 4n− 24 and a

′
i = 0

for i � 5, and so

φ(G1
n, λ) = λ

n
− (n + 2)λn−2 + (4n − 24)λn−4

.

By (1.1),

E(G1
n) − E(G0

n) =
1
π

∫ ∞

0

dx

x2
ln

[
1 + (n + 2)x2 + (4n − 24)x4

]2[
1 + (n + 2)x2 + (3n − 15)x4

]2 + 36x6
.

Let

f(x) =
[
1 + (n + 2)x2 + (4n − 24)x4

]2
−

[
1 + (n + 2)x2 + (3n − 15)x4

]2
− 36x6

= 2(n − 9)x4 + (n − 9)(7n − 39)x8 + 2

[(
n −

7
2

)2

−

193
4

]
x

6
.

It follows that f(x) > 0 for n � 11. Hence E(G0
n) < E(G1

n) for n � 11.
(ii) By direct calculation (rounded to four decimal places), we have

E(G0
7) = 7.5238, E(G0

8) = 8.0455, E(G0
9) = 8.5019, E(G0

10) = 8.9134,
E(G1

7) = 6.0000, E(G1
8) = 6.3246, E(G1

9) = 6.6332, E(G1
10) = 6.9282,

E(R7) = 10.0000, E(R8) = 10.5461, E(R9) = 11.0158, E(R10) = 11.4354,
E(W7) = 8.8703, E(W8) = 9.4027, E(W9) = 9.8647, E(W10) = 10.2795,
E(S7) = 6.2548, E(S8) = 6.8284, E(S9) = 7.2524, E(S10) = 7.6402,
E(Q7) = 8.2653, E(Q8) = 8.7446, E(Q9) = 9.1638, E(Q10) = 9.5662.

It is immediate that the results hold.

Unfortunately, using above method, we can not compare the values of E(G) with

E(G0
n) for G ∈ Gn and G � Rn, Sn,Wn, Qn, G

0
n. Hence, combining Propositions 2.6 and

2.7, we obtain the following main results of this paper.

Theorem 2.8. (i) G
1
n has minimal energy in Gn for 7 � n � 10.

(ii) If G ∈ Gn and G � Rn,Wn, Sn, Qn, G
0
n, G

1
n, then E(G0

n) < E(G1
n) < E(G) for

n � 11.
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