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Abstract: Let G be a simple graph with n vertices and m edges. Let
A1, Az,...An be the eigenvalues of the adjacency matrix of G, and let
i1, ft2,. . - fin be the eigenvalues of Laplacian matrix of G. The energy

of G is defined as E(G) = Y |[A\i]. We now define and investigate a
i=1

n
Laplacian-energy-like graph invariant LEL(G) = Y /p;. There is a

i=1
great deal of analogy between the properties of E(G) and LEL(G). We
also establish a few sharp lower and upper bounds of LEL(G).

1. Introduction

Let G be a simple graph with n vertices and m edges. In what follows we
write G(n,m) for it. Let A be the symmetric (0, 1)—adjacency matrix of G and
D = diag(dy,ds, .. .d,) be the diagonal matrix of vertex degrees. The Laplacian
matrix of G is C = D—A. Let Ay, Ao,... A, be the adjacency spectrum of G, and
let py, pa,. .. un be the Laplacian spectrum of G. The adjacency and Laplacian

spectrum obey the following relations
n n
Ya=o Y- 1)
i=1 i=1

iui=2m; iuf =2m+id§. (1.2)

Furthermore, if the ig:rlaph G has p cér:nlponents (p Zi:i), and if the Laplacian
eigenvalues are labelled so that p1 > p2 > ... > p,, then[18]

fin—i =0  for i=0,....,p—1 and fin_, >0. (1.3)

Eichinger[20] has shown how the spectrum of C' may be used to calculate the

radius of gyration of a Gaussion molecule. Mohar[24] argues that, because of
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its importance in various physical and chemical theories, the spectrum of C' is
more natural and important than the more widely studied adjacency spectrum.

The energy of the graph G is defined as

n
E@G) = 3. (1.4)

This quantity, introduced by I. Gutman i1511978 ([4]), has a long known chemical
application (see surveys [5-7]). There is currently a great interest of mathemat-
ical chemists towards E(G). For some of the most recent works along these
lines see [11-17].

E(G) has the following basic properties

(a) E(G) > 0; equality is attained if and only if m = 0.

(b) If the graph G consists of (disconnected) components Gy and G5 , then
E(G) = E(Gh) + E(G>).

(c) If one component of the graph G is Gy and all other components are
isolated vertices, then E(G) = E(G)).

The Laplacian energy of the graph G has recently been defined ([8]) as
n

LE(G) = Z

i=1

The Laplacian energy LE(G) and the ordinary energy E(G) were found to

2m

pi — =
n

(1.5)

have a number of analogous properties ([8, 10]), but LE(G) does not possess
the basic properties (b), (c) as above.

Our intention is to conceive a new graph-energy-like quantity, that instead of
Eq. (1.5) would be defined in terms of Laplacian eigenvalues, and that hope-
fully — would preserve properties (b), (¢). We introduce the auxiliary ’eigenval-
ues’ p;, i =1,2,...,n, defined via p; = /i . Then we have,

n n
dpi=2m=3 A. (1.6)
i=1 i=1

We introduce the Laplacian-energy-like invariant of a graph as follows
Definition 1.1. If the Laplacian eigenvalues of G(n,m) are pui,pa,..., 1y,

then the Laplacian-energy-like invariant of G, denoted by LEL(G), is equal
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T
to Y i , i e
i=1 N
LEL(G) =) pi (1.7)
i=1
where p; = \/pi , i=1,2,...,n.
In this paper, we report some properties of LEL(G) and show that the above

definition is well chosen. Furthermore, a few sharp lower and upper bounds of

LEL(G) are established.
2. Properties of LEL(G)
In this section, we present some properties of LEL(G) which have a great
deal of analogy with the properties (a), (b), (c¢) of E(G).
Proposition 2.1.
(a) LEL(G) > 0; equality is attained if and only if m = 0.
(b) If the graph G consists of (disconnected) components Gy and G , then
LEL(G) = LEL(G,) + LEL(G-).
(c) If one component of the graph G is G; and all other components are isolated
vertices, then LEL(G) = LEL(Gh).
Proposition 2.2.
LEL(G) < \/2m(n — p), p is the number of components of G(n,m). Equality

is attained if and only if G is regular of degree 0 or G consists of n; copies of

complete graphs of order k£ and n — kn; isolated vertices.

Proof. Let
n—pn—p
5= 5 S - vy
i—1 j—1

:227:277172(27:\//71-) ( 3 \/LL_J>

j=1

= 4m(n —p) — 2LEL(G)?

Since S > 0,we have LEL(G) < \/2m(n —p) .
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The equality is attained if and only if \/p; = \/pj, for all i,5 = 1,2,...,n—p,

and then from above we conclude that G has at most two distinct Laplacian

eigenvalues
(1) m=- =y =22 (n#Dp);
(2) Hn—p+1 = .o = fn = 0.

If m # 0, then G has exactly two distinct Laplacian eigenvalues. A connected
graph has exactly two distinct Laplacian eigenvalues if and only if its diameter
is equal to unity, i. e., if it is a complete graph.

If n =p or m =0, then G is regular of degree 0. ]

The following lemma will be used in next proposition
Lemma 2.1. [9]

If G has at least one edge, then py > A+ 1 (A is the greatest vertex degree
in G). For G being a connected graph on n > 1 vertices, equality is attained if
and only if A=n—1.

Proposition 2.3.

If G has at least one edge, then LEL(G) < VA + 1+/(n —p—1)(2m — A - 1).

Proof. Using the Cauchy-Schwarz inequality

<Zn: llibi> < (i‘ﬁ) (i b?): (2.1)
=1 i=1 =1

which holds for arbitrary real-valued numbers a;, b;,i = 1,2,...n, we have
n—p 2 n—p
(Z ﬁ) <m-p-1) (Zm)
i=2 i=2
(choosing in (2.1) a; = \/p;, and b; = 1).

(LEL(G) — \/p1)* < (n —p—1)(2m — p1)-

Thus LEL(G) < /i ++/(n—p—1)2m — ).
Since 1 > A +1 (m # 0), where A is the greatest vertex degree of G .
By direct analysis we verify that the function f(z) = z++/(n — 1)(2m — 2?)

monotonically decreases in the interval ( 277", Vv2m), for both VA + 1 and /i1
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belong to this interval, and therefore, we have

LELG) < VA+1+/(n—p-1)2m—A—1). (2.2)
]

Remark 1. The equality (2.1) is attained if and only if §* = ¢, cis a
constant, for all i = 1,2,...n. By direct analysis we conclude that equality in
(2.2) holds if and only if iy = A+T1and po = pg = ... = py—p. If g = po, since
a connected graph has exactly two distinct Laplacian eigenvalues if and only if
its diameter is equal to unity, we obtain that for p = 1, G = K,, (K, is the
complete graph of order r), for other p, G = aK U (n — ka)Ky, « > 1, k > 2,
provided (k — 1)a = n — p. If uy # po, then the graph G has three distinct
Laplacian eigenvalues, for instance G = K ,—1 and also for other graphs.

Proposition 2.4.

V2m < LEL(G) < v/2m, the right equality is attained if and only if G =
rKyJ(n — 2r)K;y, where 0 < r < [§], [z] is the integral part of z, while

LEL(G) = v/2m = +/2m if and only if G = K> |J(n — 2r) K, r = 0, 1.

Proof. (1) Let p be the number of components of G(n,m), then
n—p

LEL(G) = Z N

Therefore
n—p n—p
2
(LEL(G))* = Y _(Vi)* +2 ) Via/ij > Y i = 2m. .
i=1 i#j i=1
The left equality is attained if and only if py =... = pn—p =00r 1 >0
and g2 = ... = pp_p =0, i.e ., if G is regular of degree 0 or G = Ky U (n—2)Kj.

(2) Since LEL(G) < \/2m(n — p) (Proposition 2.2), and n — p < m, where
p > 1, we obtain LEL(G) < v/2m . Note that Proposition 2.2 and n —p = m
if and only if G is a forest. We obtain that LEL(G) = v/2m if and only if
G =rK>J(n —2r)Ky, where 0 < r < [§]

Combining (1) and (2), we complete the proof of Proposition 2.4. | |

Now, we study the relation among the iterated line graphs of G .
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The line graph of G will be denoted by L(G). The iterated line graphs of G
are then defined recursively as L*(G) = L(L(G)),L*(G) = L(L*(Q)) - ...
L*(G) = L(L*'(G)),... It is consistent to set L(G) = L'(G) and G = L°(G).

The line graph L(G) of a regular graph G is a regular graph. Let n;, and

r; denote the order and degree of L!(G) respectively, t = 1,2,...,k. Then (see

(1.2])
1
Mk = 5TE=1Mk—1 and TR =2rp_1 —2 ...
Therefore,
Ty = 2’“1‘0 — okl 19 (2:3)
and
ne B ne L )
ny = 2_2 [Ir= 2_2 [[@r-2%"+2). (24)
=0 =0
We have

Proposition 2.5. Let G be a regular graph of order ng and of degree rq, then
LEL(L}(G)) = LEL(L*Y(G)) + vZri—1(nk — nu—1)
Proof. Let Cg(p) (or Cpay(p)) be the Laplacian characteristic poly-
nomial of G ( or L(G)), and let Pg(A) ( or Pr(g)(A)) be the characteristic
polynomial of the adjacency matrix of G ( or L(G)).
It is well known that
Pra)y(A) = (A +2)" " Pg(A+2 —10) (2.5)
and
Ca(p) = (—1)" Pa(—p+ro) . (2.6)
Then by equation (2.6) we have
Cr () = (=1)" Pray(—p + (2ro — 2)) . (2.7)
Combining (2.5) and (2.7), we get C(q)() = (1 — 2ro)™ "™ Ca () -
Therefore, the Laplacian spectrum of L(G) is
( 2ro  py p2 - #no>
ny—ng 1 1 ... 1

where g3 > p1o > ... > [ipn, is the Laplacian spectrum of G.
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In an analogous manner as above, we have the Laplacian spectrum of L*(Q)

2ry 2ro  pun po - fing
No—mnynyg—ng 1 1 ... 1

then for the Laplacian spectrum of L*(G)

2rk—1 272 s 2rg 1 fl2 ... fing
N —Np—1 Nig—1 —MNp—2 ... N1 —Nyo 11 ... 1

forall k =1,2,....
Therefore LEL(L*(G)) = LEL(L* (@) + /2re_1(ng — ng_1).

The proof is complete. ]

Now, we would like to give a pair of non-cospectral graphs of the same
order, having equal LEL-energies. Let G = K, 7 be a star of order 8. Then
the Laplacian eigenvalues of Gy are pyn = 8, pis = iz = ... = iz = 1,
s = 0. Let Gy = 2K, |J K4 be another graph of order 8. Then the Laplacian
eigenvalues of Gy are poy = oo = oz = 4, fiog = flos = 2, piog = for = ftag = 0.
Tt is straightforward to check that LEL(G1) = LEL(G) .

At the end of this section we point out the dissimilarities between E(G),
LE(G), and LEL(G).

Dissimilarity 2.A.

In Proposition 2.1, we can see that LEL(G) and E(G) preserve the three
elementary properties (a), (b), (c), and also they have the same square sum
by equality (1.6). This is the advantage of LEL(G) over LE(G). Since the
ordinary energy E(G) has a long known application in molecular-orbital theory
of organic molecules (see [5-7]), we preconceive that LEL(G) would also have

some chemical application.
Dissimilarity 2.B.

If the graph G is regular of degree k, then LE(G) = E(G), while LEL(G) =
Zn: k= Xu_iy1 differs from E(G) . Thisis an advantage of LE(G) over LEL(G) .
E(iwever, if k=0or G = K4, then we have E(G) = LE(G) = LEL(G). In

addition, for a regular graph G, LEL(G) satisfies Proposition 2.5 as above.
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3. Further (n,m)—type bounds for LEL(G)

There are numerous known results (especially lower and upper bounds) that
are obtained by using the relations (1.1) and that depend on the parameters n
and m. Then one could expect analogous results for LE L, obtained by means of
the relations (1.2), that would depend on the parameters n, m and d;. Indeed,
a number of such results could be deduced in section 2.

In this section we point out a few more (n, m)—type new bounds for LEL(Q).
Furthermore, we prove that for all simple graphs with n vertices, the complete
graph K, has the maximum LEL(G).

In Proposition 2.2 we proved that,

LEL(G) < \/2m(n — p), (3.1)
We now show that the right-hand side expression in (3.1) is a decreasing
function of the parameter p, then we have,

Theorem 3.1.

For any graph G, LEL(G) < v/2m(n — 1). Equality holds if and only if G = K.

Proof. We consider the function

flx)y=+2mn—-2z) 1<z<n.
Then

oy -m

f(x)772m(n_z)§0 1<z<n.

Because the upper bound (3.1) increases with decreasing p, by setting p = 1

we obtain the estimate
LEL(G) < V2m(n 1), (3.2)
which holds for all graphs G. And combining with the Proposition 2.2, we have

that the equality holds if and only if G = K.
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Let f(m) = /2m(n—1) 0<2m < n(n—1). Obviously, f(m) is a increas-
ing function of the parameter m, then we have proved,
Theorem 3.2.
Let G be a simple graph of order n, then LEL(G) < (n —1)y/n. Equality holds

if and only if G = K, i.e., the graph of order n with maximum LEL is K.

In Proposition 2.3 we proved,

LEL(GQ) < Vdi +14++/(n—p—-1)2m —d; —1). (3.3)
Similar to the proof of inequality (3.2), we now show that the right-hand
side expression in (3.3) is a decreasing function of the parameter p. Then the

following result holds immediately,

Theorem 3.3.

If G has at least one edge, then LEL(G) < v/di + 1+ /(n —2)(2m — d; — 1).

Equality holds if and only if G = K,,.

Proof. We consider the function

f@)=vVd +1+V/in—2-1)2m—-d; —1) 1<z<n.

Then
, 1 di +1-2m
) ==
fa) 2/ (n—z—-1)2m—d; — 1)

The derived function f'(z) < 0 if and only if d; + 1 < 2m, which holds for

1<z <n.

any graph GG has at least one edge.
Because the upper bound (3.3) increases with decreasing p, by setting p = 1

we obtain the estimate

LEL(G) < Vdi +1++/(n —2)(2m — d; — 1). (3.4)
The inequality (3.4) is sharp. Equality holds if and only if G = K. | |

We now show that the bound (3.4) is better than (3.2).

Indeed,

Vi +14+/(n=2)2m —dy —1) < \/2m(n —1)
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holds if and only if

(n—2)2m —dy —1) < (v/2m(n — 1) — /d; +1)%,

ie.

2m+ (n —1)(dy +1) <2/2m(n —1)(ds + 1),

which is directly transformed into
(V2m —/(n = 1)(di +1))* > 0,
and holds for any m,n,d;. The equality holds if and only if 2m = (n — 1)(d; +
1) = (n—1)d; + (n—1). Since 2m = f:ldi < (n—1)dy + (n—1), hence G = Ky,
i.e., the equality holds if and only if E = K,.
4. The degree of vertex and the bounds for
LEL(G)
In this section we present some bounds for LEL(G) which depend on the
vertex degrees, and we show that for all connected graphs with n vertices, the
star Ky ,—1 has the minimal LEL(G).

Lemma 4.1. [23]
If G is a connected graph on n > 2 vertices, then ps > da.
Theorem 4.1.

If G is a connected graph on n > 2 vertices, then LEL(G) > /di + 1 + /d>.

Equality is attained if and only if G = P3 (P, is the path of order n).

Proof. It is easy to see from the Lemma 2.1 and Lemma 4.1 that LEL(G) >

Vdy + 1+ /dz, equality is attained if and only if 1 = dy + 1, po = do, 3 =

... = pp = 0. Since G is a connected graph, so we have p = 1, this implies

n = 3. From Lemma 2.1, we have d; = 2, 4y = 3. Since ilui = idi, we
i= i-

have (dy + 1) +d2> + 0 = dy + d» + d3, thus d3 = 1 and then d> = 1 . Therefore

G:P3. | |
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Now, we will give another lower bound of LEL(G) for the connected graphs.
n

Let a = (ay,az,...,a,), ap > 0,1 <k <n, then 4,(a) = 717 > ay is called
k=1

the algebraic average value of a, as,...,an, Gn(a) = P/ajas...a, is called the

geometry average value of ay,as, ..., a,. It is well known that,

Lemma 4.2. [22]

Ghla) < Apla). (4.1)
Equality holds if and only if a1 = az = ... = a,.
Let G be a connected graph and let #(G) denote the number of spanning
trees contained in G.
Lemma 4.3. [3]

n—1
Let G be a connected multigraph on n vertices, then ¢(G) = £ T] p;.
i=1

n
It is easy to see that if G is connected then ¢(G) > 1. Thus we prove the

following result.

Theorem 4.2.

Let G be a connected simple graph on n vertices, then LEL(G) > \/n+ (n—2).

Equality holds if and only if G = K ,_1, i.e., the connected simple graph of

order n with minimal LEL is Ky ;.

Proof. Using inequality (4.1), we have

iz st i > g

n—2

Viapis - Hn—1,

equality holds if and only if po = pz = ... = pp—_1.

It is well known that p1 < n. So

n—1
[[rzte =1,
i=2
the first equality holds if and only if y; = n, the second equality holds if and

only if G is a tree.
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Hence, /12 + /113 + ... + /lin—1 > n — 2.

Therefore
LEL(G) =) Vit = Vi1 + (Viz + .+ /in—1) > /i + (n = 2),
equality holdsl..:i% and only if gy = n and ps = 3 = ... = pp—y and G is a
tree, which implies that G = K1 ,,—1 and LEL(G) > \/n+ (n — 2). | |

Now, we will give upper bounds of LEL(G) for the connected graphs.
Definition 4.1. [9] If vector (a) = (a1, as,--a,) and (b) = (by,bs,---b,) are
nonincreasing sequences of real numbers, then (a) majorizes (b) if

k k
Zai > Zbi k=1,2,--- ,min{r, s},
i=1 i=1
and
r s
Sa=Yn
i=1 i=1
We denote it by b < a.

Definition 4.2. [25] The relation << y means that z < y and z is not the

rearrangement of y.

Definition 4.3. [22] A real valued function f(z) defined on a convex set D is
said to be convex if

FOz+ (1= XNy) < Af(x) + (1 =2 f(y),
for all 0 < A <1 and all z,y € D. If the above inequality is always strict for
0 < A< 1landz # y, then f is called strictly convex. If — f is a convex function,

then f is called concave.

Lemma 4.4. [25] Let (z) = (21,22, - - z,) be majorized by (y) = (y1,Y2,- - Yn),

i.e., ¢ < y, then for any convex function ¢, the following inequality holds,
n n
D el@) <))
=1 Jj=1

Lemma 4.5. [25] Let << y, then for any strictly convex function ¢, the

following inequality holds,

n

D e@i) <o)

j=1
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For convenience, letting (d) denote the nonincreasing sequence (d) = (d; +
1,ds,- - ,dy—1,d,—1) of vertex degrees and letting (i) denote the nonincreasing
sequence (f) = (p11, fh2s -+ 5 fin—1, iin) Of nonnegative real Laplacian eigenvalues.
Lemma 4.6. [21] Let G be a connected graph on n > 2 vertices, then (d) is
majorized by (p).

Theorem 4.3.

Let G be a connected graph on n > 2 vertices, then LEL(G) < /dy + 1++/da+
-+ /dn_1 + /d, — 1, where the equality holds if and only if (d) = (u).
Proof. Let p(z) = —/z, x € [0, +00), then ¢(z) is a convex function. Since
(d) is majorized by (p), using Lemma 4.4 we have,

(—Vdy + 1)+ (=) 4+ 4 (—/dn—1) +(—V/d = 1) < (=) +(—/1i2) +
R A v/ B CV/ImE

which is directly transformed into

(VED)+ (V) + -+ (1) + (Vi) < (Vi + D)+ (Vdo)+- -+ (/dn1)+

(V dn - 1)7
ie.,

LEL(G) < /di + 14+ /do + -+ /dy 1 + Vdn — 1. (4.2)
And it is easy to see from Lemma 4.5 that the equality holds if and only if
(d) = (). u
Remark 2. We now show that the bounds (3.4) and (4.2) are incomparable.
Firstly, we show the case when inequality (4.2) is better than (3.4). In fact, if
d,, = 1, then by Cauchy-Schwarz inequality, v/dz + -+ + \/dp—1 + Vd, — 1 =
Vdy + -+ \Jdy1 < \/W Equality holds if and only if
dy = -+ = dy—1. Therefore, if d,, = 1, then the upper bound (4.2) is better
than (3.4).
However, if d,, > 2, we can give some graphs to show that the upper bound

(3.4) is better than (4.2). For example, it is easy to check that the upper bound
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(3.4) is better than (4.2) when G = C3 or G = Cs.
Remark 3. We show that the bounds (3.2) and (4.2) are also incomparable.

Let Hy, H> be the graphs shown in Figure 1.

H H.
! Fig. 1 2

Then for G = H; the upper bound (3.2) is better than (4.2). On the other
hand, if G = H, then the upper bound (4.2) is better than (3.2).

We now discuss the case LEL(G) = V/dy + 1+Vda+- - ++/dn_1 +vdy — 1.
Lemma 4.7. [19] If an isolated vertex is connected by edges to all the vertices
of a graph G of order n, then the Laplacian eigenvalues of the resultant graph
are as follows: one of the eigenvalues is n + 1, the other eigenvalues can be
obtained by incrementing the eigenvalues of the old graph G by 1 except the

lowest one and 0 as another eigenvalue.

Example 4.1. Let Gy, G2 be the graphs shown in Figure 2. The Laplacian

spectrum of Gy is (3,1,0). We want to find out the spectrum of G.

e 2N

G G-
! Fig. 2 2

Applying Lemma 4.7, we can easily get the spectrum of G» is (4,4, 2,0).
Theorem 4.4.
Let G be a connected graph on n > 2 vertices, then (d) = (i) if and only if
G=Kin-1.
Proof. If G = K, then (d) = (i).

Conversely, let (d) = (u), we are to show that G is a star. If (di +

1,day -+ ydn1,dn — 1) = (1, fi2,*+  ftn—1, }tn), then we have p; = dy + 1.
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Since G is a connected graph, using Lemma 2.1, we have d; = n — 1.

Let G' = (V',E') be a graph with vertex set V' = {vy,v9, -+ ,v,_1}, and
edge set E' £ (), let a1 > az > -+ > a,—1 = 0 be the Laplacian eigenvalues of
G', and let by > by > +-- > b,_; be the nonincreasing vertex degrees of G'. Let
G be a graph obtained from G’ by adding a new vertex v,,, which is connected
by edges to all the vertices of G'.

Applying Lemma 4.7, the Laplacian spectrum of G is (n, a1 +1, as+1, - - -an_o+
1,0), which we denoted it by (p). If (u) = (d) = (dy + 1,da, -+ ,dp_1,d,, — 1)
then dy =n—1,ds = by +1 = a; + 1. Hence b; = a;. Since E' # (), using

Lemma 2.1, we have a; > by + 1, a contradiction. Thus E’ = (), which implies
G=Kin. | |
According to Theorem 4.3 and Theorem 4.4 and noting (d) < (1) we obtain
the following theorem.
Theorem 4.5.
Let G be a connected graph on n > 2 vertices, then LEL(G) = v/dy + 1++/dy+
<+ /dp_ 1 ++/d, —1if and only if G = K; ,, ;1.
Now we give another upper bound depended on the vertex degrees.
Theorem 4.6.

Let G be a connected graph on n > 2 vertices, then

LEL(G) < (\/r+ ﬁ) <Zﬁ>

i=1

Proof. Using Cauchy-Schwarz inequality, we have

n 2 n
(Z \/Hi) <n (Z Hi) .
i=1 i=1
On the other hand, since G is a connected graph on n > 2 vertices, thus

1 < d; <n —1for any integer 1 < i < n. Then by Polya-Szegé inequality, we

(S) <3 (e 5) ()

have
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Since n <§: Hi) <§: ) , hence
i=1 =1

LEL(G) < %(Jnf /- 1)(2@). (13)

i=1
This completes the proof of the theorem. ]

Remark 4. Using Cauchy-Schwarz inequality, we have

Combining with inequality (4.3), we obtain
LEL(G % (\/nT + \/71 ) 2mn. (4.4)
Unfortunately, the bound (4.4) is not better than the bound (3.2). In fact,
by direct calculation, /2m(n —1) < % (\/nf + ) V2mn if and only if
n® —4n? +8n —4 > 0, where the inequality always holds for any integer number
.
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