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Abstract. Rota’s conjecture states that the number of minimal excluded minors for
the class of GF (q)-representable matroids is finite. The conjecture holds for q = 2, 3, and
4, but remains unresolved for fields of order 5 and higher. At present only six 7-element
minimal excluded minors for GF (5)-representation are known. We found two 8-element,
nine 9-element, one 10-element, and one 11-element rank-3 minimal excluded minors.
There are no 12-element rank-3 minimal excluded minors for GF (5)-representable ma-
troids. Our list is exhaustive up to 12 elements.

1. Introduction

The matroid terminology follows Oxley [6]. A matroid M is defined as an ordered pair

(E, I) consisting of a finite set E and a collection I of subsets of E, called independent

sets, that satisfy the following axioms: the empty set is independent; any subset of an

independent set is independent; and if I1 and I2 are independent sets such that |I1| < |I2|,
then there exists e ∈ I2 − I1 such that I1 ∪ {e} is independent. A matroid in which all

the one and two element sets are independent is called a simple matroid or combinatorial

geometry.

A maximal independent set is called a basis. For a subset X of E, the rank of X,

denoted by r(X), is the size of a maximal independent subset in X. The rank of M is the

size of a basis set. A subset X of E is closed if r(X ∪ {e}) = r(X) + 1 for all elements e

not in X. A flat is a closed set. The flats of a matroid satisfy the following axioms: the

intersection of any two flats is a flat; and if F is a flat and F1, . . . , Fk are flats that cover

F , then F1 − F, . . . , Fk − F partition E − F .

Flats of rank 1, 2, 3, and so on can be represented geometrically as points, lines, planes,

etc. A rank 1 simple matroid is a point. A rank 2 n-element simple matroid is a line with

n points. We denote it as U2,n. A rank 3 n-element simple matroid is a 2-dimensional

figure consisting of points and lines that satisfy the following axioms: any two distinct
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points belong to exactly one line; any line contains at least two distinct points; and there

are at least three non-colinear points [6, pg. 42]. The first two axioms are the flat axioms

expressed for points and lines. The third axiom is the trivial condition required to ensure

the matroid has rank 3. Simple matroids of rank at most 3 are also called linear spaces.

A rank r simple matroid M with ground set E is representable over a field F if there is a

rank preserving map φ : E −→ V (r, F ). If M is representable, then we can find a matrix

A with entries from F that represents M . We can write the matrix in standard form

A = [Ir|D], where the columns of A correspond to a non-zero representative vector from

one-dimensional subspaces of V (r, F ). So the columns of A can be viewed as a subset of

PG(r− 1, F ). In this paper we are interested in matroids representable over finite fields,

GF (q), where q is a prime power. For a fixed q, our goal is to find the rank 3 obstructions

for representability that are in a sense minimal. We need to make precise what we mean

by minimal.

The matroid obtained by deleting an element x from M , denoted by M\x, is defined as

the matroid on E − {x}, in which I ⊆ E − {x} is an independent set if I is independent

in M . The matroid obtained by contracting x from M , denoted by M/x, is defined as

the matroid on E − {x}, in which I ⊆ E − {x} is an independent set if I ∪ {x} is

independent in M . A matroid N is a minor of a matroid M if N can be obtained from

M by deleting and/or contracting elements. We say a class of matroids is closed under

minors if every minor of a matroid in the class is also in the class. For example, the classes

of GF (q)-representable matroids for a specific prime power (matrices with entries from

GF (q)), graphic matroids (graphs), and regular matroids are all closed under minors.

Regular matroids are matroids represented by matrices over the reals with the property

that every square submatrix has determinant in {0, 1,−1}.
The dual of a matroid M on set E with basis set B is defined as the matroid on E

with basis set {E − B : B ∈ B}. The dual matroid is denoted by M∗. We say a class

of matroids is closed under duality if the dual of every matroid in the class is also in the

class. For example, the classes of GF (q)-representable matroids and regular matroids are

closed under duality, but not the class of graphic matroids since the duals of non-planar

graphs are not graphs.

A matroid M is a minimal excluded minor for a minor-closed class of matroids, if

M is not in the class, but every minor of M is in the class. Excluded minor results are

quite popular in graphs and matroids. The Kuratowski-Wagner characterization of planar

graphs is generally considered to be the first excluded minor result. It states that a graph
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is planar if and only if it has no minor isomorphic to K5 or K3,3, where K5 is the complete

graph on five vertices and K3,3 is the complete bipartite graph with three vertices in each

of the two vertex classes. So K5 and K3,3 are the minimal obstructions to planarity in

graphs.

The study of excluded minor results in matroids was initiated by Tutte when he char-

acterized the class of binary matroids and regular matroids in terms of excluded minors.

Specifically, he proved that a matroid is binary if and only if it had no minor isomorphic

to U2,4, the four-point line [6, 9.1.5]. He also proved that a matroid is regular if and only

if it has no minor isomorphic to U2,4, the Fano matroid and its dual [6, 13.1.1]. Observe

that the Fano matroid is PG(2, 2), the well-known design consisting of 7 points and 7 lines

(see Figure 1) usually denoted by F7. It is representable only over fields of characteristic

two . Note that for a class of matroids closed under duality, if M is a minimal excluded

minor for the class, then so is M∗.

In 1971 Rota conjectured that the class of GF (q)-representable matroids has a finite

list of minimal excluded minors [6, 14.1.1]. This conjecture remains unsolved. Several

years later Bixby and Seymour independently showed that a matroid is ternary if and

only if it has no minor isomorphic to U2,5, U3,5, F7, or F ∗
7 [6, 10.3.1]. The matroid U2,5 is

the five-point line and its dual U3,5 can be represented by five freely placed points in the

plane. In 2000 Geelen, Gerards, and Kapoor proved that a matroid is quaternary if and

only if it has no minor isomorphic to U2,6, U4,6, P6, F̄7, F̄ ∗
7 , P8, and P ′′

8 [2]. The matroid

U2,6 is the six-point line and its dual is U4,6. The self-dual 6-element, rank-3 matroid P6

has a single non-trivial line passing through 3 points. The relaxed Fano matroid, F̄7, is

almost like the Fano matroid except the curved line is missing. It is representable only

over fields of characteristic other than two. The matroids P8 and P ′′
8 have rank 4. The

upper bound on the number of elements in a minimal excluded minor for a field of order

q ≤ 4 is small, so once the upper bound is determined, it is feasible to work out the

minimal excluded minors by hand. For q ≥ 5 the upper bound is expected to be large, so

using a computer may be the only way to get the minimal excluded minors. Moreover, at

present the bound for q ≥ 5 is unknown. The results of this paper suggest that there will

be a finite upper bound and that for rank 3 matroids the upper bound will be 2q + 1.

Using computers to search for combinatorial objects is an established area of research

in other areas of combinatorics. For example, design theorists look for projective planes

and other designs with certain properties. We are applying similar computing ideas to
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matroid theory with a view to getting certain types of matroids that may be of interest

to matroid theorists.

We found several rank 3 minimal excluded minors for GF (5)-representation. Figure 1

shows the known 7-element minimal excluded minors. Figures 2, 3, and 4 show previously

unknown minimal excluded minors. We found no 12-element minimal excluded minor.

Our list is exhaustive up to 12 elements. In Figure 2 observe that the second 8-element

matroid is the well-known 83-configuration. In Figure 3, M8 is the well-known Pappus

matroid and M6 and M7 are not representable over any field.

2. The method

For n ≥ 4, let Mn denote the set of all non-isomorphic rank 3, n-element simple

matroids and let M5
n denote the set of all non-isomorphic rank 3, n-element, GF (5)-

representable simple matroids. The number of non-isomorphic rank 3 simple matroids of

sizes 3 to 12 are, respectively, 1, 2, 4, 9, 23, 68, 383, 5249, 232,928, and 28,872,972 [1].

Using the generation technique in [3] and adjusting for inequivalent representations, we

found that the number of non-isomorphic rank 3, GF (5)-representable simple matroids

of sizes 3 to 12 are, respectively, 1, 2, 4, 9, 18, 34, 82, 168, 296, and 476.
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Figure 1: The 7-element minimal excluded minors

Figure 2: The 8-element rank 3 minimal excluded minors
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Figure 3: The 9-element rank 3 minimal excluded minors
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Figure 4: The 10-element and 11-element rank 3 minimal excluded minors

Our minimal excluded minor algorithm proceeds through a series of filtering steps.

First, observe that U2,q+2 is a minimal excluded minor for GF (q)-representability since

the lines in PG(r−1, q) have q +1 points [6, 6.5.3]. Note that U2,q+2 is the line with q +2

points. So we can eliminate from consideration the matroids M ∈Mn that have a U2,q+2

minor. Since M is a rank 3 simple matroid, a single-element contraction of M will have
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rank 2 and size n− 1. Further, observe that if M has a U2,q+2 minor, then it must have

at least q + 3 elements.

The contraction algorithm follows the general rules for contraction listed in [6, p. 120].

Given a rank 3 simple matroid M , and a point e in M , let L be a line (possibly trivial)

not containing e. Observe that there will be at least one such line because M has rank 3.

The elements of M/e are the original elements of L, together with images of the elements

of E − (L ∪ e) under projection from e. To project a point f ∈ E − (L ∪ e) onto L, we

must find the line L′ (also possibly trivial) containing f and e. If L′ ∩ L = g, then f and

all other points on L′ − e project onto g. If L′ ∩ L = φ, then f and all other points on

L′ − e project onto a new point which is added to L.

If n ≥ q + 3, then we can first check the matroid for an element contained in no non-

trivial line (i.e. a line with at least three points). If it has such a point, then it will have

a U2,q+2-minor since when such a point is contracted all the other points fall on a line

without giving rise to parallel points. If it doesn’t have such a point, then we must check

each single-element contraction of M for a U2,q+2-minor. The contraction will consist of

one line with n − 1 points, but some of the points may be parallel to other points. We

need to know which points from M will contribute to the length of the line, and which

will become parallel points to other points. The matroid M/e has a U2,q+2-minor if and

only if the simplified line has length at least q + 2. The complexity of this algorithm is

O(n3).

In Figure 5 we see that contracting the point 1 onto line {3, 4, 8, 9} gives a line with

only 6 distinct classes of points because point 9 is parallel to point 6 and point 8 is parallel

to point 7. So M/1 does not have a U2,7-minor. However, contracting point 5 onto line

{3, 4, 8, 9} gives a U2,7-minor.
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Figure 5: Examples of single-element contractions

- 516 -



Running the contraction algorithm with q = 5 and the exhaustive, isomorph-free sets

of rank 3, simple matroids of sizes 8, 9, 10, 11, and 12 gives 44, 149, 492, 1302, and 2279

matroids, respectively, with no U2,7-minor.

In the second step we eliminate from consideration the rank 3, simple matroids left

which are representable over GF (q). This gives us the excluded minors for GF (q)-

representation with no U2,q+2-minors. However, they may not be minimal. Running

this step with q = 5 and the output from Step 1 gives 10, 67, 224, 1006, and 1803 ma-

troids of size 8, 9, 10, 11, and 12 as the excluded minors for GF (5)-representation with

no U2,7-minor.

In the third step we eliminate the matroids which have a single-element deletion that is

not GF (q)-representable. To check single-element deletions we remove one element at a

time from M and compare the resulting matroid with the matroids in Mq
n−1. Only those

matroids, all of whose single-element deletions occur in Mq
n−1 are retained. These will be

the minimal excluded minors for GF (q)-representation.

In the second and third step an implementation of the partition backtrack method [4]

by the first author was used to put the point-line incidence matrix of a matroid into

canonical form. Using this algorithm dramatically decreased the time required to identify

GF (q)-representable matroids from an older algorithm that required pairwise isomorphism

checking. For a discussion on canonical form see [5].

We illustrate this with an example. The matroids M and N in Figure 6 are not identical,

but isomorphic under the map (7, 2, 1, 4, 5, 3, 8, 6, 10, 11, 9), where 1 −→ 7, 2 −→ 2,

3 −→ 1, and so on. We will put them both in canonical form.

1
 2


3


4


5


6


7


8


9


10


11


1


2


3


4


5


6


7


8
 9


10


11


{1, 2, 9}

{1, 3, 7, 8}

{2, 3, 4, 5, 6}

{1, 5, 10}

{5, 7, 11}

{2, 8, 11}

{4, 8, 10}

{6, 8, 9}

{4, 9, 11}

{7, 9, 10}

{6, 10, 11}


{1, 2, 3, 4, 5}

{1, 6, 7, 8}

{2, 6, 9}

{3, 6, 10}

{4, 6, 11}

{2, 7, 10}

{5, 7, 11}

{5, 8, 9}

{4, 9, 10}

{3, 9, 11}

{8, 10, 11}


M
 N


Figure 6: Two non-identical, but isomorphic matroids with 11 elements
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The point-line incidence matrix of a matroid is the matrix with points along the rows

and non-trivial lines along the columns. Entry aij = 1 if point i is on line j and 0

otherwise. It uniquely defines the matroid. The point-line incidence matrices for M and

N are shown below. Each has 11 rows, 11 columns and 36 nonzero entries. Rows and

columns are labeled 0, 1, . . . , 10.

M =

2
66666666666666666666664

1 1 0 1 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 0 0

0 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 1

0 1 0 0 1 0 0 0 0 1 0

0 1 0 0 0 1 1 1 0 0 0

1 0 0 0 0 0 0 1 1 1 0

0 0 0 1 0 0 1 0 0 1 1

0 0 0 0 1 1 0 0 1 0 1

3
77777777777777777777775

N =

2
66666666666666666666664

1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 1 0 0

1 0 0 0 0 0 1 1 0 0 0

0 1 1 1 1 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 0 1 1 1 0

0 0 0 1 0 1 0 0 1 0 1

0 0 0 0 1 0 1 0 0 1 1

3
77777777777777777777775

Applying the canonical form generator gives us the following permutations of the rows

and columns of M : [0, 3, 10, 4, 1, 5, 2, 8, 6, 7, 9] and [10, 8, 6, 7, 5, 9, 3, 0, 1, 4, 2]. Similarly,

we get the following permutations of the rows and columns of N :

[10, 3, 5, 4, 1, 8, 0, 2, 9, 6, 7] and [10, 8, 4, 3, 2, 7, 6, 9, 1, 0, 5]. Observe that in canonical form

Mc and Nc are identical. So M and N are isomorphic. By replacing pairwise isomorphism

checks of matroids with pairwise comparisons of point-line incidence matrices in canonical

form we were able to identify isomorphic matroids much more quickly.

Mc =

2
66666666666666666666664

0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 1 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1

0 1 0 1 0 1 0 1 0 0 0

1 0 1 0 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1

3
77777777777777777777775

Nc =

2
66666666666666666666664

0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 1 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1

0 1 0 1 0 1 0 1 0 0 0

1 0 1 0 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1

3
77777777777777777777775

The matroids are read and output in sparse matrix format. For the matrix M above,

the sparse matrix format is obtained by recording the positions of the nonzero entries,

in row-wise fashion, counting from zero. The first row has nonzero entries in positions

0, 1 and 3, so the first three entries in the list are 0, 1 and 3. The second row, starting
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with position 11, has nonzero entries in positions 0, 2 and 5, so the next three entries are

11 = 0 + 11, 13 = 2 + 11 and 16 = 5 + 11. When this process is completed we get:

0 1 3 11 13 16 23 24 35 39 41 46 47 48 57 62 65 67 70 75 78 82 83 84 88 95

96 97 102 105 108 109 114 115 118 120

The output for this matroid in canonical form is:

6 7 8 17 20 21 27 30 31 37 40 43 45 46 54 55 58 65 67 69 71 73 77 79 82 83

90 91 92 96 99 100 103 108 118 120

Similarly matrix N in sparse matrix format is:

0 1 11 13 16 22 25 31 33 37 41 44 50 51 56 57 58 59 67 71 72 78 84 87 90 95

96 97 102 104 107 109 114 116 119 120

and in canonical form is:

6 7 8 17 20 21 27 30 31 37 40 43 45 46 54 55 58 65 67 69 71 73 77 79 82 83

90 91 92 96 99 100 103 108 118 120

Observe that comparison is now just a straightforward comparison of two strings of num-

bers.

We end with a brief summary of the minimal excluded minor algorithm and its output.

Algorithm: For n ≥ 5, to determine a set of rank 3, n-element minimal excluded minors

for GF (q)-representable matroids, where q is a prime power.

Input: Mn, Mq
n and Mq

n−1

Output: The list of size n minimal excluded minors for GF (q)-representable matroids.

(1) For each matroid M in Mn, retain M if M has no minor isomorphic to U2,q+2.

Let X be the set of matroids retained.

(2) For each matroid M in X , retain M if M is not isomorphic to a matroid in Mq
n.

Let Y be the set of matroids retained. Observe that matroids in Y are excluded

minors for GF (q). But they are not necessarily minimal excluded minors.

(3) For each matroid M in Y , retain M if, for every element e, M\e ∈ Mq
n−1. Let

Z be the set of matroids retained. The matroids in Z are the minimal excluded

minors for GF (q)-representation.

We tested the code for GF (2), GF (3), and GF (4), since the minimal excluded minors

for these fields are known, and found that it gave correct answers in all instances. It

also correctly determined the known five rank 3, 7-element minimal excluded minors for

GF (5)-representation. Below is a list of the non-trivial lines (lines with at least three

points) in the minimal excluded minors found by the program.
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The 8-element minimal excluded minors:

i) {1, 7, 8}, {2, 5, 8}, {2, 6, 7}, {3, 5, 7}, {3, 6, 8}, {4, 5, 6}
ii) {1, 3, 8}, {1, 4, 7}, {1, 5, 6}, {2, 3, 7}, {2, 4, 6}, {2, 5, 8}, {3, 4, 5}, {6, 7, 8}

The 9-element minimal excluded minors:

i) {1, 3, 9}, {1, 7, 8}, {2, 6, 8}, {2, 7, 9}, {3, 5, 8}, {3, 6, 7}, {4, 5, 7}, {4, 6, 9}
ii) {1, 3, 9}, {1, 7, 8}, {2, 4, 9}, {2, 6, 8}, {3, 5, 8}, {3, 6, 7}, {4, 5, 7}, {5, 6, 9}
iii) {1, 4, 9}, {1, 6, 8}, {2, 3, 9}, {2, 5, 8}, {3, 6, 7}, {4, 5, 7}
iv) {1, 4, 9}, {1, 6, 8}, {2, 3, 9}, {2, 5, 8}, {3, 6, 7}, {4, 5, 7}, {7, 8, 9}
v) {1, 3, 9}, {1, 6, 8}, {2, 4, 9}, {2, 5, 8}, {3, 6, 7}, {4, 5, 7}, {5, 6, 9}, {7, 8, 9}
vi) {1, 4, 9}, {1, 6, 8}, {2, 3, 9}, {2, 5, 8}, {3, 4, 8}, {3, 6, 7}, {4, 5, 7}, {5, 6, 9}
vii) {1, 4, 9}, {1, 6, 8}, {2, 3, 9}, {2, 5, 8}, {3, 4, 8}, {3, 6, 7}, {4, 5, 7}, {5, 6, 9}, {7, 8, 9}
viii) {1, 4, 9}, {1, 5, 8}, {1, 6, 7}, {2, 4, 8}, {2, 5, 7}, {2, 6, 9}, {3, 4, 7}, {3, 5, 9}, {3, 6, 8}
ix) {1, 4, 9}, {1, 5, 8}, {1, 6, 7}, {2, 3, 9}, {2, 4, 8}, {2, 5, 7}, {3, 4, 7}, {3, 6, 8}, {5, 6, 9},

{7, 8, 9}
The 10-element minimal excluded minor is:

i) {1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10}, {2, 5, 8}, {2, 6, 9}, {3, 5, 10}, {3, 7, 8}, {4, 6, 10},
{4, 7, 9}}.

The 11-element minimal excluded minor is:

i) {1, 2, 3, 4, 5}, {1, 6, 7, 8, 9}, {1, 10, 11}, {2, 6, 10}, {2, 7, 11}, {3, 6, 11}, {3, 8, 10}, {4, 7, 10},
{4, 9, 11}, {5, 8, 11}, {5, 9, 10}

No 12 element minimal excluded minor for GF (5)-representablity was found. We conjec-

ture that no more rank 3 minimal excluded minors will be found.
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