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ABSTRACT. Rota’s conjecture states that the number of minimal excluded minors for
the class of GF(q)-representable matroids is finite. The conjecture holds for ¢ = 2, 3, and
4, but remains unresolved for fields of order 5 and higher. At present only six 7-element
minimal excluded minors for GF(5)-representation are known. We found two 8-element,
nine 9-element, one 10-element, and one 11-element rank-3 minimal excluded minors.
There are no 12-element rank-3 minimal excluded minors for GF(5)-representable ma-

troids. Our list is exhaustive up to 12 elements.

1. INTRODUCTION

The matroid terminology follows Oxley [6]. A matroid M is defined as an ordered pair
(E,7) consisting of a finite set E and a collection Z of subsets of E, called independent
sets, that satisfy the following axioms: the empty set is independent; any subset of an
independent set is independent; and if /; and I, are independent sets such that [I;| < ||,
then there exists e € Iy — I; such that I; U {e} is independent. A matroid in which all
the one and two element sets are independent is called a simple matroid or combinatorial
geometry.

A maximal independent set is called a basis. For a subset X of F, the rank of X,
denoted by 7(X), is the size of a maximal independent subset in X. The rank of M is the
size of a basis set. A subset X of E is closed if r(X U {e}) = r(X) + 1 for all elements e
not in X. A flat is a closed set. The flats of a matroid satisty the following axioms: the
intersection of any two flats is a flat; and if F' is a flat and Fy, ..., F}, are flats that cover
F., then Fy — F,... F, — F partition £ — F.

Flats of rank 1, 2, 3, and so on can be represented geometrically as points, lines, planes,
etc. A rank 1 simple matroid is a point. A rank 2 n-element simple matroid is a line with
n points. We denote it as Us,. A rank 3 n-element simple matroid is a 2-dimensional

figure consisting of points and lines that satisfy the following axioms: any two distinct
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points belong to exactly one line; any line contains at least two distinct points; and there
are at least three non-colinear points [6, pg. 42]. The first two axioms are the flat axioms
expressed for points and lines. The third axiom is the trivial condition required to ensure
the matroid has rank 3. Simple matroids of rank at most 3 are also called linear spaces.

A rank r simple matroid M with ground set E is representable over a field F' if there is a
rank preserving map ¢ : £ — V(r, F). If M is representable, then we can find a matrix
A with entries from F' that represents M. We can write the matrix in standard form
A = [I,| D], where the columns of A correspond to a non-zero representative vector from
one-dimensional subspaces of V(r, F). So the columns of A can be viewed as a subset of
PG(r—1,F). In this paper we are interested in matroids representable over finite fields,
GF(q), where ¢ is a prime power. For a fixed ¢, our goal is to find the rank 3 obstructions
for representability that are in a sense minimal. We need to make precise what we mean
by minimal.

The matroid obtained by deleting an element z from M, denoted by M\z, is defined as
the matroid on E — {z}, in which / C E — {z} is an independent set if I is independent
in M. The matroid obtained by contracting x from M, denoted by M/x, is defined as
the matroid on E — {z}, in which I C F — {z} is an independent set if I U {z} is
independent in M. A matroid N is a minor of a matroid M if N can be obtained from
M by deleting and/or contracting elements. We say a class of matroids is closed under
mianors if every minor of a matroid in the class is also in the class. For example, the classes
of GF(q)-representable matroids for a specific prime power (matrices with entries from
GF(q)), graphic matroids (graphs), and regular matroids are all closed under minors.
Regular matroids are matroids represented by matrices over the reals with the property
that every square submatrix has determinant in {0,1, —1}.

The dual of a matroid M on set E with basis set B is defined as the matroid on E
with basis set {E' — B : B € B}. The dual matroid is denoted by M*. We say a class
of matroids is closed under duality if the dual of every matroid in the class is also in the
class. For example, the classes of GF(g)-representable matroids and regular matroids are
closed under duality, but not the class of graphic matroids since the duals of non-planar
graphs are not graphs.

A matroid M is a minimal excluded minor for a minor-closed class of matroids, if
M is not in the class, but every minor of M is in the class. Excluded minor results are
quite popular in graphs and matroids. The Kuratowski-Wagner characterization of planar

graphs is generally considered to be the first excluded minor result. It states that a graph
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is planar if and only if it has no minor isomorphic to K5 or K33, where Kj is the complete
graph on five vertices and K33 is the complete bipartite graph with three vertices in each
of the two vertex classes. So K5 and K33 are the minimal obstructions to planarity in
graphs.

The study of excluded minor results in matroids was initiated by Tutte when he char-
acterized the class of binary matroids and regular matroids in terms of excluded minors.
Specifically, he proved that a matroid is binary if and only if it had no minor isomorphic
to Us 4, the four-point line [6, 9.1.5]. He also proved that a matroid is regular if and only
if it has no minor isomorphic to Us 4, the Fano matroid and its dual [6, 13.1.1]. Observe
that the Fano matroid is PG(2, 2), the well-known design consisting of 7 points and 7 lines
(see Figure 1) usually denoted by F;. It is representable only over fields of characteristic
two . Note that for a class of matroids closed under duality, if M is a minimal excluded
minor for the class, then so is M*.

In 1971 Rota conjectured that the class of GF(g)-representable matroids has a finite
list of minimal excluded minors [6, 14.1.1]. This conjecture remains unsolved. Several
years later Bixby and Seymour independently showed that a matroid is ternary if and
only if it has no minor isomorphic to Uy, Uss, Fr, or F¥ [6, 10.3.1]. The matroid Uy 5 is
the five-point line and its dual Us 5 can be represented by five freely placed points in the
plane. In 2000 Geelen, Gerards, and Kapoor proved that a matroid is quaternary if and
only if it has no minor isomorphic to Us 6, Usg, Pe, Fy, F; , Ps, and PY [2]. The matroid
Us is the six-point line and its dual is Uyg. The self-dual 6-element, rank-3 matroid Ps
has a single non-trivial line passing through 3 points. The relaxed Fano matroid, F%, is
almost like the Fano matroid except the curved line is missing. It is representable only
over fields of characteristic other than two. The matroids Py and P{ have rank 4. The
upper bound on the number of elements in a minimal excluded minor for a field of order
q < 4 is small, so once the upper bound is determined, it is feasible to work out the
minimal excluded minors by hand. For ¢ > 5 the upper bound is expected to be large, so
using a computer may be the only way to get the minimal excluded minors. Moreover, at
present the bound for ¢ > 5 is unknown. The results of this paper suggest that there will
be a finite upper bound and that for rank 3 matroids the upper bound will be 2¢ + 1.

Using computers to search for combinatorial objects is an established area of research
in other areas of combinatorics. For example, design theorists look for projective planes

and other designs with certain properties. We are applying similar computing ideas to
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matroid theory with a view to getting certain types of matroids that may be of interest
to matroid theorists.

We found several rank 3 minimal excluded minors for GF(5)-representation. Figure 1
shows the known 7-element minimal excluded minors. Figures 2, 3, and 4 show previously
unknown minimal excluded minors. We found no 12-element minimal excluded minor.
Our list is exhaustive up to 12 elements. In Figure 2 observe that the second 8-element
matroid is the well-known 83-configuration. In Figure 3, Mjy is the well-known Pappus

matroid and Mg and M, are not representable over any field.

2. THE METHOD

For n > 4, let M,, denote the set of all non-isomorphic rank 3, n-element simple
matroids and let M2 denote the set of all non-isomorphic rank 3, n-element, GF(5)-
representable simple matroids. The number of non-isomorphic rank 3 simple matroids of
sizes 3 to 12 are, respectively, 1, 2, 4, 9, 23, 68, 383, 5249, 232,928, and 28,872,972 [1].
Using the generation technique in [3] and adjusting for inequivalent representations, we
found that the number of non-isomorphic rank 3, GF(5)-representable simple matroids
of sizes 3 to 12 are, respectively, 1, 2, 4, 9, 18, 34, 82, 168, 296, and 476.
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Figure 2: The 8-element rank 3 minimal excluded minors
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M, Mg 1

Figure 4: The 10-element and 11-element rank 3 minimal excluded minors

Our minimal excluded minor algorithm proceeds through a series of filtering steps.
First, observe that Us 4o is a minimal excluded minor for GF(g)-representability since
the lines in PG(r — 1, ¢) have g+ 1 points [6, 6.5.3]. Note that U, 44» is the line with ¢+ 2
points. So we can eliminate from consideration the matroids M € M,, that have a Us 442

minor. Since M is a rank 3 simple matroid, a single-element contraction of M will have
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rank 2 and size n — 1. Further, observe that if M has a Us 412 minor, then it must have
at least ¢ + 3 elements.

The contraction algorithm follows the general rules for contraction listed in [6, p. 120].
Given a rank 3 simple matroid M, and a point e in M, let L be a line (possibly trivial)
not containing e. Observe that there will be at least one such line because M has rank 3.
The elements of M /e are the original elements of L, together with images of the elements
of E — (L Ue) under projection from e. To project a point f € E — (L Ue) onto L, we
must find the line L' (also possibly trivial) containing f and e. If L' N L = g, then f and
all other points on L' — e project onto g. If L' N L = ¢, then f and all other points on
L' — e project onto a new point which is added to L.

If n > ¢+ 3, then we can first check the matroid for an element contained in no non-
trivial line (i.e. a line with at least three points). If it has such a point, then it will have
a U g4o-minor since when such a point is contracted all the other points fall on a line
without giving rise to parallel points. If it doesn’t have such a point, then we must check
each single-element contraction of M for a Us 41o-minor. The contraction will consist of
one line with n — 1 points, but some of the points may be parallel to other points. We
need to know which points from M will contribute to the length of the line, and which
will become parallel points to other points. The matroid M /e has a Us go-minor if and
only if the simplified line has length at least ¢ + 2. The complexity of this algorithm is
O(nd).

In Figure 5 we see that contracting the point 1 onto line {3,4,8,9} gives a line with
only 6 distinct classes of points because point 9 is parallel to point 6 and point 8 is parallel
to point 7. So M/1 does not have a U, 7-minor. However, contracting point 5 onto line

{3,4,8,9} gives a Uy 7-minor.

° ° =
*—o o o o o
2 4 5 69 78 3 1 3 4 67 8 9 2
M/1 M/5

Figure 5: Examples of single-element contractions
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Running the contraction algorithm with ¢ = 5 and the exhaustive, isomorph-free sets
of rank 3, simple matroids of sizes 8, 9, 10, 11, and 12 gives 44, 149, 492, 1302, and 2279
matroids, respectively, with no U, 7-minor.

In the second step we eliminate from consideration the rank 3, simple matroids left
which are representable over GF(g). This gives us the excluded minors for GF(q)-
representation with no Us 4io-minors. However, they may not be minimal. Running
this step with ¢ = 5 and the output from Step 1 gives 10, 67, 224, 1006, and 1803 ma-
troids of size 8, 9, 10, 11, and 12 as the excluded minors for GF(5)-representation with
no U 7-minor.

In the third step we eliminate the matroids which have a single-element deletion that is
not GF(q)-representable. To check single-element deletions we remove one element at a
time from M and compare the resulting matroid with the matroids in M?_;. Only those
matroids, all of whose single-element deletions occur in M?_ | are retained. These will be
the minimal excluded minors for GF(g)-representation.

In the second and third step an implementation of the partition backtrack method [4]
by the first author was used to put the point-line incidence matrix of a matroid into
canonical form. Using this algorithm dramatically decreased the time required to identify
GF(q)-representable matroids from an older algorithm that required pairwise isomorphism
checking. For a discussion on canonical form see [5].

We illustrate this with an example. The matroids M and N in Figure 6 are not identical,
but isomorphic under the map (7,2,1,4,5,3,8,6,10,11,9), where 1 — 7, 2 — 2,

3 — 1, and so on. We will put them both in canonical form.

g, 2, 3} . {1,2,3,4,5}
23 {1,6,7,8}
{2,3,4,5, 6} {2,6,9}
{1, 5, 10} {3, 6, 10}
{5,7,11} {4,6,11}
{2, 8,11} {2,7, 10}
gg, g, ;;J} {5,7,11}
, 8, {5, 8, 9}
e T
.9, {3,9,11}
{6, 10, 11} {8, 10, 11}

Figure 6: Two non-identical, but isomorphic matroids with 11 elements



The point-line incidence matriz of a matroid is the matrix with points along the rows
and non-trivial lines along the columns. Entry a;; = 1 if point ¢ is on line j and 0
otherwise. It uniquely defines the matroid. The point-line incidence matrices for M and
N are shown below. Each has 11 rows, 11 columns and 36 nonzero entries. Rows and

columns are labeled 0,1, ..., 10.

Applying the canonical form generator gives us the following permutations of the rows
and columns of M: [0,3,10,4,1,5,2,8,6,7,9] and [10,8,6,7,5,9,3,0,1,4,2]. Similarly,
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we get the following permutations of the rows and columns of N:

(10,3,5,4,1,8,0,2,9,6,7] and [10,8,4,3,2,7,6,9,1,0,5]. Observe that in canonical form
M, and N, are identical. So M and N are isomorphic. By replacing pairwise isomorphism

checks of matroids with pairwise comparisons of point-line incidence matrices in canonical
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=

form we were able to identify isomorphic matroids much more quickly.

M. =

The matroids are read and output in sparse matrix format. For the matrix M above,
the sparse matrix format is obtained by recording the positions of the nonzero entries,
in row-wise fashion, counting from zero. The first row has nonzero entries in positions

0, 1 and 3, so the first three entries in the list are 0, 1 and 3. The second row, starting
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with position 11, has nonzero entries in positions 0, 2 and 5, so the next three entries are
11=0+11,13=2+11 and 16 = 5+ 11. When this process is completed we get:
013 11 13 16 23 24 35 39 41 46 47 48 57 62 65 67 70 75 78 82 83 84 88 95
96 97 102 105 108 109 114 115 118 120

The output for this matroid in canonical form is:

6 7 8 17 20 21 27 30 31 37 40 43 45 46 54 55 58 65 67 69 71 73 77 79 82 83
90 91 92 96 99 100 103 108 118 120

Similarly matrix N in sparse matrix format is:

01 11 13 16 22 25 31 33 37 41 44 50 51 56 57 58 59 67 71 72 78 84 87 90 95
96 97 102 104 107 109 114 116 119 120

and in canonical form is:

6 7 8 17 20 21 27 30 31 37 40 43 45 46 54 55 58 65 67 69 71 73 77 79 82 83
90 91 92 96 99 100 103 108 118 120

Observe that comparison is now just a straightforward comparison of two strings of num-
bers.

We end with a brief summary of the minimal excluded minor algorithm and its output.

Algorithm: For n > 5, to determine a set of rank 3, n-element minimal excluded minors
for GF(q)-representable matroids, where ¢ is a prime power.

Input: M,,, M% and M?_,

Output: The list of size n minimal excluded minors for G F(g)-representable matroids.

(1) For each matroid M in M,, retain M if M has no minor isomorphic to Usgta.
Let X be the set of matroids retained.

(2) For each matroid M in X, retain M if M is not isomorphic to a matroid in MZ.
Let Y be the set of matroids retained. Observe that matroids in ) are excluded
minors for GF(g). But they are not necessarily minimal excluded minors.

(3) For each matroid M in Y, retain M if, for every element e, M\e € M?_,. Let
Z be the set of matroids retained. The matroids in Z are the minimal excluded

minors for GF(g)-representation.

We tested the code for GF(2), GF(3), and GF(4), since the minimal excluded minors
for these fields are known, and found that it gave correct answers in all instances. It
also correctly determined the known five rank 3, 7-element minimal excluded minors for
GF'(5)-representation. Below is a list of the non-trivial lines (lines with at least three

points) in the minimal excluded minors found by the program.
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The 8-element minimal excluded minors:
i) {1,7,8},{2,5,8},{2,6,7},{3,5,7},{3,6,8},{4,5,6}
i) {1,3,8},{1,4,7},{1,5,6},{2,3,7},{2,4,6},{2,5,8},{3,4,5},{6, 7,8}
The 9-element minimal excluded minors:
i) {1,3,9}, {1,7,8}, {2,6,8}, {2,7,9}, {3,5,8}, {3,6,7}, {4,5,7}, {4,6,9}
{1,3,9}, {1,7,8}, {2,4,9}, {2,6,8}, {3,5,8}, {3,6,7}, {4,5,7}, {5,6,9}
{1,4,9}, {1,6,8}, {2,3,9}, {2,5,8}, {3,6,7}, {4,5,7}
{1,4,9}, {1,6,8}, {2,3,9}, {2,5,8}, {3,6,7}, {4,5,7}, {7,8,9}
{1,3,9}, {1,6,8}, {2,4,9}, {2,5,8}, {3,6,7}, {4,5,7}, {5,6,9}, {7,8,9}
{1,4,9}, {1,6,8}, {2,3,9}, {2,5,8}, {3,4,8}, {3,6,7}, {4,5,7}, {5,6,9}
{1,4,9}, {1,6,8}, {2,3,9}, {2,5,8}, {3,4,8}, {3,6,7}, {4,5,7}, {5,6,9}, {7,8,9}
{1,4,9}, {1,5,8}, {1,6,7}, {2,4,8}, {2,5,7}, {2,6,9}, {3,4,7}, {3,5,9}, {3,6,8}
{1,4,9}, {1,5,8}, {1,6,7}, {2,3,9}, {2,4,8}, {2,5,7}, {3,4,7}, {3,6,8}, {5,6,9},
{7,8,9}
The 10-element minimal excluded minor is:
i) {1,2,3,4}, {1,5,6,7}, {1,8,9,10}, {2,5,8}, {2,6,9}, {3,5,10}, {3,7,8}, {4,6,10},
{4,7,9}}.
The 11-element minimal excluded minor is:
i) {1,2,3,4,5},{1,6,7,8,9}, {1,10,11}, {2,6,10}, {2,7,11}, {3,6, 11}, {3,8, 10}, {4,7, 10},
{4,9,11}, {5,8,11}, {5,9, 10}

No 12 element minimal excluded minor for GF(5)-representablity was found. We conjec-
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ture that no more rank 3 minimal excluded minors will be found.
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