MATCH

Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Bipartite Unicyclic Graphs with Large Energy

Hongbo Hua

Department of Computing Science, Huaiyin Institute of Technology, Huaian, Jiangsu 223000, People's Republic of China email: hongbo.hua@gmail.com

(Received February 12, 2007)

Abstract

Let G be a graph with n vertices and $\lambda_1, \lambda_2, \dots, \lambda_n$ be n eigenvalues of its adjacency matrix A(G). The energy of G, denoted by E(G), is defined to be the summation $\sum_{i=1}^{n} |\lambda_i|$. Denote by \mathcal{BU}_n the set of connected bipartite unicyclic graphs on n vertices. For $n \geq l+1$, let P_n^l be graph obtained by identifying one pendent vertex of the path P_{n-l+1} with any vertex of the cycle C_l . Recently, I. Gutman^[7] and Y. Hou^[10] determined that P_n^6 is the unique graph with the greatest energy among all graphs in $\mathcal{BU}_n \setminus \{C_n\}$. Let $\mathcal{BU}_n^* = \mathcal{BU}_n \setminus \{C_n, P_n^l, l = 4, 5, \dots, n-1\}$. It is proved in this paper that for $n \geq 13$, $M_n^{6,3}$ is the graph with maximal energy among all graphs in \mathcal{BU}_n^* , where $M_n^{6,3}$ is the graph obtained by joining (by a new edge) any vertex of the hexagon with the vertex 3 of the path P_{n-6} .

1 Introduction

Let G be a connected graph with n vertices and A(G) be its adjacency matrix. The characteristic polynomial of A(G) is defined to be

$$\phi(G; x) = |xI - A(G)| = \sum_{i=0}^{n} a_i x^{n-i},$$

which is also said to be the characteristic polynomial of G. All n roots $\lambda_1, \lambda_2, \dots, \lambda_n$ of $\phi(G; x)$ are called to be eigenvalues of G. It's not difficult to see that each λ_i $(i = 1, 2, \dots, n)$ is real since A(G) is symmetric.

The energy of G, denoted by E(G), is defined to be $\sum_{i=1}^{n} |\lambda_i|$. It's well known that E(G) can

be expressed as the coulson integral formula

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{x^2} ln \left[\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i a_{2i} x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i a_{2i+1} x^{2i+1} \right)^2 \right] dx, \qquad (1)$$

where a_0, a_1, \dots, a_n are coefficients of characteristic polynomial of G.

Since the energy of a graph can be used to estimate approximately the total π -electron energy of the molecule, it has been intensively studied by many scholars. For more details see [3-10]; for some recent research along these lines see [11-22]. The interested reader may also refer to [23,24] for the mathematical properties of E(G).

As usual, we begin with some notations and terminologies. For a graph G, we use V(G)and E(G) to denote its set of vertices and edges, respectively. Let $d_G(v)$ denote the degree of vertex v, namely the number of edges incident with v in G. By $d_G(x, y)$ we mean the length of the shortest path connecting vertices x and y, i.e., the distance between x and y in G. Let $V_p(G)$ denote the set of pendent vertices in G. By S_n , C_n and P_n we denote respectively the star graph, the cycle graph and the path graph with n vertices. Let $P_n^l(n \ge l+1)$ be graph obtained by identifying one pendent vertex of the path P_{n-l+1} with any vertex of the cycle C_l . Denote by K_n^l $(n \ge l+2)$ the graph obtained from P_{n-1}^l by attaching one pendent edge to one neighbor (lying on C_l) of the unique 3-degree vertex of P_{n-1}^l . By R_n^l $(n \ge l+4)$ we denote the graph obtained by attaching a path of length 2 to one neighbor (lying on C_l) of the unique 3-degree vertex of P_{n-2}^l . Let $Q_n^l(n \ge l+5)$ be graph obtained by identifying the middle-point of the path P_5 with the unique pendent vertex of P_{n-4}^l . Fig.1. illustrate P_n^l , K_n^l , R_n^l and Q_n^l , respectively.

Denote by \mathcal{U}_n and \mathcal{BU}_n the set of connected unicyclic graphs and bipartite unicyclic graphs on *n* vertices, respectively. Let *G* be any graph in \mathcal{U}_n and *v* the vertex lying on its unique cycle. If $d_G(v) \ge 3$, then v is said to be a branched vertex. For a given vertex $x \notin V(C_l)$ in G, let $d_G(x, C_l) = min\{d_G(x, y)|y \in V(C_l)\}$, where C_l is the cycle in G.

Let $\mathcal{BU}_n^* = \mathcal{BU}_n \setminus \{C_n, P_n^l, l = 4, 5, \cdots, n-1\}$. For any graph $G \in \mathcal{BU}_n^*$, let C_l be the cycle of length l in G. Then $n \geq l+2$, i.e., $V_p(G) \neq \emptyset$. Let $\mathcal{BU}_{n,1}^* = \{G \in \mathcal{BU}_n^* | \text{there exists } x \in V_p(G) \text{ such that } d_G(x, C_l) = 1\}$. Set $\mathcal{BU}_{n,2}^* = \mathcal{BU}_n^* \setminus \mathcal{BU}_{n,1}^*$. Let $\mathcal{BU}_{n,2}^{*b}$ denote the subset of $\mathcal{BU}_{n,2}^*$ such that for any $G \in \mathcal{BU}_{n,2}^{*b}$, there's exactly one branched vertex in the unique cycle of G. Denote by $\mathcal{BU}_{n,2}^{*a}$ the set $\mathcal{BU}_{n,2}^* \setminus \mathcal{BU}_{n,2}^{*b}$. By $\mathcal{BU}_{n,2}^{*b}(l)$ we mean the subset of $\mathcal{BU}_{n,2}^{*b}$ such that for each graph G in $\mathcal{BU}_{n,2}^{*b}(l)$, G has a unique cycle of length l. Similarly, we can define respectively the sets $\mathcal{BU}_{n,1}(l)$, $\mathcal{BU}_{n,2}^{*a}(l)$, $\mathcal{U}_n(l)$ and $\mathcal{BU}_n(l)$ in this way.

In this paper, we determined the graph with maximal energy among all graphs in \mathcal{BU}^*_n .

2 Lemmas and Results

Sachs theorem [25] states that

$$a_i(G) = \sum_{S \in L_i} (-1)^{k(S)} 2^{c(S)}, \tag{2}$$

where L_i denote the set of Sachs graphs G with *i* vertices, k(S) is number of components of S and c(S) is the number of cycles contained in S.

Set $b_i(G) = |a_i(G)|$ $(i = 0, 1 \cdots, n)$. From Eq.(2), we find that $b_2(G)$ is equal to the number of edges of G. Let m(G, k) denote the number of k-matchings of a graph G. If G contains no cycle, then $b_{2k}(G) = m(G, k)$ and $b_{2k+1}(G) = 0$ for each $k \ge 0$. It's both consistent and convenient to define $b_k(G) = 0$ and m(G; k) = 0 for the case when k < 0.

In [8], Y. Hou obtained the following result.

Lemma 1. Let $G \in \mathcal{U}_n(l)$. Then $(-1)^k a_{2k} \ge 0$ for all $k \ge 0$; and $(-1)^k a_{2k+1} \ge 0$ (resp. ≤ 0) for all $k \ge 0$ if l = 2r + 1 and r is odd (resp. even).

From Eq.(1) and lemma 1, we obtain

$$E(G) = \frac{1}{\pi} \int_0^{+\infty} \frac{1}{x^2} ln \left[\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_{2i} x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_{2i+1} x^{2i+1} \right)^2 \right] dx.$$
(3)

It follows from (3) that E(G) is a strictly increasing function of $b_i(G)$ for $i = 0, 1, \dots, n$. That is to say, for any two unicyclic graphs G_1 and G_2 , there exists

$$b_i(G_1) \ge b_i(G_2) \text{ for all } i \ge 0 \Rightarrow E(G_1) \ge E(G_2).$$
 (4)

If $b_i(G_1) \ge b_i(G_2)$ holds for all $i \ge 0$, then we write $G_1 \succeq G_2$ or $G_2 \preceq G_1$. If $G_1 \succeq G_2$ and there exists some i_0 such that $b_{i_0}(G_1) > b_{i_0}(G_2)$, then we write $G_1 \succ G_2$.

According to the above relations, the following lemma follows readily.

Lemma 2. Let G_1 and G_2 be two graphs. Then $G_1 \succeq G_2$ implies that $E(G_1) \ge E(G_2)$ and $G_1 \succ G_2$ implies that $E(G_1) > E(G_2)$.

The following lemma is crucial to the proof of our main result.

Lemma 3. Let G be a unicyclic graph on n vertices with its cycle being C_l . Let uv be an edge in E(G), we have

(a). If $uv \in C_l$, then $b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) - 2b_{i-l}(G - C_l)$ if $l \equiv 0 \pmod{4}$ and $b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) + 2b_{i-l}(G - C_l)$ if $l \not\equiv 0 \pmod{4}$;

(b). If $uv \notin C_l$, then $b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v)$. In particular, if uv is a pendent edge with pendent vertex v, then $b_i(G) = b_i(G - v) + b_{i-2}(G - u - v)$.

Proof. Recall that

$$\phi(G;x) = \phi(G - uv;x) - \phi(G - u - v;x) - 2\sum_{C \in \mathscr{C}_{uv}} \phi(G - C;x),$$
(5)

where \mathscr{C}_{uv} denotes the set of cycles containing uv.

One can easily obtain the desired result by equating the coefficients of x^{n-i} on both sides of Eq.(5). \Box

F. Li and B. Zhou obtained the following result in [21].

Lemma 4. Let G be a unicyclic graph in \mathscr{U}_n and G' the graph obtained from G by deleting at least one edge outside its unique cycle. Then $G' \prec G$.

I. Gutman [3] show that n-vertex path P_n is the unique graph with the maximal energy among all all acyclic graphs on n vertices. The following lemma could be found in [1] as proposition 9.

Lemma 5. Let T be a tree of order $n \ge 6$ not isomorphic to P_n . Then $E(T) \le E(T_n^2)$ with equality if and only if $T \cong T_n^2$, where T_n^2 is the tree obtained by pasting one endpoint of P_{n-4} to the middle vertex of P_5 . (See Fig.2. for T_n^2).

In addition to the trees with maximal and second-maximal energy, also the trees with thirdmaximal, fourth-maximal, ... energy are determined by F. Zhang and H. Li [6].

 T_n^2 with $n \ge 8$ vertices.

Fig.2.

Lemmas 6—8 given below are due to Y. Hou in [10].

Lemma 6. Let $G \in \mathscr{U}_n(l)$ with $l \not\equiv 0 \pmod{4}$. If $G \ncong P_n^l$, then $G \prec P_n^l$.

Let C(n, l) be the set of unicyclic graphs obtained from C_l by attaching to it n - l pendent vertices.

Lemma 7. Let $G \in \mathscr{U}_n(l)$ with $l \equiv 0 \pmod{4}$. If $G \ncong \mathcal{C}(n,l), P_n^l$, then $G \prec P_n^l$.

Lemma 8. Let G be any connected graph in \mathscr{U}_n and $G \not\cong C_n$. Then $E(G) \leq E(P_n^6)$ with equality only if l = 6.

Lemma 9. Suppose $4 \le l \le n-6$. If $l \ne 4, 6$, then $P_{l-2} \cup T_{n-l}^2 \le P_4 \cup T_{n-6}^2 \le P_2 \cup T_{n-4}^2$.

Proof. From [3], we know that $P_2 \cup P_{n-2} \succeq P_4 \cup P_{n-4} \succeq P_i \cup P_{n-i}$ for any integer $1 \le i \le n-1$ and $i \ne 2, 4$. Note that

$$\begin{split} m(P_{l-2}\cup T^2_{n-l};k) &= m(P_{l-2}\cup P_2\cup P_{n-l-2};k) + m(P_{l-2}\cup P_2\cup P_{n-l-5};k-1), \\ m(P_4\cup T^2_{n-6};k) &= m(P_4\cup P_2\cup P_{n-8};k) + m(P_4\cup P_2\cup P_{n-11};k-1), \\ m(P_2\cup T^2_{n-4};k) &= m(P_2\cup P_2\cup P_{n-6};k) + m(P_2\cup P_2\cup P_{n-9};k-1). \end{split}$$

Hence the result follows. \Box

Lemma 10. Suppose (i, j, k) is a 3-element ordered pair with $1 \le i \le j \le k$ and i+j+k = n. If $(i, j, k) \ne (2, 2, n - 4), (2, 4, n - 6)$, then $P_i \cup P_j \cup P_k \preceq P_2 \cup P_4 \cup P_{n-6} \preceq P_2 \cup P_2 \cup P_{n-4}$. **Proof.** If $j \neq 2$, then

$$\begin{array}{rcl} P_i \cup (P_j \cup P_k) & \preceq & P_i \cup (P_4 \cup P_{j+k-4}) \\ \\ & = & P_4 \cup (P_i \cup P_{j+k-4}) \\ \\ & \preceq & P_4 \cup (P_2 \cup P_{i+j+k-6}) = P_2 \cup (P_4 \cup P_{n-6}) \end{array}$$

Similarly, if $i \neq 2$, we can show that $P_i \cup P_j \cup P_k \leq P_2 \cup P_4 \cup P_{n-6}$. Since $P_2 \cup P_4 \cup P_{n-6} \leq P_2 \cup P_2 \cup P_{n-4}$, then the result follows. \Box

Theorem 11. Let $G \in \mathcal{BU}^*_{n,1}$ with $n \ge 8$ vertices. If $G \ncong K_n^6$, then $G \prec K_n^6$.

Proof. Let G be any graph in $\mathcal{BU}^*_{n,1}$ and C_l be the unique cycle in G. Since $G \ncong P_n^l$, G has at least two pendent vertices. Let v be the pendent vertex in G such that $d_G(v, C_l) = 1$ and u its unique neighbor. Note that G - v - u is a acyclic graph on n - 2 vertices. So $G - v - u \preceq P_{n-2}$. Since $G - v \ncong C_{n-1}$, then $G - v \preceq P_{n-1}^6$ by lemma 8. According to lemma 3(b), we get

$$b_{2k}(G) = b_{2k}(G-v) + b_{2k-2}(G-v-u)$$

$$\leq b_{2k}(P_{n-1}^6) + b_{2k-2}(P_{n-2})$$

$$= b_{2k}(K_n^6).$$

If $G \ncong K_n^6$, we can always find a positive integer k_0 such that $b_{2k_0}(G) < b_{2k_0}(K_n^6)$. This completes the proof. \Box

Lemma 12. Let $G \in \mathcal{BU}_{n}^{*b}{}_{2}(l)$ with n = l + 3, then $G \preceq K_{n}^{l}$.

Proof. Obviously G_1 is the single element in $\mathcal{BU}_{n,2}^{*b}(l)$ (see Fig.3. for G_1). In view of lemma 3(b), we obtain

$$\begin{split} b_{2k}(K_{l+3}^l) - b_{2k}(G_1) &= b_{2k-2}(P_{l+1}) - b_{2k-2}(C_l) \\ &= m(P_{l+1};k-1) - m(P_l;k-1) - m(P_{l-2};k-2) \pm 2, \end{split}$$

where the last term " ± 2 " should be erased if $2k - 2 \neq l$.

When $2k - 2 \neq l$, $b_{2k}(K_{l+3}^l) - b_{2k}(G_1) = m(P_{l-3}; k-3) \geq 0$. When 2k - 2 = l and $l \equiv 0 \pmod{4}$, we have $b_{2k}(K_{l+3}^l) - b_{2k}(G_1) = m(P_{l-3}; k-3) + 2 > 0$. When 2k - 2 = l and $l \neq 0 \pmod{4}$, we have $b_{2k}(K_{l+3}^l) - b_{2k}(G_1) = m(P_{l-3}; k-3) - 2 = m(P_{l-3}; \frac{l}{2} - 2) - 2 \geq 0$.

Consequently, the result follows. \Box

Fig.3.

Lemma 13. Let $G \in \mathcal{BU}_{n,2}^{*b}(l)$ with n = l + 4, then $G \leq R_n^l$.

Proof. It's evident that G must be one of graphs G_2-G_5 as shown in Fig.3.

According to lemmas 3(b) and 4, one can easily obtain that $G_2 \succ G_4$. In the following, we will show that $R_n^l \succ G_2, G_3, G_5$. Apply lemma 3(b) once again, we obtain

$$\begin{split} b_{2k}(R_{l+4}^l) - b_{2k}(G_2) &= b_{2k}(P_{l+2}^l) + b_{2k-2}(P_{l+2}^l) + b_{2k-2}(P_{l+1}) - b_{2k}(P_{l+3}^l) \\ &\quad -b_{2k-2}(P_2 \cup C_l) \\ &= b_{2k-2}(P_{l+2}^l) + b_{2k-2}(P_{l+1}) - b_{2k-2}(P_{l+1}^l) - b_{2k-2}(C_l) \\ &\quad -b_{2k-4}(C_l) \\ &= \cdots \\ &= b_{2k-2}(P_{l+1}) - b_{2k-2}(C_l). \end{split}$$

Similar to the proof of lemma 12, we can show that $G_2 \preceq R_{l+4}^l$. Similarly,

$$b_{2k}(R_{l+4}^{l}) - b_{2k}(G_{3}) = b_{2k}(P_{l+2}^{l}) + b_{2k-2}(P_{l+2}^{l}) + b_{2k-2}(P_{l+1}) - b_{2k}(P_{l+3}^{l}) - b_{2k-2}(P_{l+1}^{l}) = \cdots = b_{2k-4}(C_{l}) + b_{2k-2}(P_{l+1}) - b_{2k-4}(P_{l-1}) - b_{2k-2}(C_{l}).$$

If $2k - 4 \neq l$ and $2k - 2 \neq l$, then $b_{2k}(R_{l+4}^l) - b_{2k}(G_3) = m(P_{l-3}; k-3) + 2m(P_{l-2}; k-3) \ge 0$. If 2k - 4 = l or 2k - 2 = l, then

$$\begin{array}{rcl} b_{2k}(R_{l+4}^l) - b_{2k}(G_3) & \geq & m(P_{l-3};k-3) + 2m(P_{l-2};k-3) - 2 \\ \\ & \geq & \left\{ \begin{array}{c} 2m(P_{l-2};\frac{l}{2}-1) - 2 = 0, & 2k-4 = l \\ 2m(P_{l-2};\frac{l}{2}-2) - 2 \geq 0, & 2k-2 = l \end{array} \right. \end{array}$$

Thus $G_3 \leq R_{l+4}^l$.

Lemma 14. Let $n \ge 10$ and $4 \le l \le n-4$. If $l \ne 6$, then $R_n^l \prec R_n^6$.

Proof. By lemma 3(b), we have

$$b_{2k}(R_n^l) = b_{2k}(K_{n-1}^l) + b_{2k-2}(P_{n-2}^l)$$

= $b_{2k}(P_{n-2}^l) + b_{2k-2}(P_{n-2}^l) + b_{2k-2}(P_{n-3}),$
 $b_{2k}(R_n^6) = b_{2k}(P_{n-2}^6) + b_{2k-2}(P_{n-2}^6) + b_{2k-2}(P_{n-3}).$

Since $n-2 \ge l+2$, the lemma follows as expected by lemma 8. \Box

By the same reasoning as employed in lemma 14, we can prove:

Lemma 15. Suppose $n \ge 8$ and $4 \le l \le n-2$. If $l \ne 6$, then $K_n^l \prec K_n^6$.

Lemma 16. For $n \ge 10$, we have $K_n^6 \prec R_n^6$.

Fig.4.

For $2 \leq i \leq n-l-1$ and $n-l \geq 5$, we use $M_n^{l,i}$ to denote the graph obtained by joining a vertex of C_l by a new edge with the i^{th} vertex of path P_{n-l} , where the vertices of P_{n-l} are labelled according to their natural orderings.

Theorem 17. Let $G \in \mathcal{BU}_{n,2}^{*b}$ with $n \ge 13$. If $G \ncong M_n^{n-5,2}$, $M_n^{n-5,3}$, $M_n^{6,3}$ and Q_n^6 , then $G \prec M_n^{6,3}$ or Q_n^6 .

Proof. Let G be any graph in $\mathcal{BU}_{n,2}^{*b}$ and C_l be the unique cycle in it. Since $G \in \mathcal{BU}_{n,2}^{*b}$, then $n \ge l+3$.

If n = l + 3 or l + 4, the result is evidently true from the combination of lemmas 12–16. So we may suppose that $n \ge l + 5$ herein. We shall prove the theorem by distinguishing between two cases.

Case 1. l = 4.

By means of lemmas 3(a) and 5, we have

$$b_{2k}(G) = m(G;k) - 2b_{2k-4}(G - C_4)$$

$$\leq m(G;k)$$

$$\leq m(T_n^2;k) + m(P_2 \cup T_{n-4}^2;k-1)$$

$$= m(Q_n^4;k).$$

In the following, we shall prove that $b_{2k}(Q_n^6) \ge m(Q_n^4;k)$ for all $k \ge 0$. In view of lemma 3(a),

$$b_{2k}(Q_n^6) = m(T_n^2; k) + m(P_4 \cup T_{n-6}^2; k-1) + 2m(T_{n-6}^2; k-3).$$

Thus

$$\begin{array}{lcl} b_{2k}(Q_n^6) - m(Q_n^4;k) &=& m(P_4 \cup T_{n-6}^2;k-1) + 2m(T_{n-6}^2;k-3) - m(P_2 \cup T_{n-4}^2;k-1) \\ &=& m(P_2 \cup P_2 \cup T_{n-6}^2;k-1) + m(T_{n-6}^2;k-2) + 2m(T_{n-6}^2;k-3) \\ && -m(P_2 \cup P_2 \cup T_{n-6}^2;k-1) - m(P_2 \cup T_{n-7}^2;k-2) \\ &=& m(T_{n-6}^2;k-2) - m(T_{n-7}^2;k-2) + 2m(T_{n-6}^2;k-3) - m(T_{n-7}^2;k-3) \\ &\geq& 0. \end{array}$$

So $b_{2k}(Q_n^6) \ge b_{2k}(G)$ and $b_{2k}(Q_n^6) \ge b_{2k}(Q_n^4)$ for all $k \ge 0$ in this case. In particular, $b_6(Q_n^6) > b_6(G)$ and $b_6(Q_n^6) > b_6(Q_n^4)$. Hence $G \prec Q_n^6$ and $Q_n^4 \prec Q_n^6$.

Case 2. $l \ge 6$.

Case 2.1. $G \cong M_n^{l, i}$ for some $2 \le i \le n - l - 1$. (See Fig.4. for $M_n^{l, i}$) In this case, we claim that $G \prec M_n^{6, 3}$. Since $G \not\cong M_n^{n-5, 2} (\cong M_n^{n-5, 4})$, $M_n^{n-5, 3}$, then $n-l \ge 6$.

Firstly, we prove that if $i \neq 3, n-l-2$, then $M_n^{l, i} \prec M_n^{l, 3} (\cong M_n^{l, n-l-2})$. Note that

$$\begin{split} b_{2k}(M_n^{l,i}) &= b_{2k}(C_l \cup P_{n-l}) + b_{2k-2}(P_{l-1} \cup P_{i-1} \cup P_{n-l-i}), \\ b_{2k}(M_n^{l,3}) &= b_{2k}(C_l \cup P_{n-l}) + b_{2k-2}(P_{l-1} \cup P_2 \cup P_{n-l-3}). \end{split}$$

By means of lemma 10, it's not difficult to show that $P_{l-1} \cup P_{i-1} \cup P_{n-l-i} \prec P_{l-1} \cup P_2 \cup P_{n-l-3}$. So there exists some k_0 such that $b_{2k_0}(M_n^{l,3}) > b_{2k_0}(M_n^{l,i})$ and then $M_n^{l,i} \prec M_n^{l,3}$.

Secondly, we will demonstrate that if $l \neq 6$, i.e., $l \geq 8$, then $M_n^{l, 3} \prec M_n^{6, 3}$.

By lemma 3(a), we deduce that

$$b_{2k}(M_n^{l,3}) = b_{2k}(T_1) + b_{2k-2}(P_{l-2} \cup P_{n-l}) \pm 2b_{2k-l}(P_{n-l}),$$

$$b_{2k}(M_n^{6,3}) = b_{2k}(T_2) + b_{2k-2}(P_4 \cup P_{n-6}) + 2b_{2k-6}(P_{n-6}).$$

where T_1 (resp. T_2) is the acyclic graph of order *n* obtained from $M_n^{l,3}$ (resp. $M_n^{6,3}$) by deleting one edge on C_l (resp. C_6) incident with the unique 3-degree vertex of C_l (resp. C_6).

Moreover,

$$b_{2k}(T_1) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup P_l \cup P_{n-l-3})$$

$$b_{2k}(T_2) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup P_6 \cup P_{n-9}).$$

Furthermore,

$$\begin{array}{lll} b_{2k-6}(P_{n-6})=m(P_{n-6};k-3)&=&m(P_{n-7};k-3)+m(P_{n-8};k-4)\\ &\geq&m(P_{n-8};k-4)\\ &\geq&\cdots\\ &\geq&m(P_{n-6-(l-6)};k-3-\frac{l-6}{2})\\ &=&m(P_{n-l};k-\frac{l}{2})=b_{2k-l}(P_{n-l}). \end{array}$$

When $n-l \neq 7$, we clearly have $P_1 \cup P_l \cup P_{n-l-3} \leq P_1 \cup P_6 \cup P_{n-9}$ since $l \geq 8$. Thus $T_1 \leq T_2$ and then $M_n^{l,3} \leq M_n^{6,3}$.

When n-l=7,

$$\begin{split} b_{2k}(M_n^{6,3}) - b_{2k}(M_n^{l,3}) &\geq b_{2k-2}(P_4 \cup P_{n-6}) - b_{2k-2}(P_7 \cup P_{n-9}) + b_{2k-2}(P_6 \cup P_{n-9}) \\ &- b_{2k-2}(P_4 \cup P_{n-7}) \\ &= m(P_4 \cup P_{n-8}; k-2) - m(P_5 \cup P_{n-9}; k-2) \geq 0. \end{split}$$

So $M_n^{l, 3} \preceq M_n^{6, 3}$.

Since $b_0(P_{n-6}) = 1 > 0 = b_{6-l}(P_{n-l})$, then $b_6(M_n^{6,3}) > b_6(M_n^{l,3})$. This gives $M_n^{l,3} \prec M_n^{6,3}$. Case 2.2. $G \ncong M_n^{l,i}$ for any $2 \le i \le n-l-1$.

Since $G \in \mathcal{BU}_{n,2}^{*b}$, C_l has exactly one branched vertex. Let u be such a branched vertex and w be one of its neighbors lying on C_l . By lemma 3(a),

$$\begin{aligned} b_{2k}(G) &= b_{2k}(G-uw) + b_{2k-2}(G-u-w) \pm 2b_{2k-l}(G-C_l) \\ &\leq b_{2k}(T_n^2) + b_{2k-2}(P_{l-2} \cup T_{n-l}) \pm 2b_{2k-l}(T_{n-l}), \end{aligned}$$

where T_{n-l} denotes the forest obtained by deleting the cycle C_l from G. As $T_{n-l} \not\cong P_{n-l}$ (otherwise $G \cong P_n^l$ or $M_n^{l, i}$, a contradiction), we have $T_{n-l} \preceq T_{n-l}^2$ by lemma 5. Because $l \ge 6$, we have $P_{l-2} \cup T_{n-l}^2 \preceq P_4 \cup T_{n-6}^2$ by lemma 9.

When $l \equiv 0 \pmod{4}$, we have

$$b_{2k}(G) \le b_{2k}(T_n^2) + b_{2k-2}(P_4 \cup T_{n-6}^2) + 2b_{2k-6}(T_{n-6}^2) = b_{2k}(Q_n^6).$$

Moreover, there exists some k_0 such that $b_{2k_0}(Q_n^6) > b_{2k_0}(G)$ since $G \not\cong Q_n^6$. When $l \not\equiv 0 \pmod{4}$, we have

$$\begin{split} m(T_{n-6}^2;k-3) &= m(T_{n-7}^2;k-3) + m(T_{n-8}^2;k-4) \\ &\geq m(T_{n-8}^2;k-4) \\ &\geq \cdots \\ &\geq m(T_{n-6-(l-6)}^2;k-3-\frac{l-6}{2}) \\ &= m(T_{n-l}^2;k-\frac{l}{2}). \end{split}$$

$$\begin{split} &\text{Hence } b_{2k}(G) \leq b_{2k}(T_n^2) + b_{2k-2}(P_{l-2} \cup T_{n-l}^2) + 2b_{2k-l}(T_{n-l}^2) \leq b_{2k}(T_n^2) + b_{2k-2}(P_4 \cup T_{n-6}^2) + 2b_{2k-6}(T_{n-6}^2) = b_{2k}(Q_n^6). \text{ If } l \neq 6, \text{ there must exist some } k_0' \text{ such that } b_{2k_0'}(Q_n^6) > b_{2k_0'}(G). \end{split}$$

From the combination of cases 1 and 2 it follows the present theorem as expected. \Box

Lemma 18. Let $G \in \mathcal{BU}_{n,2}^{*a}(l)$ with n = l + 4 or l + 5. If $G \ncong R_n^l$, then $G \prec R_n^l$.

Proof. We consider only the case that n = l + 4. Since $G \in \mathcal{BU}_{n,2}^{*a}$, G must have a pendent vertex v such that $d_G(v, C_l) = 2$ and $d_G(u) = 2$, where u is the unique neighbor of v. Note that $G - v \in \mathcal{BU}_{n-1,1}^{*}$, one can easily verify that $G - v \preceq K_{n-1}^{l}$ by lemma 3(b). Similarly, we can demonstrate that $G - u - v \preceq P_{n-2}^{l}$ since $G - u - v \notin \mathcal{C}(n-2,l)$ and $G - u - v \notin C_{n-2}$. By lemma 3(b),

$$b_{2k}(G) = b_{2k}(G-v) + b_{2k-2}(G-u-v) \le b_{2k}(K_{n-1}^l) + b_{2k-2}(P_{n-2}^l) = b_{2k}(R_n^l).$$

If $G \not\cong R_n^l$, we can always find a positive integer k_0 such that $b_{2k_0}(R_n^l) > b_{2k_0}(G)$.

When n = l + 5, the lemma can be proved by the same reasoning as used above. So the result follows. \Box

Lemma 19. Let $G \in \mathcal{BU}^{*a}_{n,2}(l)$ with $l \not\equiv 0 \pmod{4}$. If $G \ncong R_n^l$, then $G \prec R_n^l$.

Proof. Let G be any graph in $\mathcal{BU}_{n,2}^{*a}$ and C_l be the unique cycle in G. Since $G \in \mathcal{BU}_{n,2}^{*a}$, then $n \ge l + 4$. We shall prove this lemma by induction on n - l. When n - l = 4 or 5, the lemma is immediate from lemma 18. Suppose that $n - l \ge 6$ and the lemma is true for graphs in $\mathcal{BU}_{n-1,2}^{*a}$ or $\mathcal{BU}_{n-2,2}^{*a}$. Now, let G be graph in $\mathcal{BU}_{n,2}^{*a}$ with $n - l \ge 6$. There're two cases we should distinguish between.

Case 1. $d_G(v, C_l) = 2$ for any $v \in V_p(G)$.

Let S be the set of vertices adjacent to pendent vertices in G. If $d_G(u) = 2$ for some vertex $u \in S$, then by the same method as used in proving lemma 18, we can show that $G \prec R_n^l$ (Here $G \ncong R_n^l$). Suppose that $d_G(u) \ge 3$ for all vertices u in S. Let u be any vertex in S and v be one pendent vertex adjacent to it. Then $G - v \in \mathcal{BU}_{n-1,2}^{*a}$ and thus $G - v \prec R_{n-1}^l$ by induction assumption. Since $d_G(u) \ge 3$, all connected components not containing C_l of G - v - u must be isolated vertices. So by lemma 4, $G - v - u \prec G'$, where G' is the graph by attaching all isolated vertices of G - v - u to any vertex of C_l . Evidently, $G' \in \mathcal{BU}_{n-2,1}^*$ and it's not difficult to obtain that $G' \prec K_{n-2}^l$. By lemmas 3(b) and (6), $K_{n-2}^l \prec R_{n-2}^l$ since $n-2 \ge l+4$ and $l \ne 0 \pmod{4}$.

Therefore $G \prec R_n^l$.

Case 2 There exists some pendent vertex v in $V_p(G)$ such that $d_G(v, C_l) \ge 3$.

Let $w \in V_p(G)$ be the pendent vertex in G such that $d_G(w, C_l) = max\{d_G(x, C_l) | x \in V_p(G)\}$. Obviously $G - w \in \mathcal{BU}^{*a}_{n-1,2}$ and thus $G - w \preceq R^l_{n-1}$ by induction assumption.

Let u be the unique neighbor of w. If G - w - u is connected, then $G - w - u \in \mathcal{BU}^{*a}_{n-2,2}(d_G(w, C_l) \ge 4)$ or $\mathcal{BU}^{*a}_{n-2,1}(d_G(w, C_l) = 3)$.

If $G - w - u \in \mathcal{BU}^*_{n-2,1}$, then $G - w - u \preceq K_{n-2}^l \prec R_{n-2}^l$ (as $n-2 \ge l+4$ and $l \ne 0 \pmod{4}$). If $G - w - u \in \mathcal{BU}^*_{n-2,2}$, then $G - w - u \preceq R_{n-2}^l$ by induction hypothesis.

If G - w - u is disconnected, then $G - w - u \prec G'' \prec K_{n-2}^l \prec R_{n-2}^l$, where G'' is the graph by attaching all isolated vertices of G - w - u to any vertex of C_l .

Combining cases 1 and 2, the proof is completed. \Box

Let G be any graph in \mathcal{U}_n and C_l the unique cycle in G. Given that all vertices of the cycle C_l are ordered successively as v_1, v_2, \dots, v_l . For any $v_i \in V(C_l)$, let $T_{[v_i]}$ denote the connected component containing v_i of $G - v_{i-1}v_i - v_iv_{i+1}$.

Lemma 20. Let $G \in \mathcal{BU}_{n,2}^{*a}(l)$ with $l \equiv 0 \pmod{4}$, $4 \leq l \leq n-4$ and $n \geq 12$. Then $G \prec Q_n^6$ or R_n^6 .

Proof. Since $G \in \mathcal{BU}_{n,2}^{*a}$, then $n \ge l+4$. We consider the following two cases.

Case 1. For some branched vertex $v_i \in V(C_l)$, $n(T_{[v_i]}) = 3$, where $n(T_{[v_i]})$ is the order of $T_{[v_i]}$.

Since $G \in \mathcal{BU}_{n,2}^{*a}(l)$, then $T[v_i] \cong P_3$ and v_i is one end-point of P_3 . Let the vertices of $T[v_i](or P_3)$ be ordered successively as v_i, v'_i, v''_i such that $d(v'_i) = 2$ and $d(v''_i) = 1$. Then $G - v''_i \in \mathcal{BU}_{n-1,1}^{*a}$ and thus $G - v''_i \preceq K_{n-1}^l \prec K_{n-1}^6$ by theorem 11. Moreover, $G - v''_i \prec P_{n-2}^6$ by lemma 8 since $G - v''_i = C_{n-2}$. So $G \prec R_n^6$ in this case.

Case 2. For each branched vertex $v_i \in V(C_l), n(T_{[v_i]}) \ge 4$.

Let v_t be any branched vertex on C_l . We can always find one neighbor, say v'_t , of $v_t(v'_t)$ lies

on C_l) such that

$$b_{2k}(G - v_t v'_t) + b_{2k-2}(G - v_t - v'_t) \le b_{2k}(T_n^2) + b_{2k-2}(P_4 \cup T_{n-6}^2) (by \ lemmas \ 5 \ and \ 9)$$

or

$$b_{2k}(G - v_t v'_t) + b_{2k-2}(G - v_t - v'_t) \le b_{2k}(P_n) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8})(by \ lemma \ 10).$$

 \mathbf{So}

$$\begin{array}{lll} b_{2k}(G) & = & b_{2k}(G-v_tv_t^{'}) + b_{2k-2}(G-v_t-v_t^{'}) - 2b_{2k-l}(G-C_l) \\ & \leq & b_{2k}(T_n^2) + b_{2k-2}(P_4 \cup T_{n-6}^2) + 2b_{2k-6}(T_{n-6}^2) = b_{2k}(Q_n^6). \end{array}$$

or

$$\begin{array}{lll} b_{2k}(G) & = & b_{2k}(G-v_tv_t^{'})+b_{2k-2}(G-v_t-v_t^{'})-2b_{2k-l}(G-C_l) \\ & \leq & b_{2k}(P_n)+b_{2k-2}(P_2\cup P_4\cup P_{n-8})+2b_{2k-6}(P_2\cup P_{n-8})=b_{2k}(R_n^6). \end{array}$$

In either cases, there exists some k_0 such that $b_{2k_0}(G) < b_{2k_0}(R_n^6)$ or $b_{2k_0}(G) < b_{2k_0}(Q_n^6)$. This proves the lemma. \Box

Theorem 21. Let $G \in \mathcal{BU}_{n,2}^{*a}$ with $n \ge 12$. Then $G \prec Q_n^6$ or R_n^6 .

Proof. Let G be any graph in $\mathcal{BU}_{n,2}^{*a}$ and C_l be the unique cycle in G. If $l \equiv 0 \pmod{4}$, the theorem is true by lemma 20. If $l \not\equiv 0 \pmod{4}$, then $G \preceq R_n^l$ by lemma 19. Since $n \ge 12$, we can easily verify that $R_n^l \preceq R_n^6$ and the theorem follows as desired. \Box

Lemma 22. For $n \geq 13$, we have $M_n^{n-5,2} \prec M_n^{n-5,3} \prec R_n^6$.

Proof. In full analogy with the proof of subcase 2.1 of theorem 17, we can obtain that $M_n^{n-5,2} \prec M_n^{n-5,3}$. In what follows we shall verify that $M_n^{n-5,3} \prec R_n^6$.

By means of lemma 3(a), we have

$$\begin{split} b_{2k}(R_n^6) &= b_{2k}(P_n) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) + 2b_{2k-6}(P_2 \cup P_{n-8}) \\ &= b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup P_{n-3}) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) \\ &+ 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}), \end{split}$$

$$\begin{aligned} b_{2k}(M_n^{n-5,3}) &= b_{2k}(T_n^2) + b_{2k-2}(P_5 \cup P_{n-7}) \pm 2b_{2k-(n-5)}(P_5) \\ &= b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup P_2 \cup P_{n-5}) + b_{2k-2}(P_5 \cup P_{n-7}) \\ &\pm 2b_{2k-(n-5)}(P_5). \end{aligned}$$

 So

$$\begin{array}{lll} b_{2k}(R_n^6) - b_{2k}(M_n^{n-5,3}) & = & b_{2k-4}(P_1 \cup P_1 \cup P_{n-6}) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) \\ & & -b_{2k-2}(P_2 \cup P_3 \cup P_{n-7}) - b_{2k-4}(P_1 \cup P_2 \cup P_{n-7}) + \\ & & 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}) \mp 2b_{2k-(n-5)}(P_5) \\ & \geq^{(\star)} & b_{2k-4}(P_{n-6}) - b_{2k-4}(P_{n-7}) - b_{2k-6}(P_{n-7}) + 2b_{2k-6}(P_{n-8}) \\ & & + 2b_{2k-8}(P_{n-8}) \mp 2b_{2k-(n-5)}(P_5) \\ & = & -b_{2k-8}(P_{n-9}) + 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}) \mp 2b_{2k-(n-5)}(P_5) \\ & \geq & 2b_{2k-6}(P_{n-8}) + b_{2k-8}(P_{n-8}) \mp 2b_{2k-(n-5)}(P_5) \\ & \geq & 0. \end{array}$$

where the inequality (*) holds due to the fact that $P_2 \cup P_4 \cup P_{n-8} \succeq P_2 \cup P_3 \cup P_{n-7}$.

If n is even, $b_{2k-(n-5)}(P_5)=0$ and the inequality (•) is evidently true. Suppose that n is odd. If $n-5 \equiv 0 \pmod{4}$, the inequality (•) holds clearly. If $n-5 \neq 0 \pmod{4}$ and $2k - (n-5) \geq 6$, the result is obvious. If $n-5 \neq 0 \pmod{4}$ and $2k - (n-5) \geq 6$, the result is obvious. If $n-5 \neq 0 \pmod{4}$ and $2k - (n-5) \geq 6$, the result is obvious. If $n-5 \neq 0 \pmod{4}$ and 2k - (n-5) = 4, $b_{2k-6}(P_{n-8}) = 0$ and $b_{2k-8}(P_{n-8}) = b_{n-9}(P_{n-8}) = m(P_{n-8}; \frac{n-9}{2}) = m(P_{n-9}; \frac{n-9}{2}) + m(P_{n-10}; \frac{n-9}{2} - 1) = 1 + m(P_{n-10}; \frac{n-11}{2}) \geq 1 + 2 = b_{2k-(n-5)}(P_5)$. If $n-5 \neq 0 \pmod{4}$ and 2k - (n-5) = 2, then $b_{2k-6}(P_{n-8}) = b_{n-9}(P_{n-8}) = m(P_{n-8}; \frac{n-9}{2}) = \cdots = 1 + m(P_{n-10}; \frac{n-11}{2}) \geq 1 + 2 = 3$ and $b_{2k-8}(P_{n-8}) = b_{n-11}(P_{n-8}) = m(P_{n-8}; \frac{n-11}{2}) = m(P_{n-9}; \frac{n-11}{2}) + m(P_{n-10}; \frac{n-13}{2}) > 2$. Hence $2b_{2k-6}(P_{n-8}) + b_{2k-8}(P_{n-8}) \mp 2b_{2k-(n-5)}(P_5) > 2 \times 3 + 2 - 2 \times 4 = 0$. If $n-5 \neq 0 \pmod{4}$ and 2k - (n-5) = 0, the inequality (•) is immediate by the same method as used above.

From above arguments we conclude that $b_{2k}(R_n^6) \ge b_{2k}(M_n^{n-5,3})$ and $b_6(R_n^6) > b_6(M_n^{n-5,3})$, which proved the lemma. \Box

Theorem 23. Let $G \in \mathcal{BU}^*_n$ with $n \ge 13$. Then $M_n^{6,3}$ has the maximal energy among all graphs in \mathcal{BU}^*_n .

Proof. According to theorems 11, 17 and 21 and lemmas 16 and 22, we need only to prove that $M_n^{6,3} > R_n^6, Q_n^6$.

Using lemma 3, we obtain

$$b_{2k}(M_n^{6,3}) = b_{2k}(P_2 \cup P_{n-2}^6) + b_{2k-2}(P_1 \cup C_6 \cup P_{n-9}),$$
(6)

$$b_{2k}(R_n^6) = b_{2k}(P_2 \cup P_{n-2}^6) + b_{2k-2}(P_1 \cup P_{n-3}),$$
(7)

$$b_{2k}(Q_n^6) = b_{2k}(P_2 \cup P_{n-2}^6) + b_{2k-2}(P_1 \cup P_2 \cup P_{n-5}^6).$$
(8)

To prove that $M_n^{6,3} \succ R_n^6$, it's sufficient to prove that $C_6 \cup P_{n-9} \succ P_{n-3}$ by Eqs.(6) and (7). In view of lemma 3, we obtain

$$b_{2k}(C_6 \cup P_{n-9}) = b_{2k}(P_6 \cup P_{n-9}) + b_{2k-2}(P_4 \cup P_{n-9}) + 2b_{2k-6}(P_{n-9}),$$

$$b_{2k}(P_{n-3}) = b_{2k}(P_6 \cup P_{n-9}) + b_{2k-2}(P_5 \cup P_{n-10}).$$

It's easy to see that $b_6(C_6 \cup P_{n-9}) > b_6(P_{n-3})$. Therefore $C_6 \cup P_{n-9} \succ P_{n-3}$ and then $M_n^{6,3} \succ R_n^6$.

Next, we shall prove that $M_n^{6,3} \succ Q_n^6$. Combining Eqs.(6) and (8), we need only to prove that $C_6 \cup P_{n-9} \succ P_2 \cup P_{n-5}^6$. In view of lemma 3(b), we obtain

$$\begin{split} b_{2k}(C_6 \cup P_{n-9}) &= b_{2k}(C_6 \cup P_2 \cup P_{n-11}) + b_{2k-2}(C_6 \cup P_1 \cup P_{n-12}), \\ b_{2k}(P_2 \cup P_{n-5}^6) &= b_{2k}(C_6 \cup P_2 \cup P_{n-11}) + b_{2k-2}(P_2 \cup P_5 \cup P_{n-12}). \end{split}$$

In what follows, we shall prove that $C_6 \cup P_1 \cup P_{n-12} \succ P_2 \cup P_5 \cup P_{n-12}$. Once again by lemma 3, we have

$$\begin{split} b_{2k}(C_6 \cup P_1 \cup P_{n-12}) &= b_{2k}(P_6 \cup P_1 \cup P_{n-12}) + b_{2k-2}(P_4 \cup P_1 \cup P_{n-12}) + 2b_{2k-6}(P_1 \cup P_{n-12}) \\ &= b_{2k}(P_1 \cup P_2 \cup P_4 \cup P_{n-12}) + b_{2k-2}(P_1 \cup P_1 \cup P_3 \cup P_{n-12}) + b_{2k-2}(P_1 \cup P_2 \cup P_2 \cup P_{n-12}) + b_{2k-4}(P_{n-12}) + 2b_{2k-6}(P_{n-12}), \end{split}$$

$$\begin{aligned} b_{2k}(P_2 \cup P_5 \cup P_{n-12}) &= b_{2k}(P_2 \cup P_2 \cup P_3 \cup P_{n-12}) + b_{2k-2}(P_2 \cup P_1 \cup P_2 \cup P_{n-12}) \\ &= b_{2k}(P_1 \cup P_1 \cup P_2 \cup P_3 \cup P_{n-12}) + b_{2k-2}(P_2 \cup P_3 \cup P_{n-12}) + b_{2k-2}(P_1 \cup P_2 \cup P_2 \cup P_2 \cup P_{n-12}). \end{aligned}$$

Obviously, $P_1 \cup P_2 \cup P_4 \cup P_{n-12} \succ P_1 \cup P_1 \cup P_2 \cup P_3 \cup P_{n-12}$. So $b_{2k}(C_6 \cup P_1 \cup P_{n-12}) - b_{2k}(P_2 \cup P_3 \cup P_{n-12})$

$$\geq b_{2k-2}(P_1 \cup P_1 \cup P_3 \cup P_{n-12}) - b_{2k-2}(P_2 \cup P_3 \cup P_{n-12}) \\ + b_{2k-4}(P_{n-12}) + 2b_{2k-6}(P_{n-12}) \\ = b_{2k-2}(P_3 \cup P_{n-12}) - b_{2k-2}(P_3 \cup P_{n-12}) - b_{2k-4}(P_3 \cup P_{n-12}) \\ + b_{2k-4}(P_{n-12}) + 2b_{2k-6}(P_{n-12}) \\ = \cdots = 0.$$

It's evident that there exists some k_0 such that $b_{2k_0}(C_6 \cup P_1 \cup P_{n-12}) > b_{2k_0}(P_2 \cup P_5 \cup P_{n-12})$. So $C_6 \cup P_1 \cup P_{n-12} \succ P_2 \cup P_5 \cup P_{n-12}$ and then $C_6 \cup P_{n-9} \succ P_2 \cup P_{n-5}^6$. This completes the proof. \Box

Acknowledgement The author is indebted to Professor Ivan Gutman for providing many helpful suggestions and pointing out an error, which improved greatly the previous version of this paper.

- I. Gutman, Acyclic systems with extremal Huckel π- electron energy, Theor. Chim. Acta. 45 (1977) 79-87.
- [2] I. Gutman, Total π- electron energy of benzenoid hydrocarbon, Topic. Curr. Chem. 162 (1992) 29-63.
- [3] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986).
- [4] I. Gutman, Acyclic conjugated molecules, trees and their energies, J.Math. Chem. 2 (1987) 123-143.
- [5] F. Zhang and H. Li, On acyclic conjugated molocules with minimal energies, *Discrete Appl. Math.* 92 (1999) 71-84.
- [6] F. Zhang and H. Li, On maximal energy ordering of conjugated acyclic molecules, in: P.Hansen, P. Fowler, M. Zheng, *Discrete Math. Chem.*, Am. Math. Soc., Providence, 2000, pp. 385-392.
- [7] I. Gutman, Y. Hou, Bipartite unicyclic graphs with greatest energy MATCH Commun. Math. Comput. Chem. 43 (2001) 17-28.
- [8] Y. Hou, Unicyclic graphs with minimal energy, J.Math.Chem. 3 (2001) 163-168.
- [9] Y. Hou, Bicyclic graphs with minimal energy, *Linear and Multilinear Algebra*. 49 (2001) 347-354.
- [10] Y. Hou, I. Gutman and C-H. Woo, Unicyclic graphs with maximal energy, *Linear Algebra Appl.* 356 (2002) 27-36.
- [11] J. Rada and A. Tineo, Polygonal chains with minimal energy, *Linear Algebra Appl.* 372 (2003) 333-344.
- [12] W. Yan, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046-1052.
- [13] A. Yu, M. Lu, F. Tian, New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 441-448.
- [14] W. Yan, L. Ye, On the maximal energy and the Hosoya index of a type of trees with many pendant vertices, MATCH Commun. Math. Comput. Chem. 53 (2005) 449-459.
- [15] W. Lin, X. Guo, H. Li, On the extremal energies of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 54 (2005) 363-378.

- [16] F. Li, B. Zhou, Minimal energy of bipartite unicyclic graphs of a given bipartition, MATCH Commun. Math. Comput. Chem. 54 (2005) 379-388.
- [17] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 83-90.
- [18] B. Zhou, Lower bounds for energy of quadrangle-free graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 91-94.
- [19] A. Chen, A. Chang, W. C. Shiu, Energy ordering of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 95-102.
- [20] J. A. de la Peña, L. Mendoza, Moments and π-electron energy of hexagonal systems in 3-Space, Math.Comput. Chem. 56 (2006) 113-129.
- [21] F. Li, B. Zhou, Minimal energy of unicyclic graphs of a given diameter, J.Math.Chem. (2006) Accepted.
- [22] H. Hua, On minimal energy of unicyclic graphs with prescribed girth and pendent vertices, MATCH Commun. Math. Comput. Chem. 57 (2007) 351-361.
- [23] I. Gutman, The energy of a graph:old and new results, in: Algebra Combinatorics and Applications eds. A.Betten, A.Kohnert, R.Laue and A.Wassermann(Springer -Verlag, Berlin,2001), pp.196-211.
- [24] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441-456.
- [25] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, (Academic Press, New York, 1980).