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Abstract

Let G be a graph with n vertices and λ1, λ2, · · · , λn be n eigenvalues of its adjacency matrix

A(G). The energy of G, denoted by E(G), is defined to be the summation
n∑

i=1
|λi|. Denote by

BUn the set of connected bipartite unicyclic graphs on n vertices. For n ≥ l+1, let P l
n be graph

obtained by identifying one pendent vertex of the path Pn−l+1 with any vertex of the cycle Cl.
Recently, I. Gutman[7] and Y. Hou[10] determined that P 6

n is the unique graph with the greatest
energy among all graphs in BUn \ {Cn}. Let BU∗

n = BUn \ {Cn, P l
n, l = 4, 5, · · · , n − 1}. It

is proved in this paper that for n ≥ 13, M6, 3
n is the graph with maximal energy among all

graphs in BU∗
n, where M6, 3

n is the graph obtained by joining (by a new edge ) any vertex of
the hexagon with the vertex 3 of the path Pn−6.

1 Introduction

Let G be a connected graph with n vertices and A(G) be its adjacency matrix. The charac-

teristic polynomial of A(G) is defined to be

φ(G;x) = |xI − A(G)| =
n∑

i=0

aix
n−i,

which is also said to be the characteristic polynomial of G. All n roots λ1, λ2, · · · , λn of φ(G;x)

are called to be eigenvalues of G. It’s not difficult to see that each λi (i = 1, 2, · · ·n) is real

since A(G) is symmetric.

The energy of G, denoted by E(G), is defined to be
n∑

i=1
|λi|. It’s well known that E(G) can
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be expressed as the coulson integral formula

E(G) =
1
2π

∫ +∞
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where a0, a1 · · · , an are coefficients of characteristic polynomial of G.

Since the energy of a graph can be used to estimate approximately the total π−electron

energy of the molecule, it has been intensively studied by many scholars. For more details see

[3-10]; for some recent research along these lines see [11-22]. The interested reader may also

refer to [23,24] for the mathematical properties of E(G).

As usual, we begin with some notations and terminologies. For a graph G, we use V (G)

and E(G) to denote its set of vertices and edges, respectively. Let dG(v) denote the degree of

vertex v, namely the number of edges incident with v in G. By dG(x, y) we mean the length

of the shortest path connecting vertices x and y, i.e., the distance between x and y in G. Let

Vp(G) denote the set of pendent vertices in G. By Sn, Cn and Pn we denote respectively the

star graph, the cycle graph and the path graph with n vertices. Let P l
n(n ≥ l + 1) be graph

obtained by identifying one pendent vertex of the path Pn−l+1 with any vertex of the cycle Cl.

Denote by K l
n (n ≥ l + 2)the graph obtained from P l

n−1 by attaching one pendent edge to one

neighbor (lying on Cl) of the unique 3-degree vertex of P l
n−1. By Rl

n (n ≥ l + 4) we denote

the graph obtained by attaching a path of length 2 to one neighbor (lying on Cl) of the unique

3-degree vertex of P l
n−2. Let Ql

n(n ≥ l + 5) be graph obtained by identifying the middle-point

of the path P5 with the unique pendent vertex of P l
n−4. Fig.1. illustrate P l

n, K l
n, Rl

n and Ql
n,

respectively.
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Denote by Un and BUn the set of connected unicyclic graphs and bipartite unicyclic graphs

on n vertices, respectively. Let G be any graph in Un and v the vertex lying on its unique
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cycle. If dG(v) ≥ 3, then v is said to be a branched vertex. For a given vertex x �∈ V (Cl) in G,

let dG(x,Cl) = min{dG(x, y)|y ∈ V (Cl)}, where Cl is the cycle in G.

Let BU∗
n = BUn\{Cn, P l

n, l = 4, 5, · · · , n−1}. For any graph G ∈ BU∗
n, let Cl be the cycle

of length l in G. Then n ≥ l + 2, i.e., Vp(G) �= ∅. Let BU∗
n,1 = {G ∈ BU∗

n|there exists x ∈
Vp(G) such that dG(x,Cl) = 1}. Set BU∗

n,2 = BU∗
n \BU∗

n,1. Let BU∗b
n,2 denote the subset of

BU∗
n,2 such that for any G ∈ BU∗b

n,2, there’s exactly one branched vertex in the unique cycle

of G. Denote by BU∗a
n,2 the set BU∗

n,2 \ BU∗b
n,2. By BU∗b

n,2(l) we mean the subset of BU∗b
n,2

such that for each graph G in BU∗b
n,2(l), G has a unique cycle of length l. Similarly, we can

define respectively the sets BU∗
n(l), BU∗a

n,2(l), Un(l) and BUn(l) in this way.

In this paper, we determined the graph with maximal energy among all graphs in BU∗
n.

2 Lemmas and Results

Sachs theorem [25] states that

ai(G) =
∑
S∈Li

(−1)k(S)2c(S), (2)

where Li denote the set of Sachs graphs G with i vertices, k(S) is number of components of S

and c(S) is the number of cycles contained in S.

Set bi(G) = |ai(G)| (i = 0, 1 · · · , n). From Eq.(2), we find that b2(G) is equal to the number

of edges of G. Let m(G, k) denote the number of k−matchings of a graph G. If G contains

no cycle, then b2k(G) = m(G, k) and b2k+1(G) = 0 for each k ≥ 0. It’s both consistent and

convenient to define bk(G) = 0 and m(G; k) = 0 for the case when k < 0.

In [8], Y. Hou obtained the following result.

Lemma 1. Let G ∈ Un(l). Then (−1)ka2k ≥ 0 for all k ≥ 0; and (−1)ka2k+1 ≥ 0 (resp.

≤ 0) for all k ≥ 0 if l = 2r + 1 and r is odd (resp. even ).

From Eq.(1) and lemma 1, we obtain

E(G) =
1
π

∫ +∞

0
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2
⎤
⎥⎦ dx. (3)

It follows from (3) that E(G) is a strictly increasing function of bi(G) for i = 0, 1, · · · , n.

That is to say, for any two unicyclic graphs G1 and G2, there exists

bi(G1) ≥ bi(G2) for all i ≥ 0 ⇒ E(G1) ≥ E(G2). (4)
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If bi(G1) ≥ bi(G2) holds for all i ≥ 0, then we write G1 � G2 or G2 	 G1. If G1 � G2 and

there exists some i0 such that bi0(G1) > bi0(G2), then we write G1 
 G2.

According to the above relations, the following lemma follows readily.

Lemma 2. Let G1 and G2 be two graphs . Then G1 � G2 implies that E(G1) ≥ E(G2) and

G1 
 G2 implies that E(G1) > E(G2).

The following lemma is crucial to the proof of our main result.

Lemma 3. Let G be a unicyclic graph on n vertices with its cycle being Cl. Let uv be an

edge in E(G), we have

(a). If uv ∈ Cl, then bi(G) = bi(G − uv) + bi−2(G − u − v) − 2bi−l(G − Cl) if l ≡ 0(mod 4)

and bi(G) = bi(G − uv) + bi−2(G − u − v) + 2bi−l(G − Cl) if l �≡ 0(mod 4);

(b). If uv �∈ Cl, then bi(G) = bi(G − uv) + bi−2(G − u − v). In particular, if uv is a pendent

edge with pendent vertex v, then bi(G) = bi(G − v) + bi−2(G − u − v).

Proof. Recall that

φ(G;x) = φ(G − uv;x) − φ(G − u − v; x) − 2
∑

C∈Cuv

φ(G − C;x), (5)

where Cuv denotes the set of cycles containing uv.

One can easily obtain the desired result by equating the coefficients of xn−i on both sides of

Eq.(5). �

F. Li and B. Zhou obtained the following result in [21].

Lemma 4. Let G be a unicyclic graph in Un and G
′
the graph obtained from G by deleting

at least one edge outside its unique cycle. Then G
′ ≺ G.

I. Gutman [3] show that n−vertex path Pn is the unique graph with the maximal energy

among all all acyclic graphs on n vertices. The following lemma could be found in [1] as propo-

sition 9.

Lemma 5. Let T be a tree of order n ≥ 6 not isomorphic to Pn. Then E(T ) ≤ E(T 2
n) with

equality if and only if T ∼= T 2
n , where T 2

n is the tree obtained by pasting one endpoint of Pn−4

to the middle vertex of P5. (See Fig.2. for T 2
n).
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In addition to the trees with maximal and second-maximal energy, also the trees with third-

maximal, fourth-maximal, ... energy are determined by F. Zhang and H. Li [6].

.....................

T 2
n with n ≥ 8 vertices.

︷ ︸︸ ︷n − 5

Fig.2.

Lemmas 6—8 given below are due to Y. Hou in [10].

Lemma 6. Let G ∈ Un(l) with l �≡ 0(mod 4). If G � P l
n, then G ≺ P l

n.

Let C(n, l) be the set of unicyclic graphs obtained from Cl by attaching to it n − l pendent

vertices.

Lemma 7. Let G ∈ Un(l) with l ≡ 0(mod 4). If G � C(n, l), P l
n, then G ≺ P l

n.

Lemma 8. Let G be any connected graph in Un and G � Cn. Then E(G) ≤ E(P 6
n) with

equality only if l = 6.

Lemma 9. Suppose 4 ≤ l ≤ n − 6. If l �= 4, 6, then Pl−2 ∪ T 2
n−l 	 P4 ∪ T 2

n−6 	 P2 ∪ T 2
n−4.

Proof. From [3], we know that P2 ∪ Pn−2 � P4 ∪ Pn−4 � Pi ∪ Pn−i for any integer

1 ≤ i ≤ n − 1 and i �= 2, 4. Note that

m(Pl−2 ∪ T 2
n−l; k) = m(Pl−2 ∪ P2 ∪ Pn−l−2; k) + m(Pl−2 ∪ P2 ∪ Pn−l−5; k − 1),

m(P4 ∪ T 2
n−6; k) = m(P4 ∪ P2 ∪ Pn−8; k) + m(P4 ∪ P2 ∪ Pn−11; k − 1),

m(P2 ∪ T 2
n−4; k) = m(P2 ∪ P2 ∪ Pn−6; k) + m(P2 ∪ P2 ∪ Pn−9; k − 1).

Hence the result follows. �

Lemma 10. Suppose (i, j, k) is a 3−element ordered pair with 1 ≤ i ≤ j ≤ k and i+j+k = n.

If (i, j, k) �= (2, 2, n − 4), (2, 4, n − 6), then Pi ∪ Pj ∪ Pk 	 P2 ∪ P4 ∪ Pn−6 	 P2 ∪ P2 ∪ Pn−4.
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Proof. If j �= 2, then

Pi ∪ (Pj ∪ Pk) 	 Pi ∪ (P4 ∪ Pj+k−4)

= P4 ∪ (Pi ∪ Pj+k−4)

	 P4 ∪ (P2 ∪ Pi+j+k−6) = P2 ∪ (P4 ∪ Pn−6).

Similarly, if i �= 2, we can show that Pi ∪ Pj ∪ Pk 	 P2 ∪ P4 ∪ Pn−6. Since P2 ∪ P4 ∪ Pn−6 	
P2 ∪ P2 ∪ Pn−4, then the result follows. �

Theorem 11. Let G ∈ BU∗
n,1 with n ≥ 8 vertices. If G � K6

n, then G ≺ K6
n.

Proof. Let G be any graph in BU∗
n,1 and Cl be the unique cycle in G. Since G � P l

n, G

has at least two pendent vertices. Let v be the pendent vertex in G such that dG(v, Cl) = 1

and u its unique neighbor. Note that G − v − u is a acyclic graph on n − 2 vertices. So

G − v − u 	 Pn−2. Since G − v � Cn−1, then G − v 	 P 6
n−1 by lemma 8. According to lemma

3(b), we get

b2k(G) = b2k(G − v) + b2k−2(G − v − u)

≤ b2k(P 6
n−1) + b2k−2(Pn−2)

= b2k(K6
n).

If G � K6
n, we can always find a positive integer k0 such that b2k0(G) < b2k0(K

6
n). This

completes the proof. �

Lemma 12. Let G ∈ BU∗b
n,2(l) with n = l + 3, then G 	 K l

n.

Proof. Obviously G1 is the single element in BU∗b
n,2(l)(see Fig.3. for G1). In view of lemma

3(b), we obtain

b2k(K l
l+3) − b2k(G1) = b2k−2(Pl+1) − b2k−2(Cl)

= m(Pl+1; k − 1) − m(Pl; k − 1) − m(Pl−2; k − 2) ± 2,

where the last term ”±2” should be erased if 2k − 2 �= l.

When 2k − 2 �= l, b2k(K l
l+3) − b2k(G1) = m(Pl−3; k − 3) ≥ 0. When 2k − 2 = l and

l ≡ 0(mod 4), we have b2k(K l
l+3) − b2k(G1) = m(Pl−3; k − 3) + 2 > 0. When 2k − 2 = l and

l �≡ 0(mod 4), we have b2k(K l
l+3) − b2k(G1) = m(Pl−3; k − 3) − 2 = m(Pl−3; l

2 − 2) − 2 ≥ 0.

Consequently, the result follows. �
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Fig.3.

Lemma 13. Let G ∈ BU∗b
n,2(l) with n = l + 4, then G 	 Rl

n.

Proof. It’s evident that G must be one of graphs G2—G5 as shown in Fig.3.

According to lemmas 3(b) and 4, one can easily obtain that G2 
 G4. In the following, we

will show that Rl
n 
 G2, G3, G5. Apply lemma 3(b) once again, we obtain

b2k(Rl
l+4) − b2k(G2) = b2k(P l

l+2) + b2k−2(P l
l+2) + b2k−2(Pl+1) − b2k(P l

l+3)

−b2k−2(P2 ∪ Cl)

= b2k−2(P l
l+2) + b2k−2(Pl+1) − b2k−2(P l

l+1) − b2k−2(Cl)

−b2k−4(Cl)

= · · ·
= b2k−2(Pl+1) − b2k−2(Cl).

Similar to the proof of lemma 12, we can show that G2 	 Rl
l+4.

Similarly,

b2k(Rl
l+4) − b2k(G3) = b2k(P l

l+2) + b2k−2(P l
l+2) + b2k−2(Pl+1) − b2k(P l

l+3)

−b2k−2(P l
l+1)

= · · ·
= b2k−4(Cl) + b2k−2(Pl+1) − b2k−4(Pl−1) − b2k−2(Cl).

If 2k−4 �= l and 2k−2 �= l, then b2k(Rl
l+4)−b2k(G3) = m(Pl−3; k−3)+2m(Pl−2; k−3) ≥ 0.

If 2k − 4 = l or 2k − 2 = l, then

b2k(Rl
l+4) − b2k(G3) ≥ m(Pl−3; k − 3) + 2m(Pl−2; k − 3) − 2

≥
{

2m(Pl−2; l
2 − 1) − 2 = 0, 2k − 4 = l

2m(Pl−2; l
2 − 2) − 2 ≥ 0, 2k − 2 = l

Thus G3 	 Rl
l+4.
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It is easy to obtain that G5 ≺ Rl
l+4 by means of lemma 3. This completes the proof. �

Lemma 14. Let n ≥ 10 and 4 ≤ l ≤ n − 4. If l �= 6, then Rl
n ≺ R6

n.

Proof. By lemma 3(b), we have

b2k(Rl
n) = b2k(K l

n−1) + b2k−2(P l
n−2)

= b2k(P l
n−2) + b2k−2(P l

n−2) + b2k−2(Pn−3),

b2k(R6
n) = b2k(P 6

n−2) + b2k−2(P 6
n−2) + b2k−2(Pn−3).

Since n − 2 ≥ l + 2, the lemma follows as expected by lemma 8. �

By the same reasoning as employed in lemma 14, we can prove:

Lemma 15. Suppose n ≥ 8 and 4 ≤ l ≤ n − 2. If l �= 6, then Kl
n ≺ K6

n.

Lemma 16. For n ≥ 10, we have K6
n ≺ R6

n.

.........

1
2
i

n − l − 1
n − l

1
2
3
4
5

1
2
3
4
5

M l, i
n Mn−5, 2

n2 ≤ i ≤ n − l − 1
and n − l ≥ 6

Mn−5, 3
n (= Qn−5

n )

Fig.4.

For 2 ≤ i ≤ n − l − 1 and n − l ≥ 5, we use M l, i
n to denote the graph obtained by joining

a vertex of Cl by a new edge with the ith vertex of path Pn−l, where the vertices of Pn−l are

labelled according to their natural orderings.

Theorem 17. Let G ∈ BU∗b
n,2 with n ≥ 13. If G � Mn−5, 2

n , Mn−5, 3
n , M6, 3

n and Q6
n, then

G ≺ M6, 3
n or Q6

n.

Proof. Let G be any graph in BU∗b
n,2 and Cl be the unique cycle in it. Since G ∈ BU∗b

n,2,

then n ≥ l + 3.
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If n = l + 3 or l + 4, the result is evidently true from the combination of lemmas 12–16. So

we may suppose that n ≥ l + 5 herein. We shall prove the theorem by distinguishing between

two cases.

Case 1. l = 4.

By means of lemmas 3(a) and 5, we have

b2k(G) = m(G; k) − 2b2k−4(G − C4)

≤ m(G; k)

≤ m(T 2
n ; k) + m(P2 ∪ T 2

n−4; k − 1)

= m(Q4
n; k).

In the following, we shall prove that b2k(Q6
n) ≥ m(Q4

n; k) for all k ≥ 0.

In view of lemma 3(a),

b2k(Q6
n) = m(T 2

n ; k) + m(P4 ∪ T 2
n−6; k − 1) + 2m(T 2

n−6; k − 3).

Thus

b2k(Q6
n) − m(Q4

n; k) = m(P4 ∪ T 2
n−6; k − 1) + 2m(T 2

n−6; k − 3) − m(P2 ∪ T 2
n−4; k − 1)

= m(P2 ∪ P2 ∪ T 2
n−6; k − 1) + m(T 2

n−6; k − 2) + 2m(T 2
n−6; k − 3)

−m(P2 ∪ P2 ∪ T 2
n−6; k − 1) − m(P2 ∪ T 2

n−7; k − 2)

= m(T 2
n−6; k − 2) − m(T 2

n−7; k − 2) + 2m(T 2
n−6; k − 3) − m(T 2

n−7; k − 3)

≥ 0.

So b2k(Q6
n) ≥ b2k(G) and b2k(Q6

n) ≥ b2k(Q4
n) for all k ≥ 0 in this case. In particular,

b6(Q6
n) > b6(G) and b6(Q6

n) > b6(Q4
n). Hence G ≺ Q6

n and Q4
n ≺ Q6

n.

Case 2. l ≥ 6.

Case 2.1. G ∼= M l, i
n for some 2 ≤ i ≤ n − l − 1. (See Fig.4. for M l, i

n )

In this case, we claim that G ≺ M6, 3
n . Since G � Mn−5, 2

n (∼= Mn−5, 4
n ), Mn−5, 3

n , then

n − l ≥ 6.

Firstly, we prove that if i �= 3, n − l − 2, then M l, i
n ≺ M l, 3

n (∼= M l, n−l−2
n ).

Note that

b2k(M l, i
n ) = b2k(Cl ∪ Pn−l) + b2k−2(Pl−1 ∪ Pi−1 ∪ Pn−l−i),

b2k(M l, 3
n ) = b2k(Cl ∪ Pn−l) + b2k−2(Pl−1 ∪ P2 ∪ Pn−l−3).

By means of lemma 10, it’s not difficult to show that Pl−1∪Pi−1∪Pn−l−i ≺ Pl−1∪P2∪Pn−l−3.

So there exists some k0 such that b2k0(M
l, 3
n ) > b2k0(M

l, i
n ) and then M l, i

n ≺ M l, 3
n .

Secondly, we will demonstrate that if l �= 6, i.e., l ≥ 8, then M l, 3
n ≺ M6, 3

n .
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By lemma 3(a), we deduce that

b2k(M l, 3
n ) = b2k(T1) + b2k−2(Pl−2 ∪ Pn−l) ± 2b2k−l(Pn−l),

b2k(M6, 3
n ) = b2k(T2) + b2k−2(P4 ∪ Pn−6) + 2b2k−6(Pn−6).

where T1 (resp. T2) is the acyclic graph of order n obtained from M l, 3
n (resp. M6, 3

n ) by deleting

one edge on Cl (resp. C6) incident with the unique 3−degree vertex of Cl(resp. C6).

Moreover,

b2k(T1) = b2k(P2 ∪ Pn−2) + b2k−2(P1 ∪ Pl ∪ Pn−l−3),

b2k(T2) = b2k(P2 ∪ Pn−2) + b2k−2(P1 ∪ P6 ∪ Pn−9).

Furthermore,

b2k−6(Pn−6) = m(Pn−6; k − 3) = m(Pn−7; k − 3) + m(Pn−8; k − 4)

≥ m(Pn−8; k − 4)

≥ · · ·
≥ m(Pn−6−(l−6); k − 3 − l − 6

2
)

= m(Pn−l; k − l

2
) = b2k−l(Pn−l).

When n− l �= 7, we clearly have P1 ∪Pl ∪Pn−l−3 	 P1 ∪P6 ∪Pn−9 since l ≥ 8. Thus T1 	 T2

and then M l, 3
n 	 M6, 3

n .

When n − l = 7,

b2k(M6, 3
n ) − b2k(M l, 3

n ) ≥ b2k−2(P4 ∪ Pn−6) − b2k−2(P7 ∪ Pn−9) + b2k−2(P6 ∪ Pn−9)

−b2k−2(P4 ∪ Pn−7)

= m(P4 ∪ Pn−8; k − 2) − m(P5 ∪ Pn−9; k − 2) ≥ 0.

So M l, 3
n 	 M6, 3

n .

Since b0(Pn−6) = 1 > 0 = b6−l(Pn−l), then b6(M
6, 3
n ) > b6(M

l, 3
n ). This gives M l, 3

n ≺ M6, 3
n .

Case 2.2. G � M l, i
n for any 2 ≤ i ≤ n − l − 1.

Since G ∈ BU∗b
n,2, Cl has exactly one branched vertex. Let u be such a branched vertex and

w be one of its neighbors lying on Cl. By lemma 3(a),

b2k(G) = b2k(G − uw) + b2k−2(G − u − w) ± 2b2k−l(G − Cl)

≤ b2k(T 2
n) + b2k−2(Pl−2 ∪ Tn−l) ± 2b2k−l(Tn−l),

where Tn−l denotes the forest obtained by deleting the cycle Cl from G. As Tn−l � Pn−l (

otherwise G ∼= P l
n or M l, i

n , a contradiction), we have Tn−l 	 T 2
n−l by lemma 5. Because l ≥ 6,

we have Pl−2 ∪ T 2
n−l 	 P4 ∪ T 2

n−6 by lemma 9.

- 66 -



When l ≡ 0(mod 4), we have

b2k(G) ≤ b2k(T 2
n) + b2k−2(P4 ∪ T 2

n−6) + 2b2k−6(T 2
n−6) = b2k(Q6

n).

Moreover, there exists some k0 such that b2k0(Q
6
n) > b2k0(G) since G � Q6

n.

When l �≡ 0(mod 4), we have

m(T 2
n−6; k − 3) = m(T 2

n−7; k − 3) + m(T 2
n−8; k − 4)

≥ m(T 2
n−8; k − 4)

≥ · · ·
≥ m(T 2

n−6−(l−6); k − 3 − l − 6
2

)

= m(T 2
n−l; k − l

2
).

Hence b2k(G) ≤ b2k(T 2
n) + b2k−2(Pl−2 ∪ T 2

n−l) + 2b2k−l(T 2
n−l) ≤ b2k(T 2

n) + b2k−2(P4 ∪ T 2
n−6) +

2b2k−6(T 2
n−6) = b2k(Q6

n). If l �= 6, there must exist some k
′
0 such that b

2k
′
0
(Q6

n) > b
2k

′
0
(G).

From the combination of cases 1 and 2 it follows the present theorem as expected. �

Lemma 18. Let G ∈ BU∗a
n,2(l) with n = l + 4 or l + 5. If G � Rl

n, then G ≺ Rl
n.

Proof. We consider only the case that n = l+4. Since G ∈ BU∗a
n,2, G must have a pendent

vertex v such that dG(v, Cl) = 2 and dG(u) = 2, where u is the unique neighbor of v. Note

that G − v ∈ BU∗
n−1,1, one can easily verify that G − v 	 K l

n−1 by lemma 3(b). Similarly, we

can demonstrate that G − u − v 	 P l
n−2 since G − u − v �∈ C(n − 2, l) and G − u − v � Cn−2.

By lemma 3(b),

b2k(G) = b2k(G − v) + b2k−2(G − u − v) ≤ b2k(K l
n−1) + b2k−2(P l

n−2) = b2k(Rl
n).

If G � Rl
n, we can always find a positive integer k0 such that b2k0(R

l
n) > b2k0(G).

When n = l + 5, the lemma can be proved by the same reasoning as used above. So the

result follows. �

Lemma 19. Let G ∈ BU∗a
n,2(l) with l �≡ 0(mod 4). If G � Rl

n, then G ≺ Rl
n.

Proof. Let G be any graph in BU∗a
n,2 and Cl be the unique cycle in G. Since G ∈ BU∗a

n,2,

then n ≥ l + 4. We shall prove this lemma by induction on n − l. When n − l = 4 or 5, the

lemma is immediate from lemma 18. Suppose that n− l ≥ 6 and the lemma is true for graphs

in BU∗a
n−1,2 or BU∗a

n−2,2. Now, let G be graph in BU∗a
n,2 with n − l ≥ 6. There’re two cases

we should distinguish between.

Case 1. dG(v, Cl) = 2 for any v ∈ Vp(G).
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Let S be the set of vertices adjacent to pendent vertices in G. If dG(u) = 2 for some vertex

u ∈ S, then by the same method as used in proving lemma 18, we can show that G ≺ Rl
n( Here

G � Rl
n). Suppose that dG(u) ≥ 3 for all vertices u in S. Let u be any vertex in S and v be

one pendent vertex adjacent to it. Then G−v ∈ BU∗a
n−1,2 and thus G−v ≺ Rl

n−1 by induction

assumption. Since dG(u) ≥ 3, all connected components not containing Cl of G − v − u must

be isolated vertices. So by lemma 4, G − v − u ≺ G
′
, where G

′
is the graph by attaching all

isolated vertices of G−v−u to any vertex of Cl. Evidently, G
′ ∈ BU∗

n−2,1 and it’s not difficult

to obtain that G
′ ≺ K l

n−2. By lemmas 3(b) and (6), K l
n−2 ≺ Rl

n−2 since n − 2 ≥ l + 4 and

l �≡ 0(mod 4).

Therefore G ≺ Rl
n.

Case 2 There exists some pendent vertex v in Vp(G) such that dG(v, Cl) ≥ 3.

Let w ∈ Vp(G) be the pendent vertex in G such that dG(w, Cl) = max{dG(x,Cl)|x ∈ Vp(G)}.
Obviously G − w ∈ BU∗a

n−1,2 and thus G − w 	 Rl
n−1 by induction assumption.

Let u be the unique neighbor of w. If G − w − u is connected, then G − w − u ∈
BU∗a

n−2,2(dG(w, Cl) ≥ 4) or BU∗
n−2,1(dG(w, Cl) = 3).

If G−w−u ∈ BU∗
n−2,1, then G−w−u 	 K l

n−2 ≺ Rl
n−2(as n−2 ≥ l+4 and l �≡ 0(mod 4)).

IfG − w − u ∈ BU∗a
n−2,2, then G − w − u 	 Rl

n−2 by induction hypothesis.

If G − w − u is disconnected, then G − w − u ≺ G
′′ ≺ K l

n−2 ≺ Rl
n−2, where G

′′
is the graph

by attaching all isolated vertices of G − w − u to any vertex of Cl.

Combining cases 1 and 2, the proof is completed. �

Let G be any graph in Un and Cl the unique cycle in G. Given that all vertices of the cycle

Cl are ordered successively as v1, v2, · · · , vl. For any vi ∈ V (Cl), let T[vi] denote the connected

component containing vi of G − vi−1vi − vivi+1.

Lemma 20. Let G ∈ BU∗a
n,2(l) with l ≡ 0(mod 4), 4 ≤ l ≤ n− 4 and n ≥ 12. Then G ≺ Q6

n

or R6
n.

Proof. Since G ∈ BU∗a
n,2, then n ≥ l + 4. We consider the following two cases.

Case 1. For some branched vertex vi ∈ V (Cl), n(T[vi]) = 3, where n(T[vi]) is the order of

T[vi].

Since G ∈ BU∗a
n,2(l), then T [vi] ∼= P3 and vi is one end-point of P3. Let the vertices of

T [vi](or P3) be ordered successively as vi, v
′
i, v

′′
i such that d(v

′
i) = 2 and d(v

′′
i ) = 1. Then

G − v
′′
i ∈ BU∗

n−1,1 and thus G − v
′′
i 	 K l

n−1 ≺ K6
n−1 by theorem 11. Moreover, G − v

′′
i − v

′
i ≺

P 6
n−2 by lemma 8 since G − v

′′
i − v

′
i � Cn−2. So G ≺ R6

n in this case.

Case 2. For each branched vertex vi ∈ V (Cl), n(T[vi]) ≥ 4.

Let vt be any branched vertex on Cl. We can always find one neighbor, say v
′
t, of vt(v

′
t lies
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on Cl) such that

b2k(G − vtv
′
t) + b2k−2(G − vt − v

′
t) ≤ b2k(T 2

n) + b2k−2(P4 ∪ T 2
n−6)(by lemmas 5 and 9)

or

b2k(G − vtv
′
t) + b2k−2(G − vt − v

′
t) ≤ b2k(Pn) + b2k−2(P2 ∪ P4 ∪ Pn−8)(by lemma 10).

So

b2k(G) = b2k(G − vtv
′
t) + b2k−2(G − vt − v

′
t) − 2b2k−l(G − Cl)

≤ b2k(T 2
n) + b2k−2(P4 ∪ T 2

n−6) + 2b2k−6(T 2
n−6) = b2k(Q6

n).

or

b2k(G) = b2k(G − vtv
′
t) + b2k−2(G − vt − v

′
t) − 2b2k−l(G − Cl)

≤ b2k(Pn) + b2k−2(P2 ∪ P4 ∪ Pn−8) + 2b2k−6(P2 ∪ Pn−8) = b2k(R6
n).

In either cases, there exists some k0 such that b2k0(G) < b2k0(R
6
n) or b2k0(G) < b2k0(Q

6
n).

This proves the lemma. �

Theorem 21. Let G ∈ BU∗a
n,2 with n ≥ 12. Then G ≺ Q6

n or R6
n.

Proof. Let G be any graph in BU∗a
n,2 and Cl be the unique cycle in G. If l ≡ 0(mod 4), the

theorem is true by lemma 20. If l �≡ 0(mod 4), then G 	 Rl
n by lemma 19. Since n ≥ 12, we

can easily verify that Rl
n 	 R6

n and the theorem follows as desired. �

Lemma 22. For n ≥ 13, we have Mn−5, 2
n ≺ Mn−5, 3

n ≺ R6
n.

Proof. In full analogy with the proof of subcase 2.1 of theorem 17, we can obtain that

Mn−5, 2
n ≺ Mn−5, 3

n . In what follows we shall verify that Mn−5, 3
n ≺ R6

n.

By means of lemma 3(a), we have

b2k(R6
n) = b2k(Pn) + b2k−2(P2 ∪ P4 ∪ Pn−8) + 2b2k−6(P2 ∪ Pn−8)

= b2k(P2 ∪ Pn−2) + b2k−2(P1 ∪ Pn−3) + b2k−2(P2 ∪ P4 ∪ Pn−8)

+2b2k−6(Pn−8) + 2b2k−8(Pn−8),

b2k(Mn−5, 3
n ) = b2k(T 2

n) + b2k−2(P5 ∪ Pn−7) ± 2b2k−(n−5)(P5)

= b2k(P2 ∪ Pn−2) + b2k−2(P1 ∪ P2 ∪ Pn−5) + b2k−2(P5 ∪ Pn−7)

±2b2k−(n−5)(P5).
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So

b2k(R6
n) − b2k(Mn−5, 3

n ) = b2k−4(P1 ∪ P1 ∪ Pn−6) + b2k−2(P2 ∪ P4 ∪ Pn−8)

−b2k−2(P2 ∪ P3 ∪ Pn−7) − b2k−4(P1 ∪ P2 ∪ Pn−7) +

2b2k−6(Pn−8) + 2b2k−8(Pn−8) ∓ 2b2k−(n−5)(P5)

≥(�) b2k−4(Pn−6) − b2k−4(Pn−7) − b2k−6(Pn−7) + 2b2k−6(Pn−8)

+2b2k−8(Pn−8) ∓ 2b2k−(n−5)(P5)

= −b2k−8(Pn−9) + 2b2k−6(Pn−8) + 2b2k−8(Pn−8) ∓ 2b2k−(n−5)(P5)

≥ 2b2k−6(Pn−8) + b2k−8(Pn−8) ∓ 2b2k−(n−5)(P5)

≥(•) 0.

where the inequality (�) holds due to the fact that P2 ∪ P4 ∪ Pn−8 � P2 ∪ P3 ∪ Pn−7.

If n is even, b2k−(n−5)(P5)=0 and the inequality (•) is evidently true. Suppose that n

is odd. If n − 5 ≡ 0(mod 4), the inequality (•) holds clearly. If n − 5 �≡ 0(mod 4) and

2k− (n−5) ≥ 6, the result is obvious. If n−5 �≡ 0(mod 4) and 2k− (n−5) = 4, b2k−6(Pn−8) =

0 and b2k−8(Pn−8) = bn−9(Pn−8) = m(Pn−8; n−9
2 ) = m(Pn−9; n−9

2 ) + m(Pn−10; n−9
2 − 1) =

1 + m(Pn−10; n−11
2 ) ≥ 1 + 2 = b2k−(n−5)(P5). If n − 5 �≡ 0(mod 4) and 2k − (n − 5) = 2,

then b2k−6(Pn−8) = bn−9(Pn−8) = m(Pn−8; n−9
2 ) = · · · = 1 + m(Pn−10; n−11

2 ) ≥ 1 + 2 = 3 and

b2k−8(Pn−8) = bn−11(Pn−8) = m(Pn−8; n−11
2 ) = m(Pn−9; n−11

2 ) + m(Pn−10; n−13
2 ) > 2. Hence

2b2k−6(Pn−8) + b2k−8(Pn−8)∓ 2b2k−(n−5)(P5) > 2× 3 + 2− 2× 4 = 0. If n− 5 �≡ 0(mod 4) and

2k − (n − 5) = 0, the inequality (•) is immediate by the same method as used above.

From above arguments we conclude that b2k(R6
n) ≥ b2k(M

n−5, 3
n ) and b6(R6

n) > b6(M
n−5, 3
n ),

which proved the lemma. �

Theorem 23. Let G ∈ BU∗
n with n ≥ 13. Then M6, 3

n has the maximal energy among all

graphs in BU∗
n.

Proof. According to theorems 11, 17 and 21 and lemmas 16 and 22, we need only to prove

that M6, 3
n 
 R6

n, Q6
n.

Using lemma 3, we obtain

b2k(M6, 3
n ) = b2k(P2 ∪ P 6

n−2) + b2k−2(P1 ∪ C6 ∪ Pn−9), (6)

b2k(R6
n) = b2k(P2 ∪ P 6

n−2) + b2k−2(P1 ∪ Pn−3), (7)

b2k(Q6
n) = b2k(P2 ∪ P 6

n−2) + b2k−2(P1 ∪ P2 ∪ P 6
n−5). (8)

To prove that M6, 3
n 
 R6

n, it’s sufficient to prove that C6 ∪Pn−9 
 Pn−3 by Eqs.(6) and (7).

In view of lemma 3, we obtain

b2k(C6 ∪ Pn−9) = b2k(P6 ∪ Pn−9) + b2k−2(P4 ∪ Pn−9) + 2b2k−6(Pn−9),
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b2k(Pn−3) = b2k(P6 ∪ Pn−9) + b2k−2(P5 ∪ Pn−10).

It’s easy to see that b6(C6 ∪ Pn−9) > b6(Pn−3). Therefore C6 ∪ Pn−9 
 Pn−3 and then

M6, 3
n 
 R6

n.

Next, we shall prove that M6, 3
n 
 Q6

n. Combining Eqs.(6) and (8), we need only to prove

that C6 ∪ Pn−9 
 P2 ∪ P 6
n−5. In view of lemma 3(b), we obtain

b2k(C6 ∪ Pn−9) = b2k(C6 ∪ P2 ∪ Pn−11) + b2k−2(C6 ∪ P1 ∪ Pn−12),

b2k(P2 ∪ P 6
n−5) = b2k(C6 ∪ P2 ∪ Pn−11) + b2k−2(P2 ∪ P5 ∪ Pn−12).

In what follows, we shall prove that C6∪P1∪Pn−12 
 P2∪P5∪Pn−12. Once again by lemma

3, we have

b2k(C6 ∪ P1 ∪ Pn−12) = b2k(P6 ∪ P1 ∪ Pn−12) + b2k−2(P4 ∪ P1 ∪ Pn−12) + 2b2k−6(P1 ∪ Pn−12)

= b2k(P1 ∪ P2 ∪ P4 ∪ Pn−12) + b2k−2(P1 ∪ P1 ∪ P3 ∪ Pn−12) +

b2k−2(P1 ∪ P2 ∪ P2 ∪ Pn−12) + b2k−4(Pn−12) + 2b2k−6(Pn−12),

b2k(P2 ∪ P5 ∪ Pn−12) = b2k(P2 ∪ P2 ∪ P3 ∪ Pn−12) + b2k−2(P2 ∪ P1 ∪ P2 ∪ Pn−12)

= b2k(P1 ∪ P1 ∪ P2 ∪ P3 ∪ Pn−12) + b2k−2(P2 ∪ P3 ∪ Pn−12) +

b2k−2(P1 ∪ P2 ∪ P2 ∪ Pn−12).

Obviously, P1 ∪P2 ∪P4 ∪Pn−12 
 P1 ∪P1 ∪P2 ∪P3 ∪Pn−12. So b2k(C6 ∪P1 ∪Pn−12)− b2k(P2 ∪
P5 ∪ Pn−12)

≥ b2k−2(P1 ∪ P1 ∪ P3 ∪ Pn−12) − b2k−2(P2 ∪ P3 ∪ Pn−12)

+b2k−4(Pn−12) + 2b2k−6(Pn−12)

= b2k−2(P3 ∪ Pn−12) − b2k−2(P3 ∪ Pn−12) − b2k−4(P3 ∪ Pn−12)

+b2k−4(Pn−12) + 2b2k−6(Pn−12)

= · · · = 0.

It’s evident that there exists some k0 such that b2k0(C6∪P1∪Pn−12) > b2k0(P2∪P5∪Pn−12).

So C6∪P1∪Pn−12 
 P2∪P5∪Pn−12 and then C6∪Pn−9 
 P2∪P 6
n−5. This completes the proof. �
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