Bipartite Unicyclic Graphs with Large Energy

Hongbo Hua

Department of Computing Science, Huaiyin Institute of Technology,
Huaiian, Jiangsu 223000, People’s Republic of China

e-mail: hongbo.hua@gmail.com

(Received February 12, 2007)

Abstract

Let G be a graph with n vertices and $\lambda_1, \lambda_2, \cdots, \lambda_n$ be n eigenvalues of its adjacency matrix $A(G)$. The energy of G, denoted by $E(G)$, is defined to be the summation $\sum_{i=1}^{n} |\lambda_i|$. Denote by BU_n the set of connected bipartite unicyclic graphs on n vertices. For $n \geq l+1$, let P_{n}^{l} be graph obtained by identifying one pendent vertex of the path P_{n-l+1} with any vertex of the cycle C_l. Recently, I. Gutman[7] and Y. Hou[10] determined that P_{6n} is the unique graph with the greatest energy among all graphs in $BU_n \{C_n\}$. Let $BU^{*}_n = BU_n \{C_n, P_{n}^{l}, l = 4, 5, \cdots, n-1\}$. It is proved in this paper that for $n \geq 13$, $M_{n}^{6,3}$ is the graph with maximal energy among all graphs in BU^{*}_n, where $M_{n}^{6,3}$ is the graph obtained by joining (by a new edge) any vertex of the hexagon with the vertex 3 of the path P_{n-6}.

1 Introduction

Let G be a connected graph with n vertices and $A(G)$ be its adjacency matrix. The characteristic polynomial of $A(G)$ is defined to be

$$\phi(G; x) = |xI - A(G)| = \sum_{i=0}^{n} a_i x^{n-i},$$

which is also said to be the characteristic polynomial of G. All n roots $\lambda_1, \lambda_2, \cdots, \lambda_n$ of $\phi(G; x)$ are called to be eigenvalues of G. It’s not difficult to see that each λ_i ($i = 1, 2, \cdots n$) is real since $A(G)$ is symmetric.

The energy of G, denoted by $E(G)$, is defined to be $\sum_{i=1}^{n} |\lambda_i|$. It’s well known that $E(G)$ can

ISSN 0340 - 6253
be expressed as the Coulson integral formula

\[
E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{x^2} \ln \left[\left(\sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^i a_{2i} x^{2i} \right)^2 + \left(\sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^i a_{2i+1} x^{2i+1} \right)^2 \right] dx, \tag{1}
\]

where \(a_0, a_1, \ldots, a_n\) are coefficients of the characteristic polynomial of \(G\).

Since the energy of a graph can be used to estimate approximately the total \(\pi\)-electron energy of the molecule, it has been intensively studied by many scholars. For more details see [3-10]; for some recent research along these lines see [11-22]. The interested reader may also refer to [23,24] for the mathematical properties of \(E(G)\).

As usual, we begin with some notations and terminologies. For a graph \(G\), we use \(V(G)\) and \(E(G)\) to denote its set of vertices and edges, respectively. Let \(d_G(v)\) denote the degree of vertex \(v\), namely the number of edges incident with \(v\) in \(G\). By \(d_G(x, y)\) we mean the length of the shortest path connecting vertices \(x\) and \(y\), i.e., the distance between \(x\) and \(y\) in \(G\). Let \(V_p(G)\) denote the set of pendant vertices in \(G\). By \(S_n, C_n\) and \(P_n\) we denote respectively the star graph, the cycle graph and the path graph with \(n\) vertices. Let \(P_n^l(n \geq l + 1)\) be a graph obtained by identifying one pendant vertex of the path \(P_{n-1}^l\) with any vertex of the cycle \(C_l\). Denote by \(K_n^l(n \geq l + 2)\) the graph obtained from \(P_{n-1}^l\) by attaching one pendant edge to one neighbor (lying on \(C_l\)) of the unique 3-degree vertex of \(P_{n-1}^l\). By \(R_n^l(n \geq l + 4)\) we denote the graph obtained by attaching a path of length 2 to one neighbor (lying on \(C_l\)) of the unique 3-degree vertex of \(P_{n-2}^l\). Let \(Q_n^l(n \geq l + 5)\) be a graph obtained by identifying the middle-point of the path \(P_5\) with the unique pendant vertex of \(P_{n-4}^l\). Fig.1. illustrate \(P_n^l, K_n^l, R_n^l\) and \(Q_n^l\), respectively.

Fig.1.

Denote by \(\mathcal{U}_n\) and \(\mathcal{B}\mathcal{U}_n\) the set of connected unicyclic graphs and bipartite unicyclic graphs on \(n\) vertices, respectively. Let \(G\) be any graph in \(\mathcal{U}_n\) and \(v\) the vertex lying on its unique
cycle. If \(d_G(v) \geq 3 \), then \(v \) is said to be a branched vertex. For a given vertex \(x \notin V(C) \) in \(G \), let \(d_G(x, C) = \min \{d_G(x, y) \mid y \in V(C)\} \), where \(C \) is the cycle in \(G \).

Let \(BU^*_n = BU_n \setminus \{C_n, P^*_n, l = 4, 5, \ldots, n-1\} \). For any graph \(G \in BU^*_n \), let \(C \) be the cycle of length \(l \) in \(G \). Then \(n \geq l + 2 \), i.e., \(V_p(G) \neq \emptyset \). Let \(BU^*_n, l = \{G \in BU^*_n \mid \text{there exists } x \in V_p(G) \text{ such that } d_G(x, C) = 1\} \). Set \(BU^*_{n, 2} = BU^*_n \setminus BU^*_{n, 1} \). Let \(BU^*_{n, 2} \) denote the subset of \(BU^*_{n, 2} \) such that for any \(G \in BU^*_{n, 2} \), there’s exactly one branched vertex in the unique cycle of \(G \). Denote by \(BU^*_{n, 2} \) the set \(BU^*_{n, 2} \setminus BU^*_{n, 2} \). By \(BU^*_{n, 2}(l) \) we mean the subset of \(BU^*_{n, 2} \) such that for each graph \(G \) in \(BU^*_{n, 2}(l) \), \(G \) has a unique cycle of length \(l \). Similarly, we can define respectively the sets \(BU^*_{n, 1}(l) \), \(BU^*_{n, 2}(l) \), \(BU^*_{n, 2}(l) \), \(BU^*_{n, 2}(l) \), \(BU^*_{n, 2}(l) \) in this way.

In this paper, we determined the graph with maximal energy among all graphs in \(BU^*_n \).

2 Lemmas and Results

Sachs theorem [25] states that

\[
a_i(G) = \sum_{S \in L_i} (-1)^{k(S)} 2^{c(S)},
\]

where \(L_i \) denote the set of Sachs graphs \(G \) with \(i \) vertices, \(k(S) \) is number of components of \(S \) and \(c(S) \) is the number of cycles contained in \(S \).

Set \(b_i(G) = |a_i(G)| \ (i = 0, 1, \ldots, n) \). From Eq.(2), we find that \(b_2(G) \) is equal to the number of edges of \(G \). Let \(m(G, k) \) denote the number of \(k \)-matchings of a graph \(G \). If \(G \) contains no cycle, then \(b_{2k}(G) = m(G, k) \) and \(b_{2k+1}(G) = 0 \) for each \(k \geq 0 \). It’s both consistent and convenient to define \(b_k(G) = 0 \) and \(m(G; k) = 0 \) for the case when \(k < 0 \).

In [8], Y. Hou obtained the following result.

Lemma 1. Let \(G \in \mathcal{U}_n(l) \). Then \((-1)^k a_{2k} \geq 0 \) for all \(k \geq 0 \); and \((-1)^k a_{2k+1} \geq 0 \) (resp. \(-1)^k a_{2k+1} \leq 0 \) for all \(k \geq 0 \) if \(l = 2r + 1 \) and \(r \) is odd (resp. even).

From Eq.(1) and lemma 1, we obtain

\[
E(G) = \frac{1}{\pi} \int_0^{\infty} \frac{1}{x^2} ln \left[\left(\sum_{i=0}^{\lfloor \frac{r}{2} \rfloor} b_{2i} x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{r}{2} \rfloor} b_{2i+1} x^{2i+1} \right)^2 \right] dx.
\]

It follows from (3) that \(E(G) \) is a strictly increasing function of \(b_i(G) \) for \(i = 0, 1, \ldots, n \). That is to say, for any two unicyclic graphs \(G_1 \) and \(G_2 \), there exists

\[
b_i(G_1) \geq b_i(G_2) \text{ for all } i \geq 0 \Rightarrow E(G_1) \geq E(G_2).
\]
If \(b_i(G_1) \geq b_i(G_2) \) holds for all \(i \geq 0 \), then we write \(G_1 \succeq G_2 \) or \(G_2 \preceq G_1 \).

According to the above relations, the following lemma follows readily.

Lemma 2. Let \(G_1 \) and \(G_2 \) be two graphs. Then \(G_1 \succeq G_2 \) implies that \(E(G_1) \geq E(G_2) \) and \(G_1 \succ G_2 \) implies that \(E(G_1) > E(G_2) \).

The following lemma is crucial to the proof of our main result.

Lemma 3. Let \(G \) be a unicyclic graph on \(n \) vertices with its cycle being \(C_1 \). Let \(uv \) be an edge in \(E(G) \), we have

(a) If \(uv \in C_1 \), then \(b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) + 2b_{i-1}(G - C_1) \) if \(l \equiv 0(\text{mod} \ 4) \)
and \(b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) + 2b_{i-1}(G - C_1) \) if \(l \not\equiv 0(\text{mod} \ 4) \);

(b) If \(uv \notin C_1 \), then \(b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) \). In particular, if \(uv \) is a pendant edge with pendant vertex \(v \), then \(b_i(G) = b_i(G - v) + b_{i-2}(G - u - v) \).

Proof. Recall that

\[
\phi(G; x) = \phi(G - uv; x) - \phi(G - u - v; x) - 2 \sum_{C \in \mathcal{C}_{uv}} \phi(G - C; x),
\]

where \(\mathcal{C}_{uv} \) denotes the set of cycles containing \(uv \).

One can easily obtain the desired result by equating the coefficients of \(x^{n-i} \) on both sides of Eq.(5). \(\square \)

F. Li and B. Zhou obtained the following result in [21].

Lemma 4. Let \(G \) be a unicyclic graph in \(\mathcal{U}_n \) and \(G' \) the graph obtained from \(G \) by deleting at least one edge outside its unique cycle. Then \(G' \prec G \).

I. Gutman [3] show that \(n \)-vertex path \(P_n \) is the unique graph with the maximal energy among all all acyclic graphs on \(n \) vertices. The following lemma could be found in [1] as proposition 9.

Lemma 5. Let \(T \) be a tree of order \(n \geq 6 \) not isomorphic to \(P_n \). Then \(E(T) \leq E(T^2_n) \) with equality if and only if \(T \cong T^2_n \), where \(T^2_n \) is the tree obtained by pasting one endpoint of \(P_{n-4} \) to the middle vertex of \(P_5 \). (See Fig.2. for \(T^2_n \).)
In addition to the trees with maximal and second-maximal energy, also the trees with third-
maximal, fourth-maximal, ... energy are determined by F. Zhang and H. Li [6].

\[T_n^2 \text{ with } n \geq 8 \text{ vertices.} \]

Fig. 2.

Lemmas 6—8 given below are due to Y. Hou in [10].

Lemma 6. Let \(G \in \mathcal{U}_n(l) \) with \(l \not\equiv 0(\mod 4) \). If \(G \not\equiv P_n^l \), then \(G \prec P_n^l \).

Let \(\mathcal{C}(n, l) \) be the set of unicyclic graphs obtained from \(C_l \) by attaching to it \(n - l \) pendent vertices.

Lemma 7. Let \(G \in \mathcal{U}_n(l) \) with \(l \equiv 0(\mod 4) \). If \(G \not\equiv \mathcal{C}(n, l), P_n^l \), then \(G \prec P_n^l \).

Lemma 8. Let \(G \) be any connected graph in \(\mathcal{U}_n \) and \(G \not\equiv C_n \). Then \(E(G) \leq E(P_n^6) \) with equality only if \(l = 6 \).

Lemma 9. Suppose \(4 \leq l \leq n - 6 \). If \(l \not\equiv 4, 6, \) then \(P_{l-2} \cup T_{n-l}^2 \not\succeq P_4 \cup T_{n-6}^2 \not\succeq P_2 \cup T_{n-4}^2 \).

Proof. From [3], we know that \(P_2 \cup P_{n-2} \succeq P_4 \cup P_{n-4} \succeq P_i \cup P_{n-i} \) for any integer \(1 \leq i \leq n - 1 \) and \(i \neq 2, 4 \). Note that

\[
m(P_{l-2} \cup T_{n-l}^2; k) = m(P_{l-2} \cup P_2 \cup P_{n-l-2}; k) + m(P_{l-2} \cup P_2 \cup P_{n-l-5}; k - 1),
\]

\[
m(P_4 \cup T_{n-6}^2; k) = m(P_4 \cup P_2 \cup P_{n-8}; k) + m(P_4 \cup P_2 \cup P_{n-11}; k - 1),
\]

\[
m(P_2 \cup T_{n-4}^2; k) = m(P_2 \cup P_2 \cup P_{n-6}; k) + m(P_2 \cup P_2 \cup P_{n-9}; k - 1).
\]

Hence the result follows. \(\square \)

Lemma 10. Suppose \((i, j, k) \) is a 3-element ordered pair with \(1 \leq i \leq j \leq k \) and \(i+j+k = n \). If \((i, j, k) \neq (2, 2, n-4), (2, 4, n-6) \), then \(P_i \cup P_j \cup P_k \not\succeq P_2 \cup P_4 \cup P_{n-6} \not\succeq P_2 \cup P_2 \cup P_{n-4} \).
Proof. If \(j \neq 2 \), then
\[
P_1 \cup (P_j \cup P_k) \leq P_1 \cup (P_4 \cup P_{j+k-4}) = P_4 \cup (P_i \cup P_{j+k-4}) \leq P_4 \cup (P_2 \cup P_{i+j+k-6}) = P_2 \cup (P_4 \cup P_{n-6}).
\]

Similarly, if \(i \neq 2 \), we can show that \(P_i \cup P_j \cup P_k \leq P_2 \cup P_4 \cup P_{n-6}. \) Since \(P_2 \cup P_4 \cup P_{n-6} \leq P_2 \cup P_2 \cup P_{n-4} \), then the result follows. \(\square \)

Theorem 11. Let \(G \in \mathcal{BU}^*_{n,1} \) with \(n \geq 8 \) vertices. If \(G \ncong K^6_n \), then \(G < K^6_n \).

Proof. Let \(G \) be any graph in \(\mathcal{BU}^*_{n,1} \) and \(C_l \) be the unique cycle in \(G \). Since \(G \ncong P^l_{n^*} \), \(G \) has at least two pendent vertices. Let \(v \) be the pendent vertex in \(G \) such that \(d_G(v, C_l) = 1 \) and \(v \) its unique neighbor. Note that \(G - v - u \) is a acyclic graph on \(n - 2 \) vertices. So \(G - v - u \leq P_{n-2} \). Since \(G - v \ncong C_{n-1} \), then \(G - v \leq P^6_{n-1} \) by lemma 8. According to lemma 3(b), we get
\[
b_{2k}(G) = b_{2k}(G - v) + b_{2k-2}(G - v - u) \leq b_{2k}(P^6_{n-1}) + b_{2k-2}(P_{n-2}) = b_{2k}(K^6_n).
\]

If \(G \ncong K^6_n \), we can always find a positive integer \(k_0 \) such that \(b_{2k_0}(G) < b_{2k_0}(K^6_n) \). This completes the proof. \(\square \)

Lemma 12. Let \(G \in \mathcal{BU}^b_{n,2}(l) \) with \(n = l + 3 \), then \(G \leq K^l_n \).

Proof. Obviously \(G_1 \) is the single element in \(\mathcal{BU}^b_{n,2}(l) \)(see Fig.3, for \(G_1 \)). In view of lemma 3(b), we obtain
\[
b_{2k}(K^l_{l+3}) - b_{2k}(G_1) = b_{2k-2}(P_{l+1}) - b_{2k-2}(C_l) = m(P_{l+1}; k - 1) - m(P_l; k - 1) - m(P_{l-2}; k - 2) \pm 2,
\]
where the last term ”\(\pm 2 \)” should be erased if \(2k - 2 \neq l \).

When \(2k - 2 \neq l \), \(b_{2k}(K^l_{l+3}) - b_{2k}(G_1) = m(P_{l-3}; k - 3) \geq 0 \). When \(2k - 2 = l \) and \(l \equiv 0(\text{mod} \ 4) \), we have \(b_{2k}(K^l_{l+3}) - b_{2k}(G_1) = m(P_{l-3}; k - 3) + 2 > 0 \). When \(2k - 2 = l \) and \(l \equiv 0(\text{mod} \ 4) \), we have \(b_{2k}(K^l_{l+3}) - b_{2k}(G_1) = m(P_{l-3}; k - 3) - 2 = m(P_{l-3}; \frac{l}{2} - 2) - 2 \geq 0 \).

Consequently, the result follows. \(\square \)
Lemma 13. Let $G \in \mathcal{B}^{*b}_{n,l}(l)$ with $n = l + 4$, then $G \preceq R^l_{l_n}$.

Proof. It’s evident that G must be one of graphs $G_2 - G_5$ as shown in Fig. 3.

According to lemmas 3(b) and 4, one can easily obtain that $G_2 \succ G_4$. In the following, we will show that $R^l_{l_n} \succ G_2, G_3, G_5$. Apply lemma 3(b) once again, we obtain

$$b_{2k}(R^l_{l+4}) - b_{2k}(G_2) = b_{2k}(P^l_{l+2}) + b_{2k-2}(P^l_{l+2}) + b_{2k-2}(P_{l+1}) - b_{2k}(P^l_{l+3})$$
$$-b_{2k-2}(P_2 \cup C_l)$$
$$= b_{2k-2}(P^l_{l+2}) + b_{2k-2}(P_{l+1}) - b_{2k-2}(P^l_{l+1}) - b_{2k-2}(C_l)$$
$$-b_{2k-4}(C_l)$$
$$= \ldots$$
$$= b_{2k-2}(P_{l+1}) - b_{2k-2}(C_l).$$

Similar to the proof of lemma 12, we can show that $G_2 \preceq R^l_{l+4}$.

Similarly,

$$b_{2k}(R^l_{l+4}) - b_{2k}(G_3) = b_{2k}(P^l_{l+2}) + b_{2k-2}(P^l_{l+2}) + b_{2k-2}(P_{l+1}) - b_{2k}(P^l_{l+3})$$
$$-b_{2k-2}(P^l_{l+1})$$
$$= \ldots$$
$$= b_{2k-4}(C_l) + b_{2k-2}(P_{l+1}) - b_{2k-4}(P_{l-1}) - b_{2k-2}(C_l).$$

If $2k - 4 \neq l$ and $2k - 2 \neq l$, then $b_{2k}(R^l_{l+4}) - b_{2k}(G_3) = m(P_{l-3}; k - 3) + 2m(P_{l-2}; k - 3) \geq 0$.

If $2k - 4 = l$ or $2k - 2 = l$, then

$$b_{2k}(R^l_{l+4}) - b_{2k}(G_3) \geq m(P_{l-3}; k - 3) + 2m(P_{l-2}; k - 3) - 2$$
$$\geq \begin{cases}
2m(P_{l-2}; \frac{l}{2} - 1) - 2 = 0, & 2k - 4 = l \\
2m(P_{l-2}; \frac{l}{2} - 2) - 2 \geq 0, & 2k - 2 = l
\end{cases}$$

Thus $G_3 \preceq R^l_{l+4}$.

It is easy to obtain that $G_5 \prec R_{l+4}^l$ by means of lemma 3. This completes the proof. □

Lemma 14. Let $n \geq 10$ and $4 \leq l \leq n - 4$. If $l \neq 6$, then $R_n^l \prec R_n^6$.

Proof. By lemma 3(b), we have

\[
\begin{align*}
b_{2k}(R_n^l) &= b_{2k}(K_{n-1}^l) + b_{2k-2}(P_{n-2}^l) \\
&= b_{2k}(P_{n-2}^l) + b_{2k-2}(P_{n-2}^l) + b_{2k-2}(P_{n-3}),
\end{align*}
\]

\[
\begin{align*}
b_{2k}(R_n^6) &= b_{2k}(P_{n-2}^6) + b_{2k-2}(P_{n-2}^6) + b_{2k-2}(P_{n-3}).
\end{align*}
\]

Since $n - 2 \geq l + 2$, the lemma follows as expected by lemma 8. □

By the same reasoning as employed in lemma 14, we can prove:

Lemma 15. Suppose $n \geq 8$ and $4 \leq l \leq n - 2$. If $l \neq 6$, then $K_n^l \prec K_n^6$.

Lemma 16. For $n \geq 10$, we have $K_n^6 \prec R_n^6$.

\[\begin{array}{ccc}
\begin{array}{c}
\circ \\
2 \\
\circ \\
3 \\
\circ \\
4 \\
\circ \\
5
\end{array}
&
\begin{array}{c}
\circ \\
1 \\
\circ \\
2 \\
\circ \\
3 \\
\circ \\
4 \\
\circ \\
5
\end{array}
&
\begin{array}{c}
\circ \\
1 \\
\circ \\
2 \\
\circ \\
3 \\
\circ \\
4 \\
\circ \\
5
\end{array}
\end{array}\]

\[M_n^{l,i} \quad M_n^{n-5,3} \quad M_n^{n-5,2}\]

\[2 \leq i \leq n - l - 1 \quad \text{and} \quad n - l \geq 6 \quad M_n^{n-5,3} (= Q_n^{n-5}) \quad M_n^{n-5,2}
\]

Fig.4.

For $2 \leq i \leq n - l - 1$ and $n - l \geq 5$, we use $M_n^{l,i}$ to denote the graph obtained by joining a vertex of C_l by a new edge with the i^{th} vertex of path P_{n-l}, where the vertices of P_{n-l} are labelled according to their natural orderings.

Theorem 17. Let $G \in \mathcal{B} \cup_{n,2}^{*b}$ with $n \geq 13$. If $G \not\cong M_n^{n-5,2}$, $M_n^{n-5,3}$, $M_n^{6,3}$ and Q_n^6, then $G \prec M_n^{6,3}$ or Q_n^6.

Proof. Let G be any graph in $\mathcal{B} \cup_{n,2}^{*b}$ and C_l be the unique cycle in it. Since $G \in \mathcal{B} \cup_{n,2}^{*b}$, then $n \geq l + 3$.

If \(n = l + 3 \) or \(l + 4 \), the result is evidently true from the combination of lemmas 12–16. So we may suppose that \(n \geq l + 5 \) herein. We shall prove the theorem by distinguishing between two cases.

Case 1. \(l = 4 \).

By means of lemmas 3(a) and 5, we have

\[
 b_{2k}(G) = m(G; k) - 2b_{2k-4}(G - C_4) \\
\leq m(G; k) \\
\leq m(T^2_n; k) + m(P_2 \cup T^2_{n-4}; k - 1) \\
= m(Q^4_n; k).
\]

In the following, we shall prove that \(b_{2k}(Q^6_n) \geq m(Q^4_n; k) \) for all \(k \geq 0 \).

In view of lemma 3(a),

\[
 b_{2k}(Q^6_n) = m(T^2_n; k) + m(P_4 \cup T^2_{n-6}; k - 1) + 2m(T^2_{n-6}; k - 3).
\]

Thus

\[
b_{2k}(Q^6_n) - m(Q^4_n; k) = m(P_4 \cup T^2_{n-6}; k - 1) + 2m(T^2_{n-6}; k - 3) - m(P_2 \cup T^2_{n-4}; k - 1) \\
= m(P_2 \cup P_2 \cup T^2_{n-6}; k - 1) + m(T^2_{n-6}; k - 2) + 2m(T^2_{n-6}; k - 3) \\
- m(P_2 \cup P_2 \cup T^2_{n-7}; k - 2) \\
= m(T^2_{n-6}; k - 2) - m(T^2_{n-7}; k - 2) + 2m(T^2_{n-6}; k - 3) - m(T^2_{n-7}; k - 3) \\
\geq 0.
\]

So \(b_{2k}(Q^6_n) \geq b_{2k}(G) \) and \(b_{2k}(Q^6_n) \geq b_{2k}(Q^4_n) \) for all \(k \geq 0 \) in this case. In particular, \(b_0(Q^6_n) > b_0(G) \) and \(b_0(Q^6_n) > b_0(Q^4_n) \). Hence \(G < Q^6_n \) and \(Q^4_n < Q^6_n \).

Case 2. \(l \geq 6 \).

Case 2.1. \(G \cong M^{l, i}_n \) for some \(2 \leq i \leq n - l - 1 \). (See Fig.4. for \(M^{l, i}_n \))

In this case, we claim that \(G < M^{6, 3}_n \). Since \(G \not\cong M^{n-5, 2}_n \cong M^{n-5, 4}_n, M^{n-5, 3}_n \), then \(n - l \geq 6 \).

Firstly, we prove that if \(i \neq 3, n - l - 2 \), then \(M^{l, i}_n < M^{l, 3}_n \).

Note that

\[
 b_{2k}(M^{l, i}_n) = b_{2k}(C_l \cup P_{n-l}) + b_{2k-2}(P_{l-1} \cup P_{l-1} \cup P_{n-l-i}), \\
 b_{2k}(M^{l, 3}_n) = b_{2k}(C_l \cup P_{n-l}) + b_{2k-2}(P_{l-1} \cup P_{2} \cup P_{n-l-3}).
\]

By means of lemma 10, it’s not difficult to show that \(P_{l-1} \cup P_{l-1} \cup P_{n-l-i} \prec P_{l-1} \cup P_{2} \cup P_{n-l-3} \). So there exists some \(k_0 \) such that \(b_{2k_0}(M^{l, 3}_n) > b_{2k_0}(M^{l, i}_n) \) and then \(M^{l, i}_n < M^{l, 3}_n \).

Secondly, we will demonstrate that if \(l \neq 6 \), i.e., \(l \geq 8 \), then \(M^{l, 3}_n < M^{6, 3}_n \).
By lemma 3(a), we deduce that

\[b_{2k}(M_n^{l,3}) = b_{2k}(T_1) + b_{2k} - 2(P_{l - 2} \cup P_{n - l}) + 2b_{2k-l}(P_{n-l}), \]

\[b_{2k}(M_n^{6,3}) = b_{2k}(T_2) + b_{2k} - 2(P_4 \cup P_{n-6}) + 2b_{2k-6}(P_{n-6}). \]

where \(T_1 \) (resp. \(T_2 \)) is the acyclic graph of order \(n \) obtained from \(M_n^{l,3} \) (resp. \(M_n^{6,3} \)) by deleting one edge on \(C_l \) (resp. \(C_6 \)) incident with the unique 3-degree vertex of \(C_l \) (resp. \(C_6 \)).

Moreover,

\[b_{2k}(T_1) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k} - 2(P_1 \cup P_{l - 3}), \]

\[b_{2k}(T_2) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k} - 2(P_1 \cup P_6 \cup P_{n-9}). \]

Furthermore,

\[b_{2k-6}(P_{n-6}) = m(P_{n-6}; k - 3) = m(P_{n-7}; k - 3) + m(P_{n-8}; k - 4) \]
\[\geq m(P_{n-8}; k - 4) \]
\[\geq \cdots \]
\[\geq m(P_{n-6-l}; k - 3 - \frac{l - 6}{2}) \]
\[= m(P_{n-l}; k - \frac{l}{2}) = b_{2k-l}(P_{n-l}). \]

When \(n - l \neq 7 \), we clearly have \(P_1 \cup P_1 \cup P_{n-l-3} \preceq P_1 \cup P_6 \cup P_{n-9} \) since \(l \geq 8 \). Thus \(T_1 \preceq T_2 \) and then \(M_n^{l,3} \preceq M_n^{6,3} \).

When \(n - l = 7 \),

\[b_{2k}(M_n^{6,3}) - b_{2k}(M_n^{l,3}) \geq b_{2k} - 2(P_4 \cup P_{n-6}) - b_{2k} - 2(P_7 \cup P_{n-9}) + b_{2k} - 2(P_6 \cup P_{n-9}) \]
\[- b_{2k} - 2(P_1 \cup P_{n-7}) \]
\[= m(P_4 \cup P_{n-8}; k - 2) - m(P_5 \cup P_{n-9}; k - 2) \geq 0. \]

So \(M_n^{l,3} \preceq M_n^{6,3} \).

Since \(b_0(P_{n-6}) = 1 > 0 = b_{l+1}(P_{n-l}) \), then \(b_0(M_n^{6,3}) > b_0(M_n^{l,3}) \). This gives \(M_n^{l,3} \preceq M_n^{6,3} \).

Case 2.2. \(G \nless M_n^{l,i} \) for any \(2 \leq i \leq n-l-1 \).

Since \(G \in \mathcal{BC}_n^{n_2} \), \(C_l \) has exactly one branched vertex. Let \(u \) be such a branched vertex and \(w \) be one of its neighbors lying on \(C_l \). By lemma 3(a),

\[b_{2k}(G) = b_{2k}(G - uw) + b_{2k} - 2(G - u - w) + 2b_{2k-l}(G - C_l) \]
\[\leq b_{2k}(T_n^2) + b_{2k} - 2(P_{l - 2} \cup T_{n-l}) + 2b_{2k-l}(T_{n-l}), \]

where \(T_{n-l} \) denotes the forest obtained by deleting the cycle \(C_l \) from \(G \). As \(T_{n-l} \nless P_{n-l} \) (otherwise \(G \cong P_n^l \) or \(M_n^{l,i} \), a contradiction), we have \(T_{n-l} \preceq T_{n-l}^2 \) by lemma 5. Because \(l \geq 6 \), we have \(P_{l-2} \cup T_{n-l}^2 \preceq P_4 \cup T_{n-6}^2 \) by lemma 9.
When \(l \equiv 0 (\text{mod} \, 4) \), we have

\[
b_{2k}(G) \leq b_{2k}(T_n^2) + b_{2k-2}(P_4 \cup T_{n-6}^2) + 2b_{2k-6}(T_{n-6}^2) = b_{2k}(Q_n^6).
\]

Moreover, there exists some \(k_0 \) such that \(b_{2k_0}(Q_n^6) > b_{2k_0}(G) \) since \(G \not\subset Q_n^6 \).

When \(l \not\equiv 0 (\text{mod} \, 4) \), we have

\[
m(T_{n-6}^2; k - 3) = m(T_{n-7}^2; k - 3) + m(T_{n-8}^2; k - 4) \\
\geq m(T_{n-8}^2; k - 4) \\
\geq \cdots \\
\geq m(T_{n-6-(l-6)}^2; k - 3 - \frac{l - 6}{2}) \\
= m(T_{n-l}^2; k - \frac{l}{2}).
\]

Hence \(b_{2k}(G) \leq b_{2k}(T_n^2) + b_{2k-2}(P_{l-2} \cup T_{n-l}^2) + 2b_{2k-l}(T_{n-l}^2) \leq b_{2k}(Q_n^6) + b_{2k-2}(P_4 \cup T_{n-6}^2) + 2b_{2k-6}(T_{n-6}^2) = b_{2k}(Q_n^6) \). If \(l \neq 6 \), there must exist some \(k'_0 \) such that \(b_{2k'_0}(Q_n^6) > b_{2k'_0}(G) \).

From the combination of cases 1 and 2 it follows the present theorem as expected. \(\square \)

Lemma 18. Let \(G \in \mathcal{B} \mathcal{U}^{a}_{n,2}(l) \) with \(n = l + 4 \) or \(l + 5 \). If \(G \not\subset R_n^l \), then \(G < R_n^l \).

Proof. We consider only the case that \(n = l + 4 \). Since \(G \in \mathcal{B} \mathcal{U}^{a}_{n,2} \), \(G \) must have a pendant vertex \(v \) such that \(d_G(v, C_l) = 2 \) and \(d_G(u) = 2 \), where \(u \) is the unique neighbor of \(v \). Note that \(G - v \in \mathcal{B} \mathcal{U}^{a}_{n-1,1} \), one can easily verify that \(G - v \leq K_{n-1}^l \) by lemma 3(b). Similarly, we can demonstrate that \(G - u - v \leq P_n^{l-2} \) since \(G - u - v \not\subset C(n-2, l) \) and \(G - u - v \not\subset C_{n-2} \).

By lemma 3(b),

\[
b_{2k}(G) = b_{2k}(G - v) + b_{2k-2}(G - u - v) \leq b_{2k}(K_{n-1}^l) + b_{2k-2}(P_n^{l-2}) = b_{2k}(R_n^l).
\]

If \(G \not\subset R_n^l \), we can always find a positive integer \(k_0 \) such that \(b_{2k_0}(R_n^l) > b_{2k_0}(G) \).

When \(n = l + 5 \), the lemma can be proved by the same reasoning as used above. So the result follows. \(\square \)

Lemma 19. Let \(G \in \mathcal{B} \mathcal{U}^{a}_{n,2}(l) \) with \(l \not\equiv 0 (\text{mod} \, 4) \). If \(G \not\subset R_n^l \), then \(G < R_n^l \).

Proof. Let \(G \) be any graph in \(\mathcal{B} \mathcal{U}^{a}_{n,2} \) and \(C_l \) be the unique cycle in \(G \). Since \(G \in \mathcal{B} \mathcal{U}^{a}_{n,2} \), then \(n \geq l + 4 \). We shall prove this lemma by induction on \(n - l \). When \(n - l = 4 \) or 5, the lemma is immediate from Lemma 18. Suppose that \(n - l \geq 6 \) and the lemma is true for graphs in \(\mathcal{B} \mathcal{U}^{a}_{n-1,2} \) or \(\mathcal{B} \mathcal{U}^{a}_{n-2,2} \). Now, let \(G \) be graph in \(\mathcal{B} \mathcal{U}^{a}_{n,2} \) with \(n - l \geq 6 \). There’re two cases we should distinguish between.

Case 1. \(d_G(v, C_l) = 2 \) for any \(v \in V_p(G) \).
Let S be the set of vertices adjacent to pendent vertices in G. If $d_G(u) = 2$ for some vertex $u \in S$, then by the same method as used in proving lemma 18, we can show that $G \sim R^l_n$ (Here $G \not\sim R^l_n$). Suppose that $d_G(u) \geq 3$ for all vertices $u \in S$. Let u be any vertex in S and v be one pendent vertex adjacent to it. Then $G - v \in \mathcal{BU}^a_{n-1,2}$ and thus $G - v \sim R^l_{n-1}$ by induction assumption. Since $d_G(u) \geq 3$, all connected components not containing C_l of $G - v - u$ must be isolated vertices. So by lemma 4, $G - v - u \sim G'$, where G' is the graph by attaching all isolated vertices of $G - v - u$ to any vertex of C_l. Evidently, $G' \in \mathcal{BU}^*_{n-2,1}$ and it’s not difficult to obtain that $G' \sim K^l_{n-2}$. By lemmas 3(b) and (6), $K^l_{n-2} \sim R^l_{n-2}$ since $n - 2 \geq l + 4$ and $l \not\equiv 0$(mod 4).

Therefore $G \sim R^l_n$.

Case 2 There exists some pendent vertex v in $V_p(G)$ such that $d_G(v, C_l) \geq 3$.

Let $w \in V_p(G)$ be the pendent vertex in G such that $d_G(w, C_l) = \max \{d_G(x, C_l) | x \in V_p(G)\}$. Obviously $G - w \in \mathcal{BU}^a_{n-1,2}$ and thus $G - w \sim R^l_{n-1}$ by induction assumption.

Let u be the unique neighbor of w. If $G - w - u$ is connected, then $G - w - u \in \mathcal{BU}^a_{n-2,2}(d_G(w, C_l) \geq 4)$ or $\mathcal{BU}^*_{n-2,1}(d_G(w, C_l) = 3)$.

If $G - w - u \in \mathcal{BU}^*_{n-2,1}$, then $G - w - u \sim K^l_{n-2} \sim R^l_{n-2}$ (as $n - 2 \geq l + 4$ and $l \not\equiv 0$(mod 4)).

If $G - w - u$ is disconnected, then $G - w - u \sim G'' \sim K^l_{n-2} \sim R^l_{n-2}$, where G'' is the graph by attaching all isolated vertices of $G - w - u$ to any vertex of C_l.

Combining cases 1 and 2, the proof is completed. □

Let G be any graph in \mathcal{U}_n and C_l the unique cycle in G. Given that all vertices of the cycle C_l are ordered successively as v_1, v_2, \ldots, v_l. For any $v_i \in V(C_l)$, let $T_{[v_i]}$ denote the connected component containing v_i of $G - v_{i-1}v_i - v_iv_{i+1}$.

Lemma 20. Let $G \in \mathcal{BU}^a_{n,2}(l)$ with $l \equiv 0$(mod 4), $4 \leq l \leq n - 4$ and $n \geq 12$. Then $G \sim Q^6_n$ or R^6_n.

Proof. Since $G \in \mathcal{BU}^a_{n,2}$, then $n \geq l + 4$. We consider the following two cases.

Case 1. For some branched vertex $v_i \in V(C_l)$, $n(T_{[v_i]}) = 3$, where $n(T_{[v_i]})$ is the order of $T_{[v_i]}$.

Since $G \in \mathcal{BU}^a_{n,2}(l)$, then $T_{[v_i]} \cong P_3$ and v_i is one end-point of P_3. Let the vertices of $T_{[v_i]}(or P_3)$ be ordered successively as v_i, v_i', v_i'' such that $d(v_i') = 2$ and $d(v_i'') = 1$. Then $G - v_i'' \in \mathcal{BU}^*_{n-1,1}$ and thus $G - v_i'' \sim K^l_{n-1} \sim K^6_{n-1}$ by theorem 11. Moreover, $G - v_i'' - v_i' \sim P^6_{n-2}$ by lemma 8 since $G - v_i'' - v_i' \not\cong C_{n-2}$. So $G \sim R^6_n$ in this case.

Case 2. For each branched vertex $v_i \in V(C_l)$, $n(T_{[v_i]}) \geq 4$.

Let v_i be any branched vertex on C_l. We can always find one neighbor, say v_i', of v_i.
on C_l) such that

$$b_{2k}(G - v_lv'_l) + b_{2k-2}(G - v_l - v'_l) \leq b_{2k}(T^2_n) + b_{2k-2}(P_4 \cup T^2_{n-6}) \text{(by lemmas 5 and 9)}$$

or

$$b_{2k}(G - v_lv'_l) + b_{2k-2}(G - v_l - v'_l) \leq b_{2k}(P_n) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) \text{(by lemma 10)}.$$

So

$$b_{2k}(G) = b_{2k}(G - v_lv'_l) + b_{2k-2}(G - v_l - v'_l) - 2b_{2k-2}(G - C_l)$$

$$\leq b_{2k}(T^2_n) + b_{2k-2}(P_4 \cup T^2_{n-6}) + 2b_{2k-6}(P_2 \cup P_{n-8}) = b_{2k}(Q^6_n).$$

or

$$b_{2k}(G) = b_{2k}(G - v_lv'_l) + b_{2k-2}(G - v_l - v'_l) - 2b_{2k-2}(G - C_l)$$

$$\leq b_{2k}(P_n) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) + 2b_{2k-6}(P_2 \cup P_{n-8}) = b_{2k}(R^6_n).$$

In either cases, there exists some k_0 such that $b_{2k_0}(G) < b_{2k_0}(R^6_n)$ or $b_{2k_0}(G) < b_{2k_0}(Q^6_n)$.

This proves the lemma. □

Theorem 21. Let $G \in \mathcal{B}_{n,2}^*$ with $n \geq 12$. Then $G \not \subset Q^6_n$ or R^6_n.

Proof. Let G be any graph in $\mathcal{B}_{n,2}^*$ and C_l be the unique cycle in G. If $l \equiv 0 (\text{mod } 4)$, the theorem is true by lemma 20. If $l \not \equiv 0 (\text{mod } 4)$, then $G \not \subset R^6_n$ by lemma 19. Since $n \geq 12$, we can easily verify that $R^6_n \preceq R^6_n$ and the theorem follows as desired. □

Lemma 22. For $n \geq 13$, we have $M^5_{n-5,2} \prec M^5_{n-5,3} \prec R^6_n$.

Proof. In full analogy with the proof of subcase 2.1 of theorem 17, we can obtain that $M^5_{n-5,2} \prec M^5_{n-5,3}$. In what follows we shall verify that $M^5_{n-5,3} \prec R^6_n$.

By means of lemma 3(a), we have

$$b_{2k}(R^6_n) = b_{2k}(P_n) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) + 2b_{2k-6}(P_2 \cup P_{n-8})$$

$$= b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_4 \cup P_{n-3}) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8})$$

$$+ 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}),$$

$$b_{2k}(M^5_{n-5,3}) = b_{2k}(T^2_n) + b_{2k-2}(P_5 \cup P_{n-7}) \pm 2b_{2k-(n-5)}(P_5)$$

$$= b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_2 \cup P_{n-5}) + b_{2k-2}(P_5 \cup P_{n-7})$$

$$\pm 2b_{2k-(n-5)}(P_5).$$
So

\[b_{2k}(R_n^6) - b_{2k}(M_n^{n-5,3}) = b_{2k-4}(P_1 \cup P_1 \cup P_{n-6}) + b_{2k-2}(P_2 \cup P_4 \cup P_{n-8}) \]

\[- b_{2k-2}(P_2 \cup P_3 \cup P_{n-7}) - b_{2k-4}(P_1 \cup P_2 \cup P_{n-7}) + 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}) \pm 2b_{2k-(n-5)}(P_5) \]

\[\geq (\ast) b_{2k-4}(P_{n-6}) - b_{2k-4}(P_{n-7}) - b_{2k-6}(P_{n-7}) + 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}) \pm 2b_{2k-(n-5)}(P_5) \]

\[= - b_{2k-8}(P_{n-9}) + 2b_{2k-6}(P_{n-8}) + 2b_{2k-8}(P_{n-8}) \pm 2b_{2k-(n-5)}(P_5) \]

\[\geq 2b_{2k-6}(P_{n-8}) + b_{2k-8}(P_{n-8}) \pm 2b_{2k-(n-5)}(P_5) \]

\[\geq (\ast) 0. \]

where the inequality (\ast) holds due to the fact that \(P_2 \cup P_4 \cup P_{n-8} \geq P_2 \cup P_3 \cup P_{n-7}. \)

If \(n \) is even, \(b_{2k-(n-5)}(P_5) = 0 \) and the inequality (\ast) is evidently true. Suppose that \(n \) is odd. If \(n - 5 \equiv 0 \pmod{4} \), the inequality (\ast) holds clearly. If \(n - 5 \not\equiv 0 \pmod{4} \) and \(2k - (n - 5) \geq 6 \), the result is obvious. If \(n - 5 \not\equiv 0 \pmod{4} \) and \(2k - (n - 5) = 4 \), \(b_{2k-6}(P_{n-8}) = 0 \) and \(b_{2k-8}(P_{n-8}) = b_{n-9}(P_{n-8}) = m(P_{n-8}; \frac{n-9}{2}) = m(P_{n-9}; \frac{n-9}{2}) + m(P_{n-10}; \frac{n-9}{2} - 1) = 1 + m(P_{n-10}; \frac{n-11}{2}) \geq 1 + 2 = b_{2k-(n-5)}(P_5). \) If \(n - 5 \not\equiv 0 \pmod{4} \) and \(2k - (n - 5) = 2 \), then \(b_{2k-6}(P_{n-8}) = b_{n-9}(P_{n-8}) = m(P_{n-8}; \frac{n-9}{2}) = \cdots = 1 + m(P_{n-10}; \frac{n-11}{2}) \geq 1 + 2 = 3 \) and \(b_{2k-8}(P_{n-8}) = b_{n-11}(P_{n-8}) = m(P_{n-8}; \frac{n-11}{2}) = m(P_{n-9}; \frac{n-11}{2}) + m(P_{n-10}; \frac{n-13}{2}) > 2. \) Hence \(2b_{2k-6}(P_{n-8}) + b_{2k-8}(P_{n-8}) \pm 2b_{2k-(n-5)}(P_5) > 2 \times 3 + 2 \times 4 = 0. \) If \(n - 5 \not\equiv 0 \pmod{4} \) and \(2k - (n - 5) = 0, \) the inequality (\ast) is immediate by the same method as used above.

From above arguments we conclude that \(b_{2k}(R_n^6) \geq b_{2k}(M_n^{n-5,3}) \) and \(b_6(R_n^6) > b_6(M_n^{n-5,3}) \), which proved the lemma. \(\square \)

Theorem 23. Let \(G \in BU_n \) with \(n \geq 13. \) Then \(M_n^{6,3} \) has the maximal energy among all graphs in \(BU_n. \)

Proof. According to theorems 11, 17 and 21 and lemmas 16 and 22, we need only to prove that \(M_n^{6,3} \succ R_n^6, Q_n^6. \)

Using lemma 3, we obtain

\[b_{2k}(M_n^{6,3}) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup C_6 \cup P_{n-9}), \] (6)

\[b_{2k}(P_n^6) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup P_{n-3}), \] (7)

\[b_{2k}(Q_n^6) = b_{2k}(P_2 \cup P_{n-2}) + b_{2k-2}(P_1 \cup P_{2} \cup P_{n-5}). \] (8)

To prove that \(M_n^{6,3} \succ R_n^6, \) it’s sufficient to prove that \(C_6 \cup P_{n-9} \succ P_{n-3} \) by Eqs.(6) and (7). In view of lemma 3, we obtain

\[b_{2k}(C_6 \cup P_{n-9}) = b_{2k}(P_6 \cup P_{n-9}) + b_{2k-2}(P_4 \cup P_{n-9}) + 2b_{2k-6}(P_{n-9}), \]
\[b_{2k}(P_{n-3}) = b_{2k}(P_6 \cup P_{n-9}) + b_{2k-2}(P_5 \cup P_{n-10}). \]

It’s easy to see that \(b_6(C_6 \cup P_{n-9}) > b_6(P_{n-3}) \). Therefore \(C_6 \cup P_{n-9} \succ P_{n-3} \) and then \(M_n^{6,3} \succ R_n^6 \).

Next, we shall prove that \(M_n^{6,3} \succ Q_n^6 \). Combining Eqs. (6) and (8), we need only to prove that \(C_6 \cup P_{n-9} \succ P_2 \cup P_{n-5}^6 \). In view of lemma 3(b), we obtain

\[
\begin{align*}
b_{2k}(C_6 \cup P_{n-9}) &= b_{2k}(C_6 \cup P_2 \cup P_{n-11}) + b_{2k-2}(C_6 \cup P_1 \cup P_{n-12}), \\
b_{2k}(P_2 \cup P_{n-5}^6) &= b_{2k}(C_6 \cup P_2 \cup P_{n-11}) + b_{2k-2}(P_2 \cup P_5 \cup P_{n-12}).
\end{align*}
\]

In what follows, we shall prove that \(C_6 \cup P_1 \cup P_{n-12} \succ P_2 \cup P_3 \cup P_{n-12} \). Once again by lemma 3, we have

\[
\begin{align*}
b_{2k}(C_6 \cup P_1 \cup P_{n-12}) &= b_{2k}(P_6 \cup P_1 \cup P_{n-12}) + b_{2k-2}(P_4 \cup P_1 \cup P_{n-12}) + 2b_{2k-6}(P_1 \cup P_{n-12}) \\
&= b_{2k}(P_1 \cup P_2 \cup P_4 \cup P_{n-12}) + b_{2k-2}(P_1 \cup P_1 \cup P_3 \cup P_{n-12}) + \\
&\quad + b_{2k-2}(P_1 \cup P_2 \cup P_2 \cup P_{n-12}) + b_{2k-4}(P_{n-12}) + 2b_{2k-6}(P_{n-12}), \\
b_{2k}(P_2 \cup P_5 \cup P_{n-12}) &= b_{2k}(P_2 \cup P_2 \cup P_3 \cup P_{n-12}) + b_{2k-2}(P_2 \cup P_1 \cup P_2 \cup P_{n-12}) \\
&= b_{2k}(P_1 \cup P_1 \cup P_2 \cup P_3 \cup P_{n-12}) + b_{2k-2}(P_2 \cup P_3 \cup P_{n-12}) + \\
&\quad + b_{2k-2}(P_1 \cup P_2 \cup P_2 \cup P_{n-12}).
\end{align*}
\]

Obviously, \(P_1 \cup P_2 \cup P_4 \cup P_{n-12} \succ P_1 \cup P_1 \cup P_2 \cup P_3 \cup P_{n-12} \). So \(b_{2k}(C_6 \cup P_1 \cup P_{n-12}) - b_{2k}(P_2 \cup P_5 \cup P_{n-12}) \)

\[
\begin{align*}
&\geq b_{2k-2}(P_1 \cup P_1 \cup P_3 \cup P_{n-12}) - b_{2k-2}(P_2 \cup P_3 \cup P_{n-12}) \\
&\quad + b_{2k-4}(P_{n-12}) + 2b_{2k-6}(P_{n-12}) \\
&= b_{2k-2}(P_3 \cup P_{n-12}) - b_{2k-2}(P_3 \cup P_{n-12}) - b_{2k-4}(P_3 \cup P_{n-12}) \\
&\quad + b_{2k-4}(P_{n-12}) + 2b_{2k-6}(P_{n-12}) \\
&= \cdots = 0.
\end{align*}
\]

It’s evident that there exists some \(k_0 \) such that \(b_{2k_0}(C_6 \cup P_1 \cup P_{n-12}) > b_{2k_0}(P_2 \cup P_5 \cup P_{n-12}) \). So \(C_6 \cup P_1 \cup P_{n-12} \succ P_2 \cup P_5 \cup P_{n-12} \) and then \(C_6 \cup P_{n-9} \succ P_2 \cup P_{n-5}^6 \). This completes the proof. \(\square \)

Acknowledgement The author is indebted to Professor Ivan Gutman for providing many helpful suggestions and pointing out an error, which improved greatly the previous version of this paper.
References

