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aFaculty of Science and Mathematics, Department of Mathematics,
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Abstract

The Randić index R−1(G) of a graph G is defined as the sum of the (d(u)d(v))−1 of

all edges (uv) of G, where d(u) denotes the degree of a vertex u in G. In this paper

we correct the errors of the proof of the paper [8], i.e., we prove that R−1(T ) ≤ 15n+C
56

for all trees of order n ≥ 103, where C = −1. The structure of the Max Tree - the

tree with maximum Randić index R−1, is as it was predicted by Clark and Moon.

The Max Tree has only one vertex of the maximum degree and all adjacent vertices

are of degree 4. Every vertex of degree 4 has 3 suspended paths of length 2 centered

at it.
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1. INTRODUCTION

In 1975 Randić [11] proposed two topological indices R−1/2(G) and R−1(G), suit-

able for measuring the extent of branching of the carbon-atom skeleton of saturated

hydrocarbons. The general Randić index Rα(G) of a graph G is defined [4] by

Rα(G) =
∑

(uv)∈E(G)(d(u)d(v))α, where the summation extends over all edges (uv)

of G and d(u) denotes the degree of a vertex u. Randić himself demonstrated [11]

that his indices are well correlated with a variety of physico-chemical properties. They

have attracted considerable attention of chemists and mathematicians ([1-10]).

In [4] Clark and Moon gave a lower and upper bound for R−1(T ) for trees, 1 ≤
R−1(T ) ≤ 15n+8

18
, where the lower bound can be attained by the star, but the upper

bound is not best possible. They constructed an infinite sequence T7n+1 of trees

which are obtained from the star Sn+1 by appending three internally disjoint paths of

length 2 to each leaf of Sn+1. Then T7n+1 has order | V (T7n+1) |= 7n + 1 and weight

R−1(T7n+1) = 15n+2
8

and limn→∞
R−1(T7n+1)
|V (T7n+1)| = 15

56
. At the end of their paper [4] they

proposed two unsolved questions on the upper bound.

Question 1: Find K = limn→∞
f(n)

n
, where f(n) is the maximum value of R−1(T )

among all trees of order n. We know that 15
56

≤ K ≤ 5
18

and suspect that the lower

bound is closer to K than the upper bound.

Question 2: Refine the upper bound for R−1(T ) so that it is sharp for infinitely

many values of n.

Rautenbach [12] gave an upper bound for R−1(T ) of trees with maximum degree

3. Li and Yang [9] used linear programming to determine the sharp upper bound

for R−1(T ) of chemical trees (i.e., trees with maximum degree at most 4). Hu, Li

and Yuan [7] investigated trees with maximum general Randić index Rα(T ) among all

trees of order n. They distinguished α in several different intervals and for most of the

intervals characterized trees with maximum Rα(T ). Only the interval −2 < α < −1
2

(including the point α = −1) is left undetermined, but they obtained some properties

of Max Tree in this case. The same authors Hu, Li and Yuan [8] tried to give positive

answers to the above two questions proposed by Clark and Moon and to find sharp

upper bound for R−1(T ) of trees. The idea of their proof is similar to the one used in

[4], but they made some errors which have been found in [10]. Hu, Jin, Li and Wang

[5] determined the maximum value for R−1 of all trees of order n ≤ 102 and gave one

of the trees with maximum value of this index. Trees with maximum Randić index

R−1 – the Max Tree need not be unique. This paper [5] gave us enough information

to describe the structure of the Max Tree for n ≥ 103. In this paper we prove that
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R−1(T ) ≤ 15n+C
56

for all trees of order n ≥ 103, where C = −1 and describe the

structure of the Max Tree - it has only one vertex of the maximum degree and all

adjacent vertices are of degree 4. Every vertex of degree 4 has 3 suspended paths of

length 2 centered at it.

Let T = (V, E) be a tree with order n =| V (T ) |. The degree dT (u) of a vertex

u is the number of vertices in T adjacent to u, and we omit the letter T if only

one tree is under consideration. A vertex of degree 1 in a tree is called a leaf. A

suspended path from x to z is a path x, y, z with d(x) = 1, d(y) = 2 and d(z) ≥ 3.

Let x1y1z, · · · , xsysz be s distinct suspended paths adjacent to z, and w1, · · · , wd−s

be the vertices of T , other than y1, · · · , ys, adjacent to z, then we call such system

an (s, d) system centered at z. The Max Tree is a tree with maximum value of the

Randić index R−1 for a given order n.

All notations, terminology and presumed results can be found in [8].

2. MAIN IMPROVEMENT

We will complete the proof of the next Theorem 1 from [8], which is not complete

because of the errors found in [10]. It is likely evident that this Theorem 1 is true,

but the first predicted Max Tree appears when n = 92, which causes the difficulties

of its proof.

Theorem 1. For a tree T of order n ≥ 103,

R−1(T ) ≤ 15n + C

56

where C = −1.

We will prove this theorem at the end of this paper. At first we will describe some

properties of the Max Tree. In [8] Hu, Li and Yuan showed that the “suspected” Max

Tree can have the systems: (2, 3), (3, 4), (1, d) for 3 ≤ d ≤ 13, (2, d) for 4 ≤ d ≤ 12

and (3, d) for 5 ≤ d ≤ 11. We will show that the Max Tree has only (3, 4) systems

when n ≥ 103. From now on n =| V (T ) |≥ 103. We use mathematical induction

throughout this paper, i.e., we suppose that Theorem 1 holds for all trees of order

less than n. We know that R−1(T ) ≤ 15n−1
56

for 91 ≤ n ≤ 102 [5].

At first we prove two useful lemmas.

Lemma 1. Every vertex of degree 3 is the center of a (2, 3) system of the Max

Tree, i.e., it appears only in a (2, 3) system.
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Proof. Let the Max Tree T has the vertex z of degree 3 with the neighbors y1, y2

and w and d = d(w) ≥ d(yi), i = 1, 2. We distinguish two cases.

Case 1. d(y1) ≥ 3 and d(y2) ≥ 3. By deleting the vertex z (and edges zy1, zy2

and zw) and adding new edges wy1 and wy2 we get a new tree T ′. Let vj denote the

neighbors of w other than z. Then | V (T ′) |= n − 1, dT ′(w) = d + 1, d(vj) ≥ 2 and

R−1(T ) = R−1(T
′) + (

1

3
− 1

d + 1
)

2∑
i=1

1

d(yi)
+

1

3d
+ (

1

d
− 1

d + 1
)

d−1∑
j=1

1

d(vj)

≤ 15(n − 1) + C

56
+

1

3d
+

d − 2

3(d + 1)

2∑
i=1

1

d(yi)
+

1

d(d + 1)

d−1∑
j=1

1

d(vj)

≤ 15n + C

56
− 15

56
+

1

3d
+

d − 2

3(d + 1)
· 2

3
+

1

d(d + 1)
· d − 1

2

=
15n + C

56
+

−23d2 + 61d − 84

504d(d + 1)
<

15n + C

56

The last inequality holds for every d.

Case 2. d(y1) = 2 and d(y2) ≥ 3. By deleting the vertices z, y1 and x1 (d(x1) = 1)

and adding new edge wy2 we get a new tree T ′. Then | V (T ′) |= n − 3 and

R−1(T ) = R−1(T
′) +

1

2
+

1

6
+

1

3d
+

1

3d(y2)
− 1

dd(y2)

≤ 15(n − 3) + C

56
+

2

3
+

1

3d
+

1

3d(y2)
− 1

dd(y2)

≤ 15n + C

56
− 23

168
+

1

9
+

1

3d(y2)
− 1

3d(y2)

=
15n + C

56
− 13

504
<

15n + C

56

The remaining case is d(y1) = d(y2) = 2. �

In the same time we have proved that the Max Tree can not have (1, 3) systems.

Lemma 2. Every vertex of degree 4 is the center of a (3, 4) system of the Max

Tree, i.e., it appears only in a (3, 4) system.

Proof. Let the Max Tree T has the vertex z of degree 4 with the neighbors

y1, y2, y3 and w and d = d(w). We distinguish several cases.

Case 1. d(yi) ≥ 3, i = 1, 2, d(y3) ≥ 4 and d = d(w) ≥ 3. By deleting the vertex

z (and edges zyi, i = 1, 2, 3 and zw) and adding new edges wyi, i = 1, 2, 3, we get a
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new tree T ′. Let vj denote the neighbors of w other than z. Then | V (T ′) |= n − 1,

dT ′(w) = d + 2, d(vj) ≥ 2 and

R−1(T ) = R−1(T
′) + (

1

4
− 1

d + 2
)

3∑
i=1

1

d(yi)
+

1

4d
+ (

1

d
− 1

d + 2
)

d−1∑
j=1

1

d(vj)

≤ 15(n − 1) + C

56
+

1

4d
+

d − 2

4(d + 2)

3∑
i=1

1

d(yi)
+

2

d(d + 2)

d−1∑
j=1

1

d(vj)

≤ 15n + C

56
− 15

56
+

1

4d
+

(d − 2)

4(d + 2)
(
2

3
+

1

4
) +

2

d(d + 2)
(
d − 1

2
)

=
15n + C

56
+

−13d2 + 86d − 168

336d(d + 2)
<

15n + C

56

The last inequality holds for every d.

Case 2. d(y1) = 2, d(yi) ≥ 3, i = 2, 3 and d(w) ≥ 3. By deleting vertices z, y1, x1

and adding new edges wy2 and wy3 we get a new tree T ′. Then | V (T ′) |= n − 3,

dT ′(w) = d + 1, d(vj) ≥ 2 and

R−1(T ) = R−1(T
′) +

1

2
+

1

8
+ (

1

4
− 1

d + 1
)

3∑
i=2

1

d(yi)
+

1

4d
+ (

1

d
− 1

d + 1
)

d−1∑
j=1

1

d(vj)

≤ 15(n − 3) + C

56
+

5

8
+

d − 3

4(d + 1)

3∑
i=2

1

d(yi)
+

1

4d
+

1

d(d + 1)

d−1∑
j=1

1

d(vj)

≤ 15n + C

56
− 5

28
+

d − 3

6(d + 1)
+

1

4d
+

d − 1

2d(d + 1)

=
15n + C

56
− d2 − 6d + 21

84d(d + 1)
<

15n + C

56

Case 3. d(y1) = d(y2) = 2, d(y3) ≥ 3 and d(w) ≥ 3. By deleting vertices

z, y1, x1, y2, x2 and adding new edge wy3 we get a new tree T ′. Then | V (T ′) |= n− 5

and

R−1(T ) = R−1(T
′) + 2(

1

2
+

1

8
) +

1

4d(y3)
+

1

4d
− 1

dd(y3)

≤ 15(n − 5) + C

56
+

5

4
+

1

4d(y3)
+

1

4d
− 1

dd(y3)

=
15n + C

56
− 5

56
+

1

4d(y3)
+

1

4d
− 1

dd(y3)

≤ 15n + C

56
− 5

56
+

1

12
<

15n + C

56

The remaining case is d(y1) = d(y2) = d(y3) = 2. �
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We have also proved that the Max Tree can not have (1, 4) and (2, 4) systems

(Cases 2 and 3 of Lemma 2).

Note that the Max Tree can not have d(y1) = d(y2) = d(y3) = d(w) = 3.

Lemma 3. The Max Tree T can not have (3, d) systems for 5 ≤ d ≤ 11.

Proof. Let x1, y1, x2, y2, x3, y3, z, w1, · · · , wd−4, w̃ be the (3, d) system centered at

z, where d(xi) = 1, i = 1, 2, 3, d(yi) = 2, i = 1, 2, 3, d(z) = d, d(wi) ≥ 3, i =

1, · · · , d − 4 and d(w̃) = d̃ ≥ 5. It is not possible that d(wi) = 4, i = 1, · · · , d − 4

and d(w̃) < 5 because | V (T ) |≥ 103 and because of Lemmas 1 and 2. By deleting

the vertex z (and edges zyi, i = 1, 2, 3, zwi, i = 1, · · · , d − 4 and zw̃) and adding

new edges w̃wi, i = 1, · · · , d − 4 and w̃z̃, where z̃ is the center of the (3, 4) system

we get a new tree T ′. Let vj denote the neighbors of w̃ other than z in T . Then

| V (T ′) |=| V (T ) |, dT ′(w̃) = d̃ + d − 4, d(z̃) = 4, d(vj) ≥ 2 and

R−1(T ) = R−1(T
′) + 3(

1

2
+

1

2d
) +

1

dd̃
+ (

1

d
− 1

d̃ + d − 4
)

d−4∑
i=1

1

d(wi)

+(
1

d̃
− 1

d̃ + d − 4
)

d̃−1∑
j=1

1

d(vj)
− 3(

1

2
+

1

8
) − 1

4(d̃ + d − 4)

= R−1(T
′) − 3

8
+

3

2d
+

4(d̃ + d − 4) − d̃d

4dd̃(d̃ + d − 4)

+
d̃ − 4

d(d̃ + d − 4)

d−4∑
i=1

1

d(wi)
+

d − 4

d̃(d̃ + d − 4)

d̃−1∑
j=1

1

d(vj)

Since the Max Tree can have only the systems (1, d̄), (2, d̄) and (3, d̄), the vertex

w̃ can have at most 3 suspended path (i.e., d(vj) = 2 for at most three j). Then∑d̃−1
j=1

1
d(vj)

≤ 3
2

+ d̃−4
3

= 2d̃+1
6

and

R−1(T ) ≤ R−1(T
′) − 3

8
+

3

2d
+

4(d̃ + d − 4) − d̃d

4dd̃(d̃ + d − 4)
+

d̃ − 4

d(d̃ + d − 4)
· d − 4

3

+
d − 4

d̃(d̃ + d − 4)
· 2d̃ + 1

6

= R−1(T
′) − (d − 4)(d̃ − 4)(d̃ + d + 6)

24dd̃(d̃ + d − 4)
< R−1(T

′) �

Lemma 4. The Max Tree T can not have (2, d) systems for 5 ≤ d ≤ 12.

Proof. Let x1, y1, x2, y2, z, w1, · · · , wd−3, w̃ be the (2, d) system centered at z,

where d(xi) = 1, i = 1, 2, d(yi) = 2, i = 1, 2, d(z) = d, d(wi) ≥ 3, i = 1, · · · , d − 3
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and d(w̃) = d̃ ≥ 5. It is not possible that d(wi) = 4, i = 1, · · · , d − 3 and d(w̃) < 5

because | V (T ) |≥ 103. By deleting the vertex z (and edges zyi, i = 1, 2, zwi, i =

1, · · · , d− 3 and zw̃) and adding new edges w̃wi, i = 1, · · · , d− 3 and w̃z̃, where z̃ is

the center of the (2, 3) system we get a new tree T ′. Let vj denote the neighbors of w̃

other than z in T . Then | V (T ′) |=| V (T ) |, dT ′(w̃) = d̃ + d − 3, d(z̃) = 3, d(vj) ≥ 2

and

R−1(T ) = R−1(T
′) + 2(

1

2
+

1

2d
) +

1

dd̃
+ (

1

d
− 1

d̃ + d − 3
)

d−3∑
i=1

1

d(wi)

+(
1

d̃
− 1

d̃ + d − 3
)

d̃−1∑
j=1

1

d(vj)
− 2(

1

2
+

1

6
) − 1

3(d̃ + d − 3)

= R−1(T
′) +

3 − d

3d
+

3(d̃ + d − 3) − d̃d

3dd̃(d̃ + d − 3)
+

d̃ − 3

d(d̃ + d − 3)

d−3∑
i=1

1

d(wi)

+
d − 3

d̃(d̃ + d − 3)

d̃−1∑
j=1

1

d(vj)

Since the Max Tree can have only the systems (1, d̄) and (2, d̄), the vertex w̃ can

have at most 2 suspended path (i.e., d(vj) = 2 for at most two j). Then
∑d̃−1

j=1
1

d(vj)
≤

2
2

+ d̃−3
3

= d̃
3

and

R−1(T ) ≤ R−1(T
′) +

3 − d

3d
+

3(d̃ + d − 3) − d̃d

3dd̃(d̃ + d − 3)
+

d̃ − 3

d(d̃ + d − 3)
· d − 3

3

+
d − 3

d̃(d̃ + d − 3)
· d̃

3
= R−1(T

′) − (d − 3)(d̃ − 3)

3dd̃(d̃ + d − 3)
< R−1(T

′) �

Lemma 5. The Max Tree T can not have (1, d) systems for 5 ≤ d ≤ 13.

Proof. Let x1, y1, z, w1, · · · , wd−2, w̃ be the (1, d) system centered at z, where

d(x1) = 1, d(y1) = 2, d(z) = d, d(wi) ≥ 3, i = 1, · · · , d − 2 and d(w̃) = d̃ ≥ 5. It is

not possible that d(wi) = 4, i = 1, · · · , d − 2 and d(w̃) < 5 because | V (T ) |≥ 103.

Let vj denote the neighbors of w̃ other than z. We distinguish several cases.

Case 1. d(wi) ≥ 4, i = 1, · · · , d − 2. By deleting the vertex z (and edges

zy1, y1x1, zwi, i = 1, · · · , d − 2 and zw̃) and adding new edges w̃wi, i = 1, · · · , d − 2

we get a new tree T ′. Then | V (T ′) |=| V (T ) | −3, dT ′(w̃) = d̃ + d− 3, d(vj) ≥ 2 and

R−1(T ) = R−1(T
′) +

1

2
+

1

2d
+

1

dd̃
+ (

1

d
− 1

d̃ + d − 3
)

d−2∑
i=1

1

d(wi)
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+(
1

d̃
− 1

d̃ + d − 3
)

d̃−1∑
j=1

1

d(vj)
≤ 15(n − 3) + C

56
+

1

2
+

d̃ + 2

2dd̃

+
d̃ − 3

d(d̃ + d − 3)

d−2∑
i=1

1

d(wi)
+

d − 3

d̃(d̃ + d − 3)

d̃−1∑
j=1

1

d(vj)

Since the Max Tree can have only the systems (1, d̄), the vertex w̃ can have at most one

suspended path (i.e., d(vj) = 2 for at most one j). Then
∑d̃−1

j=1
1

d(vj)
≤ 1

2
+ d̃−2

3
= 2d̃−1

6

and

R−1(T ) ≤ 15n + C

56
− 17

56
+

d̃ + 2

2dd̃
+

d̃ − 3

d(d̃ + d − 3)
· d − 2

4

+
d − 3

d̃(d̃ + d − 3)
· 2d̃ − 1

6
=

15n + C

56
+

−9dd̃2 + 5d2d̃ − 57dd̃ + 168d̃ − 28d2 + 252d − 504

168dd̃(d̃ + d − 3)

<
15n + C

56

The last inequality holds for 5 ≤ d ≤ 13.

Case 2. There is at least one vertex wj such that d(wj) = 3. Denote this vertex

wd−2. By deleting the vertex z (and edges zy1, y1x1, zwi, i = 1, · · · , d − 2 and zw̃)

and adding new edges w̃wi, i = 1, · · · , d − 3 and one (3, 4) system adjacent to w̃ we

get a new tree T ′. Then | V (T ′) |=| V (T ) | −1, dT ′(w̃) = d̃ + d − 3, d(vj) ≥ 2 and

R−1(T ) = R−1(T
′) +

1

2
+

1

2d
+

1

3d
+ 2(

1

2
+

1

6
) +

1

dd̃
− 1

4(d̃ + d − 3)
+

(
1

d
− 1

d̃ + d − 3
)

d−3∑
i=1

1

d(wi)
+ (

1

d̃
− 1

d̃ + d − 3
)

d̃−1∑
j=1

1

d(vj)
− 3(

1

2
+

1

8
)

≤ 15(n − 1) + C

56
− 1

24
+

5

6d
+

4(d̃ + d − 3) − dd̃

4dd̃(d̃ + d − 3)

+
d̃ − 3

d(d̃ + d − 3)

d−3∑
i=1

1

d(wi)
+

d − 3

d̃(d̃ + d − 3)

d̃−1∑
j=1

1

d(vj)

Since the Max Tree can have only the systems (1, d̄), the vertex w̃ can have at most one

suspended path (i.e., d(vj) = 2 for at most one j). Then
∑d̃−1

j=1
1

d(vj)
≤ 1

2
+ d̃−2

3
= 2d̃−1

6
.
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Case 2’. d(wi) ≥ 3, i = 1, · · · , d − 3. We have

R−1(T ) ≤ 15n + C

56
− 13

42
+

5

6d
+

4(d̃ + d − 3) − dd̃

4dd̃(d̃ + d − 3)
+

d̃ − 3

d(d̃ + d − 3)
· d − 3

3

+
d − 3

d̃(d̃ + d − 3)
· 2d̃ − 1

6
<

15n + C

56

The last inequality holds for d = 5, 6, 7 and every d̃.

Case 2”. d(wi) = 3 for not more than four i’s. Then
∑d−3

i=1
1

d(wi)
≤ 4

3
+ d−7

4
= 3d−5

12

and

R−1(T ) ≤ 15n + C

56
− 13

42
+

5

6d
+

4(d̃ + d − 3) − dd̃

4dd̃(d̃ + d − 3)
+

d̃ − 3

d(d̃ + d − 3)
·

3d − 5

12
+

d − 3

d̃(d̃ + d − 3)
· 2d̃ − 1

6
=

15n + C

56
+

35d̃2 − 5dd̃2 + 2d2d̃ − 20dd̃ − 21d̃ − 14d2 + 126d − 252

84dd̃(d̃ + d − 3)
<

15n + C

56

The last inequality holds for 7 ≤ d ≤ 13 and every d̃.

Case 2”’. d(wi) = 3 for at least five i’s (for i = d − 2, d − 3, · · · , d − 6). By

deleting the vertex z (and edges zy1, y1x1, zwi, i = 1, · · · , d− 2 and zw̃) and adding

new edges w̃wi, i = 1, · · · , d − 7 and four (3, 4) systems adjacent to w̃, we get a new

tree T ′. Then | V (T ′) |=| V (T ) |, dT ′(w̃) = d̃ + d − 4 and

R−1(T ) = R−1(T
′) +

1

2
+

1

2d
+ 10(

1

2
+

1

6
) +

5

3d
+ (

1

d
− 1

d̃ + d − 4
)

d−7∑
i=1

1

d(wi)

+
1

dd̃
+ (

1

d̃
− 1

d̃ + d − 4
)

d̃−1∑
j=1

1

d(vj)
− 4

4(d̃ + d − 4)
− 12(

1

2
+

1

8
)

= R−1(T
′) − 1

3
+

13

6d
+

d̃ + d − 4 − dd̃

dd̃(d̃ + d − 4)
+

d̃ − 4

d(d̃ + d − 4)

d−7∑
i=1

1

d(wi)
+

d − 4

d̃(d̃ + d − 4)

d̃−1∑
j=1

1

d(vj)

Since the Max Tree can have only the systems (1, d̄), the vertex w̃ can have at most one

suspended path (i.e., d(vj) = 2 for at most one j). Then
∑d̃−1

j=1
1

d(vj)
≤ 1

2
+ d̃−2

3
= 2d̃−1

6
,∑d−7

i=1
1

d(wi)
≤ d−7

3
and

R−1(T ) ≤ R−1(T
′) − 1

3
+

13

6d
+

d̃ + d − 4 − dd̃

dd̃(d̃ + d − 4)
+

d̃ − 4

d(d̃ + d − 4)
· d − 7

3
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+
d − 4

d̃(d̃ + d − 4)

2d̃ − 1

6

= R−1(T
′) +

−d̃2 − dd̃ + 10d̃ − d2 + 10d − 24

6dd̃(d̃ + d − 4)
< R−1(T

′)

The last inequality holds for 7 ≤ d ≤ 13 and every d̃. In such a way, the degree of

the vertex which eventually has one suspended path has augmented and the number

of (2, 3) systems has diminished. �

We have shown that the ”suspected” Max Tree can have only the systems (2, 3)

and (3, 4) when n ≥ 103. Now we will show that all systems (2, 3) and (3, 4) are

centered at only one vertex. At first, we prove the next useful lemma, which will be

sharpened up later.

Lemma 6. The Max Tree can not have the vertex with more than 12 (2, 3)

systems centered at it.

Proof. Let 13 (2, 3) systems be centered at vertex z, at least, where d(z) =

d, d ≥ 13 and wi, i = 1, · · · , d − 13 are the other neighbors of z. By deleting 7

(2, 3) systems and adding 5 (3, 4) systems centered at z, we get a new tree T ′. Then

| V (T ′) |=| V (T ) |, dT ′(z) = d − 2 and

R−1(T ) = R−1(T
′) + 14(

1

2
+

1

6
) +

13

3d
− 15(

1

2
+

1

8
) − 5

4(d − 2)
− 6

3(d − 2)

+(
1

d
− 1

d − 2
)

d−13∑
i=1

1

d(wi)
= R−1(T

′) − d2 − 28d + 208

24d(d − 2)
−

2

d(d − 2)

d−13∑
i=1

1

d(wi)
≤ R−1(T

′) − d2 − 28d + 208

24d(d − 2)
< R−1(T

′)

because d2 − 28d + 208 > 0 for every d. �

Theorem 2. The Max Tree can have only one vertex with maximum degree and

all (2, 3) systems and (3, 4) systems can be centered at it.

Proof. Let z and y be two adjacent vertices of the Max Tree T such that d(z) =

d ≥ 5 and d(y) = d̃ ≥ 5. We differ several cases depending on the number of (2, 3)

systems centered at z and y. We take that the number of (2, 3) systems centered at

z is greater than or equal to the number of (2, 3) systems centered at y.

Case 1. The number of (2, 3) systems centered at z is less than or equal to 4
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(and the same is for y). Let w1, · · · , wd−1 be the vertices of T , other than y, adjacent

to z and let v1, · · · , vd̃−1 be the vertices of T , other than z, adjacent to y. By deleting

the vertex y and connecting zvj, j = 1, · · · , d̃ − 1, we get a new tree T ′. Then

| V (T ′) |=| V (T ) | −1, dT ′(z) = d + d̃ − 2 and

R−1(T ) = R−1(T
′) +

1

dd̃
+ (

1

d
− 1

d + d̃ − 2
)

d−1∑
i=1

1

d(wi)
+ (

1

d̃
− 1

d + d̃ − 2
)

d̃−1∑
j=1

1

d(vj)
≤ 15(n − 1) + C

56
+

1

dd̃
+

d̃ − 2

d(d + d̃ − 2)

d−1∑
i=1

1

d(wi)
+

d − 2

d̃(d + d̃ − 2)

d̃−1∑
j=1

1

d(vj)

Hold:
∑d−1

i=1
1

d(wi)
≤ 4

3
+ d−5

4
= 3d+1

12
and

∑d̃−1
j=1

1
d(vj)

≤ 4
3

+ d̃−5
4

= 3d̃+1
12

and

R−1(T ) ≤ 15n + C

56
− 15

56
+

1

dd̃
+

d̃ − 2

d(d + d̃ − 2)
· 3d + 1

12
+

d − 2

d̃(d + d̃ − 2)
· 3d̃ + 1

12
=

15n + C

56
−

d2(3d̃ − 14) + d(3d̃2 + 78d̃ − 140) − 14d̃2 − 140d̃ + 336

168dd̃(d + d̃ − 2)

<
15n + C

56

because d2(3d̃ − 14) + d(3d̃2 + 78d̃ − 140) − 14d̃2 − 140d̃ + 336 > 0 for d ≥ 5 and

d̃ ≥ 5.

Case 2. The number of (2, 3) systems centered at z is 5 (m = 0), 6 (m = 1) and

7 (m = 2), where m is the difference between this number and 5. Let 5 (2, 3) systems

be centered at z, at least, and let w1, · · · , wd−6 be the vertices of T , other than y and

5 (2, 3) systems, adjacent to z and let v1, · · · , vd̃−1 be the vertices of T , other than z,

adjacent to y. By deleting the vertex y and connecting zvj, j = 1, · · · , d̃− 1, deleting

4 (2, 3) systems centered at z and adding 3 (3, 4) systems centered at z we get a new

tree T ′. Then | V (T ′) |=| V (T ) |, dT ′(z) = d + d̃ − 3 and

R−1(T ) = R−1(T
′) + 8(

1

2
+

1

6
) +

5

3d
+

1

dd̃
+ (

1

d
− 1

d + d̃ − 3
)

d−6∑
i=1

1

d(wi)
+

(
1

d̃
− 1

d + d̃ − 3
)

d̃−1∑
j=1

1

d(vj)
− 3

4(d + d̃ − 3)
− 1

3(d + d̃ − 3)
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−9(
1

2
+

1

8
) = R−1(T

′) − 7

24
+

5d̃ + 3

3dd̃
− 13

12(d + d̃ − 3)

+
d̃ − 3

d(d + d̃ − 3)

d−6∑
i=1

1

d(wi)
+

d − 3

d̃(d + d̃ − 3)

d̃−1∑
j=1

1

d(vj)

Hold:
∑d−6

i=1
1

d(wi)
≤ m

3
+ d−6−m

4
= 3d+m−18

12
, m = 0, 1, 2, d ≥ 6 + m and

∑d̃−1
j=1

1
d(vj)

≤
k
3

+ d̃−k−1
4

= 3d̃+k−3
12

, k = 4, · · · , 5 + m, d̃ ≥ k + 1 and

R−1(T ) ≤ R−1(T
′) − 7

24
+

5d̃ + 3

3dd̃
− 13

12(d + d̃ − 3)
+

d̃ − 3

d(d + d̃ − 3)
· 3d + m − 18

12
+

d − 3

d̃(d + d̃ − 3)
· 3d̃ + k − 3

12
= R−1(T

′) −

d2(d̃ − 2(k − 3)) + d(d̃2 + d̃ − 6(7 − k)) − 2(2 + m)d̃2 − 6(2 − m)d̃ + 72

24dd̃(d + d̃ − 3)

< R−1(T
′)

because d2(d̃ − 2(k − 3)) + d(d̃2 + d̃ − 6(7 − k)) − 2(2 + m)d̃2 − 6(2 − m)d̃ + 72 > 0

for m = 0, d ≥ 6, k = 4, 5, d̃ ≥ k + 1; m = 1, d ≥ 7, k = 4, 5, 6, d̃ ≥ k + 1 and

m = 2, d ≥ 8, k = 4, 5, 6, 7, d̃ ≥ k + 1.

Case 3. The number of (2, 3) systems centered at z is 8 (m = 0), 9 (m = 1), 10

(m = 2), 11 (m = 3) and 12 (m = 4), where m is the difference between this number

and 8. Let 8 (2, 3) systems be centered at z, at least, and let w1, · · · , wd−9 be the

vertices of T , other than y and 8 (2, 3) systems, adjacent to z and let v1, · · · , vd̃−1 be

the vertices of T , other than z, adjacent to y. By deleting the vertex y and connecting

zvj, j = 1, · · · , d̃−1, deleting 7 (2, 3) systems centered at z and adding 5 (3, 4) systems

centered at z we get a new tree T ′. Then | V (T ′) |=| V (T ) | −1, dT ′(z) = d + d̃ − 4

and

R−1(T ) = R−1(T
′) + 14(

1

2
+

1

6
) +

8

3d
+

1

dd̃
+ (

1

d
− 1

d + d̃ − 4
)

d−9∑
i=1

1

d(wi)
+

(
1

d̃
− 1

d + d̃ − 4
)

d̃−1∑
j=1

1

d(vj)
− 5

4(d + d̃ − 4)
− 1

3(d + d̃ − 4)

−15(
1

2
+

1

8
) ≤ 15(n − 1) + C

56
− 1

24
+

8d̃ + 3

3dd̃
− 19

12(d + d̃ − 4)

+
d̃ − 4

d(d + d̃ − 4)

d−9∑
i=1

1

d(wi)
+

d − 4

d̃(d + d̃ − 4)

d̃−1∑
j=1

1

d(vj)
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Hold:
∑d−9

i=1
1

d(wi)
≤ m

3
+ d−9−m

4
= 3d+m−27

12
, m = 0, 1, 2, 3, 4, d ≥ 9+m and

∑d̃−1
j=1

1
d(vj)

≤
k
3

+ d̃−k−1
4

= 3d̃+k−3
12

, k = 4, 5, · · · , 8 + m, d̃ ≥ k + 1 and

R−1(T ) ≤ 15n + C

56
− 13

42
+

8d̃ + 3

3dd̃
− 19

12(d + d̃ − 4)
+

d̃ − 4

d(d + d̃ − 4)
·

3d + m − 27

12
+

d − 4

d̃(d + d̃ − 4)
· 3d̃ + k − 3

12
=

15n + C

56
−

d2(5d̃ − 7(k − 3)) + d(5d̃2 − 27d̃ − 28(6 − k)) − 7(m + 5)d̃2 + 28(2 + m)d̃ + 336

84dd̃(d + d̃ − 4)

<
15n + C

56

because d2(5d̃−7(k−3))+d(5d̃2−27d̃−28(6−k))−7(m+5)d̃2+28(2+m)d̃+336 > 0

for m = 0, d ≥ 9, k = 4, 5, 6, 7, 8, d̃ ≥ k + 1; m = 1, d ≥ 10, k = 4, 5, 6, 7, 8, 9, d̃ ≥
k + 1; m = 2, d ≥ 11, k = 4, 5, 6, 7, 8, 9, 10, d̃ ≥ k + 1; m = 3, d ≥ 12, k =

4, 5, 6, 7, 8, 9, 10, 11, d̃ ≥ k + 1 and m = 4, d ≥ 13, k = 4, 5, 6, 7, 8, 9, 10, 11, 12, d̃ ≥
k + 1. �

Now we can sharpen up Lemma 6 using Theorem 2.

Lemma 7. The Max Tree can not have the vertex with more than 6 (2, 3) systems

centered at it.

Proof. Let 7 (2, 3) systems be centered at vertex z, at least, where d(z) = d, d ≥
14 and wi, i = 1, · · · , d − 7 are the other neighbors of z. By deleting 7 (2, 3)

systems and adding 5 (3, 4) systems centered at z, we get a new tree T ′. Then

| V (T ′) |=| V (T ) |, dT ′(z) = d − 2 and

R−1(T ) = R−1(T
′) + 14(

1

2
+

1

6
) +

7

3d
− 15(

1

2
+

1

8
) − 5

4(d − 2)

+(
1

d
− 1

d − 2
)

d−7∑
i=1

1

d(wi)
= R−1(T

′) − d2 − 28d + 112

24d(d − 2)
−

2

d(d − 2)

d−7∑
i=1

1

d(wi)

Since 3 ≤ d(wi) ≤ 4, holds
∑d−7

i=1
1

d(wi)
≥ d−7

4
and

R−1(T ) ≤ R−1(T
′) − d2 − 28d + 112

24d(d − 2)
− 2

d(d − 2)
· d − 7

4

= R−1(T
′) − d − 14

24d
≤ R−1(T

′)
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because d − 14 ≥ 0, for d ≥ 14. If d ≤ 13, | V (T ) |≤ 78 < 103. �

Now we will finally prove Theorem 1 with Lemma 8.

Lemma 8. The Max Tree has one vertex with maximum degree dM = n−1
7

and

all (3, 4) systems are centered at it.

Proof. As we have shown, the ”suspected” Max Tree has one vertex of the

maximum degree and all (3, 4) systems and (2, 3) systems are centered at it. The

maximum number of (2, 3) systems is 6. Denote by 5t the number of vertices on

t (t = 0, 1, 2, 3, 4, 5, 6,) (2, 3) systems. The maximum degree is dM = dq + t where

dq = n−1−5t
7

and

R−1(T ) = (3(
1

2
+

1

8
) +

1

4(dq + t)
)dq + 2t(

1

2
+

1

6
) +

t

3(dq + t)

=
15dq

8
+

16t + 3

12
+

t

12(dq + t)
=

15n − 1

56
− t

168

+
7t

12(n − 1 + 2t)
≤ 15n − 1

56
− t

168
+

7t

12(102 + 2t)
≤

15n − 1

56

R−1(T ) = 15n−1
56

when t = 0, i.e., the Max Tree has one vertex with maximum

degree dM = n−1
7

and all (3, 4) systems are centered at it. �

The Max Tree is possible only if n − 1 ≡ 0 (mod 7). We will give our conjecture

about the structure of the Max Tree when n − 1 �= 0 (mod 7). We denote by (1, 5)∗

system which has one suspended path x, y, z and three (2,3) systems adjacent to z,

where d(z) = 5. System which has 8 (2,3) systems adjacent to one vertex z, where

the d(z) = 9 we denote by (8(2,3), 9). When n−1 �= 0 (mod 7) the Max Tree can have

(2, 3), (4, 5), (1, 5)∗ and (8(2,3), 9) system. Denote by p the number of (2, 3) systems,

by q the number of (3, 4) systems, by r the number of (4, 5) systems, by s the number

of (1, 5)∗ systems and by v the number of (8(2,3), 9) systems. In the next table we

predict the structure of the Max Tree when n ≥ n0.
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n − 1 (mod 7) p q r s v R−1(T )

0 0 n−1
7

0 0 0 15n−1
56

1 3 n−16
7

0 0 0 15n−1
56

− 1
56

+ 7
4(n+5)

2 0 n−10
7

1 0 0 15n−1
56

− 3
5
· 1

56
− 7

20(n−3)

3 2 n−11
7

0 0 0 15n−1
56

− 2
3
· 1

56
+ 7

6(n+3)

4 0 n−19
7

0 1 0 15n−1
56

− 6
5
· 1

56
− 7

20(n−12)

5 1 n−6
7

0 0 0 15n−1
56

− 1
3
· 1

56
+ 7

12(n+1)

6 0 n−42
7

0 0 1 15n−1
56

− 29
27

· 1
56

− 35
36(n−35)
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