MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Bounds on the General Randić Index of Trees with a Given Maximum Degree

Huiqing LIU^{a*} Xun $YAN^{b\dagger}$ Zheng $YAN^{a\ddagger}$

^aSchool of Mathematics and Computer Science, Hubei University, Wuhan 430062, China ^bDownhole Technical Operation Corporation.

Changqing Petroleum Exploration Bureau, Xi'an 710021, China

(Received July 17, 2006)

Abstract

The general Randić index of an organic molecule whose molecular graph is G is defined as the sum of $(d(u)d(v))^{\alpha}$ over all pairs of adjacent vertices of G, where d(u) is the degree of the vertex u in G and α is a real number with $\alpha \neq 0$. In this paper, we characterize the trees with minimal and maximal general Randić indices, respectively, among all trees with a given maximum degree.

1. Introduction

Given a molecular graph G, the general Randić index, denoted by $w_{\alpha}(G)$, is defined as the sum of $(d(u)d(v))^{\alpha}$ over all pairs of adjacent vertices of G, where d(u)

^{*}email: liuhuiqing@eyou.com; Partially supported by NSFC (No. 10571105).

[†]email: yanxun1@163.com

[‡]email: yanzhenghubei@yahoo.com.cn

is the degree of the vertex u in G and α is a real number with $\alpha \neq 0$. Recently, the problem concerning graphs with maximal or minimal general Randić indices of a given class of graphs has been studied extensively by many researches, and many results have been achieved (see[3]-[7], [10]-[21],[23]). It is well known that the Randić index $w_{-\frac{1}{2}}(G)$ was proposed by Randić [22] in 1975 and Bollobás and Erdős [3] generalized the index by replacing $-\frac{1}{2}$ with any real number α in 1998. The research background of Randić index together with its generalization appears in chemical field and can be found in the literature (see [8, 9, 22]).

Here, we characterize the trees with minimal and maximal general Randić indices, respectively, among all trees with a given maximum degree.

In order to discuss our results, we first introduced some terminologies and notations of graphs. Other undefined notations may refer to [1, 2]. Let G = (V, E)be a graph. For a vertex u of G, we denote the neighborhood and the degree of u by $N_G(u)$ and $d_G(u)$, respectively. A pendant vertex is a vertex of degree 1. A vertex v called a claw if all but one of neighbors of v are pendant vertices. Denote $V_0(G) = \{v \in V(G) : d_G(v) = 1\}$ and $V_1(G) = \{v \in V(G) : N_G(v) \cap V_0(G) \neq \emptyset\}$. The maximum degree of G is denoted by $\Delta = \Delta(G)$. We use G-u or G-uv to denote the graph that arises from G by deleting the vertex $u \in V(G)$ or the edge $uv \in E(G)$. Similarly, G + uv is a graph that arises from G by adding an edge $uv \notin E(G)$, where $u, v \in V(G)$. A pendant chain $P_s^0 = v_0v_1 \cdots v_s$ of a graph G is a sequence of vertices v_0, v_1, \ldots, v_s such that v_0 is a pendant vertex of G, $d_G(v_1) = \cdots = d_G(v_{s-1}) = 2$ (unless s = 1) and $d_G(v_s) \geq 3$. We also call that v_s and s the end-vertex and the length of the pendant chain P_s^0 , respectively. If s = 1, then the pendant chain P_s^0 is a pendant edge. Let $\mathcal{P}(T)=\{P_i^0 : i \geq 1\}$.

A tree is a connected acyclic graph. Let T be a tree with n vertices and maximum degree Δ . If $\Delta = 2$, then $T \cong P_n$, a path of order n; and if $\Delta = n - 1$, then $T \cong K_{1,n-1}$. Therefore, in the following, we assume that $3 \leq \Delta \leq n - 2$. Let $\mathscr{T}_{n,\Delta} = \{T : T \text{ is a tree with } n \text{ vertices and maximum degree } \Delta, 3 \leq \Delta \leq n - 2\}.$

In order to formulate our results, we need to define three trees $S_{n,\Delta}$ $(n \leq 2\Delta)$, $W_{n,\Delta}$ and $Y_{n,\Delta}$ (shown in Figure 1) as follows:

 $S_{n,\Delta}$ $(n \leq 2\Delta)$ is a graph obtained from the star $K_{1,\Delta}$ by attaching one pendant vertex to each of $n - \Delta - 1$ pendant vertices of $K_{1,\Delta}$.

 $W_{n,\Delta}$ is a graph obtained from the star $K_{1,\Delta}$ by attaching $n - \Delta - 1$ pendant vertices to one pendant vertex of $K_{1,\Delta}$.

 $Y_{n,\Delta}$ is a graph obtained from the path $P_{n-\Delta+1}$ of order $n-\Delta+1$ by attaching $\Delta-1$ pendant vertices to one end-vertex of $P_{n-\Delta}$.

Note that $S_{n,\Delta}, Y_{n,\Delta} \in \mathscr{T}_{n,\Delta}$, and if $n \leq 2\Delta$, then $W_{n,\Delta} \in \mathscr{T}_{n,\Delta}$.

 $W_{n,\Delta}$

Figure 1

2. Upper Bound

In this section, we first give some lemmas that used in the proof of our results.

Lemma 2.1. For $\alpha < 0$ (or $\alpha > 1$) and l > 0, the function $f(x) = (x+l)^{\alpha} - x^{\alpha}$ is monotonously increasing in $x \ge 1$.

Proof. Note that $\frac{df(x)}{dx} = \alpha[(x+l)^{\alpha-1} - x^{\alpha-1}] > 0$ for $\alpha < 0$ (or $\alpha > 1$), and hence the lemma holds.

Lemma 2.2. Let G be a graph, and let $u, v \in V(G)$ with $d_G(u), d_G(v) \geq 3$. Suppose that u_0u and $v_0v_1 \cdots v_l$ $(v_l = v)$ are the pendant chains of G with end vertices u, v, respectively (see Figure 2). Set $G^* = G - v_0v_1 + u_0v_0$. If $l \geq 3$, then, for $\alpha \neq 0$,

$$w_{\alpha}(G^*) > w_{\alpha}(G).$$

Proof. Let $d_G(u) = t$. Then $t \ge 3$. Note that

$$w_{\alpha}(G^{*}) - w_{\alpha}(G) = (2t)^{\alpha} + 2^{\alpha} - t^{\alpha} - 4^{\alpha} = (t^{\alpha} - 2^{\alpha})(2^{\alpha} - 1) > 0,$$

and hence the lemma holds.

- 158 -

Figure 2

Lemma 2.3. Suppose that G is a graph and $u, v \in V(G)$ with $d_G(u) > d_G(v) \ge 2$. Let $uu_0, vv_0 \in E(G)$ with $u_0 \in V_0(G), N_G(v_0) \setminus \{v\} = \{v_1, v_2, \ldots, v_s\}$ $(s \ge 1)$ and v_0 being not on the path connecting u to v (see Figure 3). Set $G' = G - v_0v_1 - \cdots - v_0v_s + u_0v_1 + \cdots + u_0v_s$. Then, for $\alpha \ne 0$,

$$w_{\alpha}(G') > w_{\alpha}(G)$$

Proof. Note that

$$w_{\alpha}(G') - w_{\alpha}(G) = (s+1)^{\alpha} d_{G}^{\alpha}(v) + d_{G}^{\alpha}(u) - (s+1)^{\alpha} d_{G}^{\alpha}(u) - d_{G}^{\alpha}(v)$$

= $(d_{G}^{\alpha}(u) - d_{G}^{\alpha}(v))((s+1)^{\alpha} - 1) > 0,$

and hence the lemma holds.

Figure 3

Lemma 2.4. Let G be a connected graph of order $n \ge 4$, and let $v \in V(G)$. Suppose that $u_0, v_0 \in N_G(v) \cap V_0(G)$. Set $G^* = G - vu_0 + u_0v_0$ (see Figure 4). Then, for $\alpha < 0$,

$$w_{\alpha}(G^*) > w_{\alpha}(G).$$

Proof. Let $d_G(v) = t$. Since *G* is connected and $n \ge 4, t \ge 3$. Thus $w_{\alpha}(G^*) - w_{\alpha}(G) = \sum_{u \in N_G(v) \setminus \{v_0, u_0\}} d_G^{\alpha}(u) \cdot [(t-1)^{\alpha} - t^{\alpha}] + (2t-2)^{\alpha} + 2^{\alpha} - 2 \cdot t^{\alpha}$ $> 2^{\alpha}(t-1)^{\alpha} + 2^{\alpha} - 2 \cdot t^{\alpha} = [(2t-2)^{\alpha} - t^{\alpha}] - (t^{\alpha} - 2^{\alpha})$ > 0.

The last inequality follows by Lemma 2.1 as 2t - 2 > t.

Figure 4

Theorem 2.5. Let $T \in \mathscr{T}_{n,\Delta}$ and $3 \leq \lfloor \frac{n}{2} \rfloor \leq \Delta \leq n-2$. Then

$$w_{\alpha}(T) \le (2\Delta - n + 1)\Delta^{\alpha} + 2^{\alpha}(n - \Delta - 1)(1 + \Delta^{\alpha}) \tag{1}$$

and equality holds if and only if $T \cong S_{n,\Delta}$ for $\alpha < 0$.

Proof. First we note that if $T \cong S_{n,\Delta}$, then the equality in (1) holds.

Now we prove that if $T \in \mathscr{T}_{n,\Delta}$ and $3 \leq \lceil \frac{n}{2} \rceil \leq \Delta \leq n-2$, then (1) holds and the equality in (1) holds only if $T \cong S_{n,\Delta}$.

Let $T \in \mathscr{T}_{n,\Delta}$. Let $w \in V(T)$ with $d_T(w) = \Delta \geq 3$. Since $\Delta \geq \lceil \frac{n}{2} \rceil$, we have $N_T(w) \cap V_0(T) \neq \emptyset$. Let $u_0 \in V_0(T)$ with $wu_0 \in E(T)$.

We choose T such that $w^{\alpha}(T)$ is as large as possible. We will show three facts.

Fact 1. For any $P_l^0 \in \mathcal{P}(\mathcal{T})$, we have $l \leq 2$.

Proof of Fact 1. Assume $P_l^0 = v_0 v_1 \cdots v_l \in \mathcal{P}(\mathcal{T})$ with end vertex v_l , where $v_0 \in V_0(T)$ and $l \geq 3$. Let $T' = T - v_0 v_1 + u_0 v_0$. Then $T' \in \mathscr{T}_{n,\Delta}$. By Lemma 2.2, we have $w_{\alpha}(T') \geq w_{\alpha}(T)$, a contradiction with our choice.

Fact 2. Let $P_l^0 = v_0 v_1 \cdots v_l \in \mathcal{P}(\mathcal{T})$ with end vertex v_l and $v_0 \in V_0(T)$. If $v_l \neq w$, then l = 1.

Proof of Fact 2. Assume that $l \ge 2$. Then by Fact 1, l = 2. Since $\Delta \ge \lceil \frac{n}{2} \rceil$ and $v_l \ne w$, we have $d_T(v_l) \le n - \Delta - 1 \le \lfloor \frac{n}{2} \rfloor - 1 < \Delta = d_T(w)$. Set

$$T' = T - v_0 v_1 + u_0 v_0.$$

Then $T' \in \mathscr{T}_{n,\Delta}$. By Lemma 2.3, $w_{\alpha}(T') \geq w_{\alpha}(T)$, a contradiction with our choice.

Fact 3. For any vertex $v \in V(T) \setminus \{w\}$, we have $d_T(v) \leq 2$.

Proof of Fact 3. Assume that $d_T(v) \ge 3$ for some $v \in V(T) \setminus \{w\}$. We choose v such that $d_T(w, v)$ is as large as possible. Then $|N_T(v) \cap V_0(T)| \ge 2$ by Fact 2. Let $u', v' \in N_T(v) \cap V_0(T)$. Set

$$T' = T - u'v + u'v'.$$

Then $T' \in \mathscr{T}_{n,\Delta}$. By Lemma 2.4, we have $w_{\alpha}(T') \ge w_{\alpha}(T)$, a contradiction with our choice.

By Fact 3, the proof of the theorem is complete.

By Theorem 2.5, we have $w_{\alpha}(S_{n,\Delta-1}) \ge w_{\alpha}(S_{n,\Delta})$ for $\alpha < 0$ and $\lceil \frac{n}{2} \rceil + 1 \le \Delta \le n-1$. Thus we obtain the following result.

Corollary 2.6. Let $T \in \mathscr{T}_{n,\Delta}$ and $\Delta \geq l \geq \lceil \frac{n}{2} \rceil$. Then, for $\alpha < 0$, $w_{\alpha}(T) \leq w_{\alpha}(S_{n,l})$ with equality if and only if $T \cong S_{n,l}$.

In [21], Pan, Liu and Xu has shown the following result.

Lemma 2.7 [21]. Let T be a tree with n vertices and m-matching, where $n \ge 2m$. Then, for $-\frac{1}{2} \le \alpha < 0$, $w_{\alpha}(T) \ge w_{\alpha}(S_{n,n-m})$ with equality if and only if $T \cong S_{n,n-m}$.

By Lemma 2.7 and Theorem 2.5, we have the following result.

Corollary 2.8. Let T_1 and T_2 be trees of order $n, n \ge 4$. If T_1 has m-matchings and $\Delta(T_2) = \Delta' \ge n - m$, then $w_{\alpha}(T_1) \ge w_{\alpha}(T_2)$ with equality if and only if $T_1 \cong T_2 \cong S_{n,\Delta'}$ for $-\frac{1}{2} \le \alpha < 0$.

Figure 5

Lemma 2.9. Let $Q_{s,t}$ be a graph shown in Figure 5, where H is a connected graph. If $s \ge t \ge 2$ and $d_G(v) \ge d_G(u)$, then, for $\alpha \ge 1$,

$$w_{\alpha}(Q_{s,t}) < w_{\alpha}(Q_{s+1,t-1}).$$

Proof. Set $d_G(v) = p$, $d_G(u) = q$. Then $p \ge q$ and

$$w_{\alpha}(Q_{s+1,t-1}) - w_{\alpha}(Q_{s,t})$$

$$= (s+p^{\alpha})(s+1)^{\alpha} + (t-2+q^{\alpha})(t-1)^{\alpha} - (s-1+p^{\alpha})s^{\alpha} - (t-1+q^{\alpha})t^{\alpha}$$

= $[(s+1)^{\alpha+1} - s^{\alpha+1}] - [t^{\alpha+1} - (t-1)^{\alpha+1}]$
+ $(p^{\alpha}-1)[(s+1)^{\alpha} - s^{\alpha}] - (q^{\alpha}-1)[t^{\alpha} - (t-1)^{\alpha}].$

If $\alpha = 1$, then

$$w_{\alpha}(Q_{s+1,t-1}) - w_{\alpha}(Q_{s,t}) = [(s+1)^2 - s^2] - [t^2 - (t-1)^2] + p - q$$

$$\geq [(s+1)^2 - s^2] - [t^2 - (t-1)^2] > 0,$$

if $\alpha > 1$, then

$$\begin{split} w_{\alpha}(Q_{s+1,t-1}) - w_{\alpha}(Q_{s,t}) &= [(s+1)^{\alpha+1} - s^{\alpha+1}] - [t^{\alpha+1} - (t-1)^{\alpha+1}] \\ &+ (p^{\alpha} - 1)[(s+1)^{\alpha} - s^{\alpha}] - (q^{\alpha} - 1)[t^{\alpha} - (t-1)^{\alpha}] \\ &> (p^{\alpha} - 1)[((s+1)^{\alpha} - s^{\alpha}) - (t^{\alpha} - (t-1)^{\alpha})] > 0, \end{split}$$

the last inequality follows by Lemma 2.1 as s > t - 1, $p \ge q \ge 2$. Hence the lemma holds.

Theorem 2.10. Let $T \in \mathscr{T}_{n,\Delta}$ and $3 \leq \lceil \frac{n}{2} \rceil \leq \Delta \leq n-2$. Then

$$w_{\alpha}(T) \le (\Delta - 1)\Delta^{\alpha} + (n - \Delta - 1)(n - \Delta)^{\alpha} + \Delta^{\alpha}(n - \Delta)^{\alpha}$$
(2)

and equality holds if and only if $T \cong W_{n,\Delta}$ for $\alpha \ge 1$.

Proof. First we note that if $T \cong W_{n,\Delta}$, then the equality in (2) holds.

Now we prove that if $T \in \mathscr{T}_{n,\Delta}$, then (2) holds and the equality in (2) holds only if $T \cong W_{n,\Delta}$ for $3 \leq \lceil \frac{n}{2} \rceil \leq \Delta \leq n-2$.

Let $T \in \mathscr{T}_{n,\Delta}$. Let $w \in V(T)$ with $d_T(w) = \Delta \geq 3$. Since $\Delta \geq \lceil \frac{n}{2} \rceil$, we have $N_T(w) \cap V_0(T) \neq \emptyset$. We choose T such that $w_\alpha(T)$ is as large as possible. Let $u_0 \in V_0(T)$ with $wu_0 \in E(T)$. We first show two facts.

Fact 1. For any vertex $u \in N_T(w) \setminus V_0(T)$, u is a claw.

Proof of Fact 1. Assume that $u \in N_T(w) \setminus V_0(T)$ is not a claw. Then there is a vertex $u' \in N_T(u) \setminus \{w\}$ such that $u' \notin V_0(T)$. Denote $N_T(u') \setminus \{u\} = \{u_1, \ldots, u_s\} (s \ge 1)$. Since $\Delta \ge \lceil \frac{n}{2} \rceil$ and $u \ne w$, $d_T(u) \le n - \Delta - 1 \le \lfloor \frac{n}{2} \rfloor - 1 < \Delta = d_T(w)$. Set

$$T' = T - u'u_1 - \dots - u'u_s + u_0u_1 + \dots + u_0u_s$$

Then $T' \in \mathscr{T}_{n,\Delta}$. By Lemma 2.3, $w_{\alpha}(T') > w_{\alpha}(T)$, a contradiction with our choice. **Fact 2.** w is a claw.

Proof of Fact 2. Assume that w is not a claw. Then there are at least two vertices $u, v \in N_T(w)$ such that $d_T(u) = s \ge 2$, $d_T(v) = t \ge 2$. By Fact 1, u, v are claws. Denoted by H the non-trivial component of $T - \{u, v\}$. Then $T \cong Q_{s,t}$ (see Figure 5). Assume that $s \ge t$. Then $w_{\alpha}(Q_{s+1,t-1}) > w_{\alpha}(Q_{s,t})$ by Lemma 2.9. Since $\Delta \ge \lfloor \frac{n}{2} \rfloor$, $s + t - 1 \le n - \Delta \le \lfloor \frac{n}{2} \rfloor \le \Delta$. Thus $Q_{s+1,t-1} \in \mathscr{T}_{n,\Delta}$, and hence we get a contradiction with our choice.

By Facts 1 and 2, the proof of the theorem is complete.

-

3. Lower Bound

Lemma 3.1. Suppose that G is a graph and $u, v \in V(G)$ with $d_G(u) > d_G(v) \ge 2$. Let $uu_0, vv_0 \in E(G)$ with $v_0 \in V_0(G), N_G(u_0) \setminus \{u\} = \{u_1, u_2, \ldots, u_{s-1}\}$ $(s \ge 2)$ and u_0 being not on the path connecting u to v. Set $G' = G - u_0u_1 - \cdots - u_0u_{s-1} + v_0u_1 + \cdots + v_0u_{s-1}$. Then, for $\alpha \ne 0$,

$$w_{\alpha}(G') < w_{\alpha}(G).$$

Proof. Note that

$$w_{\alpha}(G') - w_{\alpha}(G) = s^{\alpha} d_{G}^{\alpha}(v) + d_{G}^{\alpha}(u) - s^{\alpha} d_{G}^{\alpha}(u) - d_{G}^{\alpha}(v)$$

= $(d_{G}^{\alpha}(v) - d_{G}^{\alpha}(u))(s^{\alpha} - 1) < 0,$

and hence the lemma holds.

From Lemma 3.1, we immediately get the following result.

Theorem 3.2. Let $T \in \mathscr{T}_{n,\Delta}$ and $3 \leq \lfloor \frac{n}{2} \rfloor \leq \Delta \leq n-2$. Then

$$w_{\alpha}(T) \ge (\Delta - 1)\Delta^{\alpha} + (n - \Delta - 1)(n - \Delta)^{\alpha} + \Delta^{\alpha}(n - \Delta)^{\alpha}$$
(3)

and equality holds if and only if $T \cong W_{n,\Delta}$ for $\alpha < 0$.

Proof. First we note that if $T \cong W_{n,\Delta}$, then the equality in (3) holds.

Now we prove that if $T \in \mathscr{T}_{n,\Delta}$, then (3) holds and the equality in (3) holds only if $T \cong W_{n,\Delta}$ for $3 \leq \lceil \frac{n}{2} \rceil \leq \Delta \leq n-2$.

Let $T \in \mathscr{T}_{n,\Delta}$. Let $w \in V(T)$ with $d_T(w) = \Delta \geq 3$. Since $\Delta \geq \lceil \frac{n}{2} \rceil$, we have $N_T(w) \cap V_0(T) \neq \emptyset$. Let $u_0 \in V_0(T)$ with $wu_0 \in E(T)$.

We choose T such that $w_{\alpha}(T)$ is as small as possible. We first show two facts. Fact 1. w is a claw.

Proof of Fact 1. Assume that w is not a claw. Let $v \in V_1(T) \setminus \{w\}$ with $vv_0 \in E(T)$, where $v_0 \in V_0(T)$. Then there is a vertex $u \in N_T(w) \setminus V_0(T)$ such that u is not on the only path connecting w and v. Denote $N_T(u) \setminus \{w\} = \{u_1, \ldots, u_s\}(s \ge 1)$. Since $\Delta \ge \lceil \frac{n}{2} \rceil$ and $v \ne w$, we have $d_T(v) \le n - \Delta - 1 \le \lfloor \frac{n}{2} \rfloor - 1 \le \Delta - 1 < d_T(w)$. Set

$$T' = T - uu_1 - \dots - uu_s + v_0 u_1 + \dots + v_0 u_s$$

Then $T' \in \mathscr{T}_{n,\Delta}$. By Lemma 3.1, we have $w_{\alpha}(T') \leq w_{\alpha}(T)$, a contradiction with our choice.

By Fact 1, we can let u be the unique vertex with $wu \in E(T)$ and $d_T(u) \ge 2$. Let T_u be the subtree containing u in T - w.

Fact 2. $T_u \cong K_{1,n-\Delta-1}$.

Proof of Fact 2. Assume that $T_u \not\cong K_{1,n-\Delta-1}$. Then there exists an edge v'v such that v'v is not a pendant edge. Then $d_T(v') = s \ge 2$, $d_T(v) = t \ge 2$. Choose v'v such that $d_T(w, v)$ is as large as possible. Then v is a claw. Denote $N_T(v) \cap V_0(T) = \{v_1, v_2, \ldots, v_{t-1}\}$. Set $T' = T - vv_1 - vv_2 - \cdots - vv_{t-1} + v'v_1 + v'v_2 + \cdots + v'v_{t-1}$. Then

$$\begin{split} w_{\alpha}(T) - w_{\alpha}(T') &> (t-1)t^{\alpha} + s^{\alpha}t^{\alpha} - t(s+t-1)^{\alpha} \\ &= (t-1)[t^{\alpha} - (s+t-1)^{\alpha}] + (st)^{\alpha} - (s+t-1)^{\alpha} \\ &= -\alpha(t-1)(s-1)\xi^{\alpha} + \alpha(t-1)(s-1)\eta^{\alpha} \\ &= \alpha(t-1)(s-1)(\eta^{\alpha} - \xi^{\alpha}) > 0, \end{split}$$

where $\xi \in (t, s+t-1)$ and $\eta \in (s+t-1, st)$.

By Facts 1 and 2, the proof of the theorem is complete.

Theorem 3.3. Let $T \in \mathscr{T}_{n,\Delta}$. Then

$$w_{\alpha}(T) \ge (\Delta - 1 + 2^{\alpha})\Delta^{\alpha} + 2^{\alpha} + (n - \Delta - 2)4^{\alpha}$$

$$\tag{4}$$

and equality holds if and only if $T \cong Y_{n,\Delta}$ for $\alpha > 0$.

Proof. First we note that if $T \cong Y_{n,\Delta}$, then the equality in (4) holds.

Now we prove that if $T \in \mathscr{T}_{n,\Delta}$, then (4) holds and the equality in (4) holds only if $T \cong Y_{n,\Delta}$.

Let $T \in \mathscr{T}_{n,\Delta}$. We choose T such that $w_{\alpha}(T)$ is as small as possible. Let $w \in V(T)$ with $d_T(w) = \Delta \geq 3$. By an argument similar to the proof of Theorem 3.2, we have $|N_T(w) \cap V_0(T)| = \Delta - 1$, that is, w is a claw. Therefore, we can let u be the unique vertex with $wu \in E(T)$ and $d_T(u) \geq 2$. Let T_u be the subtree containing u in T - w.

Fact A. $T_u \cong P_{n-\Delta}$.

Proof of Fact A. Assume that $T_u \not\cong P_{n-\Delta}$. Then there is a vertex v such that $d_T(v) = s \geq 3$. Choose v such that $d_{T_u}(u, v)$ is as large as possible. Let $P_l^0 = v_0 v_1 \cdots v_l (v_l = v)$ is a pendant chain with end vertex v. Since T_u ia a tree, there is a unique path between u and v and only one of v's neighbors, say v', is on the path. Let $N_{T_u}(v) \setminus \{v', v_{l-1}\} = \{x_1, \ldots, x_{s-2}\}$. Then $d_{T_u}(x_i) = a_i \geq 1$ and $d_{T_u}(v') = b \geq 2$. Set $T' = T - vx_1 - \cdots - vx_{s-2} + v_0x_1 + \cdots + v_0x_{s-2}$. Then $T' \in \mathscr{T}_{n,\Delta}$. If l = 1, then

$$w_{\alpha}(T) - w_{\alpha}(T') = b^{\alpha}(s^{\alpha} - 2^{\alpha}) + \sum_{i=1}^{s-2} a_{i}^{\alpha}(s^{\alpha} - (s-1)^{\alpha}) + s^{\alpha} - (2s-2)^{\alpha}$$

$$\geq 2^{\alpha}(s^{\alpha} - 2^{\alpha}) + (s-2)(s^{\alpha} - (s-1)^{\alpha}) + s^{\alpha} - (2s-2)^{\alpha}$$

$$\geq 2^{\alpha}(s^{\alpha} - 2^{\alpha}) + s^{\alpha} - (2s-2)^{\alpha}$$

$$= 2^{\alpha}(s^{\alpha} - (s-1)^{\alpha}) + s^{\alpha} - 4^{\alpha}.$$

Thus if $s \ge 4$, then $w_{\alpha}(T) - w_{\alpha}(T') > 0$; if s = 3, then $w_{\alpha}(T) - w_{\alpha}(T') > 6^{\alpha} + 3^{\alpha} - 2 \cdot 4^{\alpha} > 0$.

If $l \geq 2$, then

$$w_{\alpha}(T) - w_{\alpha}(T')$$

$$= b^{\alpha}(s^{\alpha} - 2^{\alpha}) + \sum_{i=1}^{s-2} a_{i}^{\alpha}(s^{\alpha} - (s-1)^{\alpha}) + 2^{\alpha}(s^{\alpha} - 2^{\alpha}) + 2^{\alpha}(1 - (s-1)^{\alpha})$$

$$\geq 2^{\alpha}(s^{\alpha} - 2^{\alpha}) + (s-2)(s^{\alpha} - (s-1)^{\alpha}) + 2^{\alpha}(1 - 2^{\alpha} + s^{\alpha} - (s-1)^{\alpha}).$$

Thus if $s \ge 4$, then $w_{\alpha}(T) - w_{\alpha}(T') > 2^{\alpha}(4^{\alpha} - 2^{\alpha+1} + 1) = 2^{\alpha}(2^{\alpha} - 1)^2 > 0$; if s = 3, then $w_{\alpha}(T) - w_{\alpha}(T') \ge 2^{\alpha}(3^{\alpha} - 2^{\alpha}) + (3^{\alpha} - 2^{\alpha}) + 2^{\alpha}(1 - 2^{\alpha} + 3^{\alpha} - 2^{\alpha}) > 6^{\alpha} + 3^{\alpha} - 2 \cdot 4^{\alpha} > 0$.

Therefore, in either case, we get a tree $T' \in T_{n,\Delta}$ such that $w_{\alpha}(T) > w_{\alpha}(T')$, a contradiction with our choice.

By Fact A, the proof of the theorem is complete.

References

- [1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with its Applications, MacMillan, New York, 1976.
- [3] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50(1998) 225-233.
- [4] L. H. Clark, J. W. Moon, On the general Randić index for certain families of trees, Ars Combin. 54(2000) 223-235.
- [5] C. Delorme, O. Favaron and D. Rautenbach, On the Randić index, Discrete Math. 257(2002) 29-38.
- [6] Y. Hu, X. Li and Y. Yuan, Trees with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 52(2004) 119-128.
- [7] Y. Hu, X. Li and Y. Yuan, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52(2004) 129-146.
- [8] L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, San Francisco, 1976.
- [9] L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
- [10] H. Li and M. Lu, The *m*-connectivity index of graphs, *MATCH Commun. Math.* Comput. Chem. 54(2005) 417-423.
- [11] X. Li, X. Wang and B. Wei, On the lower and upper bounds for general Randić index of chemical (n,m)-graphs, MATCH Commun. Math. Comput. Chem. 52(2004) 157-166.
- [12] X. Li and Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem. 51(2004) 155-166.

- [13] X. Li, L. Wang and Y. Zhang, Complete solution for unicyclic graphs with minimum general Randic index, MATCH Commun. Math. Comput. Chem. 55 (2006) 391-408.
- [14] X. Li and J.Zheng, Extremal chemical trees with minimum or maximum general Randic index, MATCH Commun. Math. Comput. Chem. 55 (2006) 381-390.
- [15] X. Li, Y. Shi and T. Xu, Unicyclic graphs with maximum general Randic index for α > 0, MATCH Commun. Math. Comput. Chem. 56 (2006) 557-570.
- [16] H.Q. Liu, M. Lu and F. Tian, On the Randić Index, J. Math. Chem. 38 (2005) 345-354.
- [17] H.Q. Liu, M. Lu and F. Tian, Trees of extremal connectivity index, Discrete Appl. Math. 154 (2006) 106-119.
- [18] H.Q. Liu, M. Lu and F. Tian, On the ordering of trees with the general Randic index of the Nordhaus-Gaddum Type, MATCH Commun. Math. Comput. Chem. 55(2006) 419-426.
- [19] H.Q. Liu, X.F. Pan and J.-M. Xu, On the Randić index of unicyclic conjugated molecules, J. Math. Chem. 40(2006) 135-143.
- [20] M. Lu, H. Liu and F. Tian, The connectivity index, MATCH Commun. Math. Comput. Chem. 51(2004) 149-154.
- [21] X. Pan, H.Q. Liu and J. Xu, Sharp lower bounds for the general Randic index of trees with a given size of matching, MATCH Commun. Math. Comput. Chem. 54(2005) 465-480.
- [22] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97(1975) 6609-6615.
- [23] B. Wu and L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 455-464.