Bounds on the General Randić Index of Trees with a Given Maximum Degree

Huiqing LIU $^{a *}$ Xun YAN ${ }^{b \dagger}$ Zheng YAN ${ }^{a \ddagger}$
${ }^{a}$ School of Mathematics and Computer Science, Hubei University, Wuhan 430062, China
${ }^{b}$ Downhole Technical Operation Corporation, Changqing Petroleum Exploration Bureau, Xi'an 710021, China

(Received July 17, 2006)

Abstract

The general Randić index of an organic molecule whose molecular graph is G is defined as the sum of $(d(u) d(v))^{\alpha}$ over all pairs of adjacent vertices of G, where $d(u)$ is the degree of the vertex u in G and α is a real number with $\alpha \neq 0$. In this paper, we characterize the trees with minimal and maximal general Randić indices, respectively, among all trees with a given maximum degree.

1. Introduction

Given a molecular graph G, the general Randić index, denoted by $w_{\alpha}(G)$, is defined as the sum of $(d(u) d(v))^{\alpha}$ over all pairs of adjacent vertices of G, where $d(u)$

[^0]is the degree of the vertex u in G and α is a real number with $\alpha \neq 0$. Recently, the problem concerning graphs with maximal or minimal general Randić indices of a given class of graphs has been studied extensively by many researches, and many results have been achieved (see[3]-[7], [10]-[21],[23]). It is well known that the Randić index $w_{-\frac{1}{2}}(G)$ was proposed by Randić [22] in 1975 and Bollobás and Erdős [3] generalized the index by replacing $-\frac{1}{2}$ with any real number α in 1998. The research background of Randić index together with its generalization appears in chemical field and can be found in the literature (see [8, 9, 22]).

Here, we characterize the trees with minimal and maximal general Randić indices, respectively, among all trees with a given maximum degree.

In order to discuss our results, we first introduced some terminologies and notations of graphs. Other undefined notations may refer to $[1,2]$. Let $G=(V, E)$ be a graph. For a vertex u of G, we denote the neighborhood and the degree of u by $N_{G}(u)$ and $d_{G}(u)$, respectively. A pendant vertex is a vertex of degree 1. A vertex v called a claw if all but one of neighbors of v are pendant vertices. Denote $V_{0}(G)=\left\{v \in V(G): d_{G}(v)=1\right\}$ and $V_{1}(G)=\left\{v \in V(G): N_{G}(v) \cap V_{0}(G) \neq \emptyset\right\}$. The maximum degree of G is denoted by $\Delta=\Delta(G)$. We use $G-u$ or $G-u v$ to denote the graph that arises from G by deleting the vertex $u \in V(G)$ or the edge $u v \in E(G)$. Similarly, $G+u v$ is a graph that arises from G by adding an edge $u v \notin E(G)$, where $u, v \in V(G)$. A pendant chain $P_{s}^{0}=v_{0} v_{1} \cdots v_{s}$ of a graph G is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{s}$ such that v_{0} is a pendant vertex of $G, d_{G}\left(v_{1}\right)=\cdots=d_{G}\left(v_{s-1}\right)=2$ (unless $s=1$) and $d_{G}\left(v_{s}\right) \geq 3$. We also call that v_{s} and s the end-vertex and the length of the pendant chain P_{s}^{0}, respectively. If $s=1$, then the pendant chain P_{s}^{0} is a pendant edge. Let $\mathcal{P}(T)=\left\{P_{i}^{0}: i \geq 1\right\}$.

A tree is a connected acyclic graph. Let T be a tree with n vertices and maximum degree Δ. If $\Delta=2$, then $T \cong P_{n}$, a path of order n; and if $\Delta=n-1$, then $T \cong K_{1, n-1}$. Therefore, in the following, we assume that $3 \leq \Delta \leq n-2$. Let $\mathscr{T}_{n, \Delta}=\{T: T$ is a tree with n vertices and maximum degree $\Delta, 3 \leq \Delta \leq n-2\}$.

In order to formulate our results, we need to define three trees $S_{n, \Delta}(n \leq 2 \Delta)$, $W_{n, \Delta}$ and $Y_{n, \Delta}$ (shown in Figure 1) as follows:
$S_{n, \Delta}(n \leq 2 \Delta)$ is a graph obtained from the star $K_{1, \Delta}$ by attaching one pendant vertex to each of $n-\Delta-1$ pendant vertices of $K_{1, \Delta}$.
$W_{n, \Delta}$ is a graph obtained from the star $K_{1, \Delta}$ by attaching $n-\Delta-1$ pendant vertices to one pendant vertex of $K_{1, \Delta}$.
$Y_{n, \Delta}$ is a graph obtained from the path $P_{n-\Delta+1}$ of order $n-\Delta+1$ by attaching $\Delta-1$ pendant vertices to one end-vertex of $P_{n-\Delta}$.

Note that $S_{n, \Delta}, Y_{n, \Delta} \in \mathscr{T}_{n, \Delta}$, and if $n \leq 2 \Delta$, then $W_{n, \Delta} \in \mathscr{T}_{n, \Delta}$.

$$
W_{n, \Delta}
$$

Figure 1

2. Upper Bound

In this section, we first give some lemmas that used in the proof of our results.
Lemma 2.1. For $\alpha<0$ (or $\alpha>1$) and $l>0$, the function $f(x)=(x+l)^{\alpha}-x^{\alpha}$ is monotonously increasing in $x \geq 1$.

Proof. Note that $\frac{d f(x)}{d x}=\alpha\left[(x+l)^{\alpha-1}-x^{\alpha-1}\right]>0$ for $\alpha<0$ (or $\alpha>1$), and hence the lemma holds.

Lemma 2.2. Let G be a graph, and let $u, v \in V(G)$ with $d_{G}(u), d_{G}(v) \geq 3$. Suppose that $u_{0} u$ and $v_{0} v_{1} \cdots v_{l}\left(v_{l}=v\right)$ are the pendant chains of G with end vertices u, v, respectively (see Figure 2). Set $G^{*}=G-v_{0} v_{1}+u_{0} v_{0}$. If $l \geq 3$, then, for $\alpha \neq 0$,

$$
w_{\alpha}\left(G^{*}\right)>w_{\alpha}(G)
$$

Proof. Let $d_{G}(u)=t$. Then $t \geq 3$. Note that

$$
w_{\alpha}\left(G^{*}\right)-w_{\alpha}(G)=(2 t)^{\alpha}+2^{\alpha}-t^{\alpha}-4^{\alpha}=\left(t^{\alpha}-2^{\alpha}\right)\left(2^{\alpha}-1\right)>0
$$

and hence the lemma holds.

Figure 2
Lemma 2.3. Suppose that G is a graph and $u, v \in V(G)$ with $d_{G}(u)>d_{G}(v) \geq 2$. Let $u u_{0}, v v_{0} \in E(G)$ with $u_{0} \in V_{0}(G), N_{G}\left(v_{0}\right) \backslash\{v\}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\} \quad(s \geq 1)$ and v_{0} being not on the path connecting u to v (see Figure 3). Set $G^{\prime}=G-v_{0} v_{1}-\cdots-$ $v_{0} v_{s}+u_{0} v_{1}+\cdots+u_{0} v_{s}$. Then, for $\alpha \neq 0$,

$$
w_{\alpha}\left(G^{\prime}\right)>w_{\alpha}(G) .
$$

Proof. Note that

$$
\begin{aligned}
w_{\alpha}\left(G^{\prime}\right)-w_{\alpha}(G) & =(s+1)^{\alpha} d_{G}^{\alpha}(v)+d_{G}^{\alpha}(u)-(s+1)^{\alpha} d_{G}^{\alpha}(u)-d_{G}^{\alpha}(v) \\
& =\left(d_{G}^{\alpha}(u)-d_{G}^{\alpha}(v)\right)\left((s+1)^{\alpha}-1\right)>0
\end{aligned}
$$

and hence the lemma holds.

G

G^{\prime}

Figure 3
Lemma 2.4. Let G be a connected graph of order $n \geq 4$, and let $v \in V(G)$. Suppose that $u_{0}, v_{0} \in N_{G}(v) \cap V_{0}(G)$. Set $G^{*}=G-v u_{0}+u_{0} v_{0}$ (see Figure 4). Then, for $\alpha<0$,

$$
w_{\alpha}\left(G^{*}\right)>w_{\alpha}(G)
$$

Proof. Let $d_{G}(v)=t$. Since G is connected and $n \geq 4, t \geq 3$. Thus

$$
\begin{aligned}
w_{\alpha}\left(G^{*}\right)-w_{\alpha}(G) & =\sum_{u \in N_{G}(v) \backslash\left\{v_{0}, u_{0}\right\}} d_{G}^{\alpha}(u) \cdot\left[(t-1)^{\alpha}-t^{\alpha}\right]+(2 t-2)^{\alpha}+2^{\alpha}-2 \cdot t^{\alpha} \\
& >2^{\alpha}(t-1)^{\alpha}+2^{\alpha}-2 \cdot t^{\alpha}=\left[(2 t-2)^{\alpha}-t^{\alpha}\right]-\left(t^{\alpha}-2^{\alpha}\right) \\
& >0 .
\end{aligned}
$$

The last inequality follows by Lemma 2.1 as $2 t-2>t$.

G

G^{*}

Figure 4

Theorem 2.5. Let $T \in \mathscr{T}_{n, \Delta}$ and $3 \leq\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$. Then

$$
\begin{equation*}
w_{\alpha}(T) \leq(2 \Delta-n+1) \Delta^{\alpha}+2^{\alpha}(n-\Delta-1)\left(1+\Delta^{\alpha}\right) \tag{1}
\end{equation*}
$$

and equality holds if and only if $T \cong S_{n, \Delta}$ for $\alpha<0$.
Proof. First we note that if $T \cong S_{n, \Delta}$, then the equality in (1) holds.
Now we prove that if $T \in \mathscr{T}_{n, \Delta}$ and $3 \leq\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$, then (1) holds and the equality in (1) holds only if $T \cong S_{n, \Delta}$.

Let $T \in \mathscr{T}_{n, \Delta}$. Let $w \in V(T)$ with $d_{T}(w)=\Delta \geq 3$. Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$, we have $N_{T}(w) \cap V_{0}(T) \neq \emptyset$. Let $u_{0} \in V_{0}(T)$ with $w u_{0} \in E(T)$.

We choose T such that $w^{\alpha}(T)$ is as large as possible. We will show three facts.
Fact 1. For any $P_{l}^{0} \in \mathcal{P}(\mathcal{T})$, we have $l \leq 2$.
Proof of Fact 1. Assume $P_{l}^{0}=v_{0} v_{1} \cdots v_{l} \in \mathcal{P}(\mathcal{T})$ with end vertex v_{l}, where $v_{0} \in V_{0}(T)$ and $l \geq 3$. Let $T^{\prime}=T-v_{0} v_{1}+u_{0} v_{0}$. Then $T^{\prime} \in \mathscr{T}_{n, \Delta}$. By Lemma 2.2, we have $w_{\alpha}\left(T^{\prime}\right) \geq w_{\alpha}(T)$, a contradiction with our choice.

Fact 2. Let $P_{l}^{0}=v_{0} v_{1} \cdots v_{l} \in \mathcal{P}(\mathcal{T})$ with end vertex v_{l} and $v_{0} \in V_{0}(T)$. If $v_{l} \neq w$, then $l=1$.

Proof of Fact 2. Assume that $l \geq 2$. Then by Fact $1, l=2$. Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$ and $v_{l} \neq w$, we have $d_{T}\left(v_{l}\right) \leq n-\Delta-1 \leq\left\lfloor\frac{n}{2}\right\rfloor-1<\Delta=d_{T}(w)$. Set

$$
T^{\prime}=T-v_{0} v_{1}+u_{0} v_{0}
$$

Then $T^{\prime} \in \mathscr{T}_{n, \Delta}$. By Lemma 2.3, $w_{\alpha}\left(T^{\prime}\right) \geq w_{\alpha}(T)$, a contradiction with our choice.

Fact 3. For any vertex $v \in V(T) \backslash\{w\}$, we have $d_{T}(v) \leq 2$.

Proof of Fact 3. Assume that $d_{T}(v) \geq 3$ for some $v \in V(T) \backslash\{w\}$. We choose v such that $d_{T}(w, v)$ is as large as possible. Then $\left|N_{T}(v) \cap V_{0}(T)\right| \geq 2$ by Fact 2. Let $u^{\prime}, v^{\prime} \in N_{T}(v) \cap V_{0}(T)$. Set

$$
T^{\prime}=T-u^{\prime} v+u^{\prime} v^{\prime}
$$

Then $T^{\prime} \in \mathscr{T}_{n, \Delta}$. By Lemma 2.4, we have $w_{\alpha}\left(T^{\prime}\right) \geq w_{\alpha}(T)$, a contradiction with our choice.

By Fact 3, the proof of the theorem is complete.
By Theorem 2.5, we have $w_{\alpha}\left(S_{n, \Delta-1}\right) \geq w_{\alpha}\left(S_{n, \Delta}\right)$ for $\alpha<0$ and $\left\lceil\frac{n}{2}\right\rceil+1 \leq \Delta \leq$ $n-1$. Thus we obtain the following result.

Corollary 2.6. Let $T \in \mathscr{T}_{n, \Delta}$ and $\Delta \geq l \geq\left\lceil\frac{n}{2}\right\rceil$. Then, for $\alpha<0$, $w_{\alpha}(T) \leq$ $w_{\alpha}\left(S_{n, l}\right)$ with equality if and only if $T \cong S_{n, l}$.

In [21], Pan, Liu and Xu has shown the following result.
Lemma 2.7 [21]. Let T be a tree with n vertices and m-matching, where $n \geq 2 m$. Then, for $-\frac{1}{2} \leq \alpha<0, w_{\alpha}(T) \geq w_{\alpha}\left(S_{n, n-m}\right)$ with equality if and only if $T \cong S_{n, n-m}$.

By Lemma 2.7 and Theorem 2.5, we have the following result.
Corollary 2.8. Let T_{1} and T_{2} be trees of order $n, n \geq 4$. If T_{1} has m-matchings and $\Delta\left(T_{2}\right)=\Delta^{\prime} \geq n-m$, then $w_{\alpha}\left(T_{1}\right) \geq w_{\alpha}\left(T_{2}\right)$ with equality if and only if $T_{1} \cong$ $T_{2} \cong S_{n, \Delta^{\prime}}$ for $-\frac{1}{2} \leq \alpha<0$.

Figure 5

Lemma 2.9. Let $Q_{s, t}$ be a graph shown in Figure 5, where H is a connected graph. If $s \geq t \geq 2$ and $d_{G}(v) \geq d_{G}(u)$, then, for $\alpha \geq 1$,

$$
w_{\alpha}\left(Q_{s, t}\right)<w_{\alpha}\left(Q_{s+1, t-1}\right)
$$

Proof. Set $d_{G}(v)=p, d_{G}(u)=q$. Then $p \geq q$ and

$$
w_{\alpha}\left(Q_{s+1, t-1}\right)-w_{\alpha}\left(Q_{s, t}\right)
$$

$$
\begin{aligned}
= & \left(s+p^{\alpha}\right)(s+1)^{\alpha}+\left(t-2+q^{\alpha}\right)(t-1)^{\alpha}-\left(s-1+p^{\alpha}\right) s^{\alpha}-\left(t-1+q^{\alpha}\right) t^{\alpha} \\
= & {\left[(s+1)^{\alpha+1}-s^{\alpha+1}\right]-\left[t^{\alpha+1}-(t-1)^{\alpha+1}\right] } \\
& +\left(p^{\alpha}-1\right)\left[(s+1)^{\alpha}-s^{\alpha}\right]-\left(q^{\alpha}-1\right)\left[t^{\alpha}-(t-1)^{\alpha}\right] .
\end{aligned}
$$

If $\alpha=1$, then

$$
\begin{aligned}
w_{\alpha}\left(Q_{s+1, t-1}\right)-w_{\alpha}\left(Q_{s, t}\right) & =\left[(s+1)^{2}-s^{2}\right]-\left[t^{2}-(t-1)^{2}\right]+p-q \\
& \geq\left[(s+1)^{2}-s^{2}\right]-\left[t^{2}-(t-1)^{2}\right]>0
\end{aligned}
$$

if $\alpha>1$, then

$$
\begin{aligned}
w_{\alpha}\left(Q_{s+1, t-1}\right)-w_{\alpha}\left(Q_{s, t}\right)= & {\left[(s+1)^{\alpha+1}-s^{\alpha+1}\right]-\left[t^{\alpha+1}-(t-1)^{\alpha+1}\right] } \\
& +\left(p^{\alpha}-1\right)\left[(s+1)^{\alpha}-s^{\alpha}\right]-\left(q^{\alpha}-1\right)\left[t^{\alpha}-(t-1)^{\alpha}\right] \\
> & \left(p^{\alpha}-1\right)\left[\left((s+1)^{\alpha}-s^{\alpha}\right)-\left(t^{\alpha}-(t-1)^{\alpha}\right)\right]>0
\end{aligned}
$$

the last inequality follows by Lemma 2.1 as $s>t-1, p \geq q \geq 2$. Hence the lemma holds.

Theorem 2.10. Let $T \in \mathscr{T}_{n, \Delta}$ and $3 \leq\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$. Then

$$
\begin{equation*}
w_{\alpha}(T) \leq(\Delta-1) \Delta^{\alpha}+(n-\Delta-1)(n-\Delta)^{\alpha}+\Delta^{\alpha}(n-\Delta)^{\alpha} \tag{2}
\end{equation*}
$$

and equality holds if and only if $T \cong W_{n, \Delta}$ for $\alpha \geq 1$.
Proof. First we note that if $T \cong W_{n, \Delta}$, then the equality in (2) holds.
Now we prove that if $T \in \mathscr{T}_{n, \Delta}$, then (2) holds and the equality in (2) holds only if $T \cong W_{n, \Delta}$ for $3 \leq\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$.

Let $T \in \mathscr{T}_{n, \Delta}$. Let $w \in V(T)$ with $d_{T}(w)=\Delta \geq 3$. Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$, we have $N_{T}(w) \cap V_{0}(T) \neq \emptyset$. We choose T such that $w_{\alpha}(T)$ is as large as possible. Let $u_{0} \in V_{0}(T)$ with $w u_{0} \in E(T)$. We first show two facts.

Fact 1. For any vertex $u \in N_{T}(w) \backslash V_{0}(T), u$ is a claw.
Proof of Fact 1. Assume that $u \in N_{T}(w) \backslash V_{0}(T)$ is not a claw. Then there is a vertex $u^{\prime} \in N_{T}(u) \backslash\{w\}$ such that $u^{\prime} \notin V_{0}(T)$. Denote $N_{T}\left(u^{\prime}\right) \backslash\{u\}=\left\{u_{1}, \ldots, u_{s}\right\}(s \geq$ 1). Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$ and $u \neq w, d_{T}(u) \leq n-\Delta-1 \leq\left\lfloor\frac{n}{2}\right\rfloor-1<\Delta=d_{T}(w)$. Set

$$
T^{\prime}=T-u^{\prime} u_{1}-\cdots-u^{\prime} u_{s}+u_{0} u_{1}+\cdots+u_{0} u_{s} .
$$

Then $T^{\prime} \in \mathscr{T}_{n, \Delta}$. By Lemma 2.3, $w_{\alpha}\left(T^{\prime}\right)>w_{\alpha}(T)$, a contradiction with our choice.
Fact 2. w is a claw.
Proof of Fact 2. Assume that w is not a claw. Then there are at least two vertices $u, v \in N_{T}(w)$ such that $d_{T}(u)=s \geq 2, d_{T}(v)=t \geq 2$. By Fact $1, u, v$ are claws. Denoted by H the non-trivial component of $T-\{u, v\}$. Then $T \cong Q_{s, t}$ (see Figure 5). Assume that $s \geq t$. Then $w_{\alpha}\left(Q_{s+1, t-1}\right)>w_{\alpha}\left(Q_{s, t}\right)$ by Lemma 2.9. Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil, s+t-1 \leq n-\Delta \leq\left\lfloor\frac{n}{2}\right\rfloor \leq \Delta$. Thus $Q_{s+1, t-1} \in \mathscr{T}_{n, \Delta}$, and hence we get a contradiction with our choice.

By Facts 1 and 2, the proof of the theorem is complete.

3. Lower Bound

Lemma 3.1. Suppose that G is a graph and $u, v \in V(G)$ with $d_{G}(u)>d_{G}(v) \geq 2$. Let $u u_{0}, v v_{0} \in E(G)$ with $v_{0} \in V_{0}(G), N_{G}\left(u_{0}\right) \backslash\{u\}=\left\{u_{1}, u_{2}, \ldots, u_{s-1}\right\}(s \geq 2)$ and u_{0} being not on the path connecting u to v. Set $G^{\prime}=G-u_{0} u_{1}-\cdots-u_{0} u_{s-1}+v_{0} u_{1}+$ $\cdots+v_{0} u_{s-1}$. Then, for $\alpha \neq 0$,

$$
w_{\alpha}\left(G^{\prime}\right)<w_{\alpha}(G)
$$

Proof. Note that

$$
\begin{aligned}
w_{\alpha}\left(G^{\prime}\right)-w_{\alpha}(G) & =s^{\alpha} d_{G}^{\alpha}(v)+d_{G}^{\alpha}(u)-s^{\alpha} d_{G}^{\alpha}(u)-d_{G}^{\alpha}(v) \\
& =\left(d_{G}^{\alpha}(v)-d_{G}^{\alpha}(u)\right)\left(s^{\alpha}-1\right)<0,
\end{aligned}
$$

and hence the lemma holds.
From Lemma 3.1, we immediately get the following result.
Theorem 3.2. Let $T \in \mathscr{T}_{n, \Delta}$ and $3 \leq\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$. Then

$$
\begin{equation*}
w_{\alpha}(T) \geq(\Delta-1) \Delta^{\alpha}+(n-\Delta-1)(n-\Delta)^{\alpha}+\Delta^{\alpha}(n-\Delta)^{\alpha} \tag{3}
\end{equation*}
$$

and equality holds if and only if $T \cong W_{n, \Delta}$ for $\alpha<0$.
Proof. First we note that if $T \cong W_{n, \Delta}$, then the equality in (3) holds.
Now we prove that if $T \in \mathscr{T}_{n, \Delta}$, then (3) holds and the equality in (3) holds only if $T \cong W_{n, \Delta}$ for $3 \leq\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$.

Let $T \in \mathscr{T}_{n, \Delta}$. Let $w \in V(T)$ with $d_{T}(w)=\Delta \geq 3$. Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$, we have $N_{T}(w) \cap V_{0}(T) \neq \emptyset$. Let $u_{0} \in V_{0}(T)$ with $w u_{0} \in E(T)$.

We choose T such that $w_{\alpha}(T)$ is as small as possible. We first show two facts.
Fact 1. w is a claw.
Proof of Fact 1. Assume that w is not a claw. Let $v \in V_{1}(T) \backslash\{w\}$ with $v v_{0} \in$ $E(T)$, where $v_{0} \in V_{0}(T)$. Then there is a vertex $u \in N_{T}(w) \backslash V_{0}(T)$ such that u is not on the only path connecting w and v. Denote $N_{T}(u) \backslash\{w\}=\left\{u_{1}, \ldots, u_{s}\right\}(s \geq 1)$. Since $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$ and $v \neq w$, we have $d_{T}(v) \leq n-\Delta-1 \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \leq \Delta-1<d_{T}(w)$. Set

$$
T^{\prime}=T-u u_{1}-\cdots-u u_{s}+v_{0} u_{1}+\cdots+v_{0} u_{s}
$$

Then $T^{\prime} \in \mathscr{T}_{n, \Delta}$. By Lemma 3.1, we have $w_{\alpha}\left(T^{\prime}\right) \leq w_{\alpha}(T)$, a contradiction with our choice.

By Fact 1 , we can let u be the unique vertex with $w u \in E(T)$ and $d_{T}(u) \geq 2$. Let T_{u} be the subtree containing u in $T-w$.

Fact 2. $T_{u} \cong K_{1, n-\Delta-1}$.
Proof of Fact 2. Assume that $T_{u} \not \neq K_{1, n-\Delta-1}$. Then there exists an edge $v^{\prime} v$ such that $v^{\prime} v$ is not a pendant edge. Then $d_{T}\left(v^{\prime}\right)=s \geq 2, d_{T}(v)=t \geq 2$. Choose $v^{\prime} v$ such that $d_{T}(w, v)$ is as large as possible. Then v is a claw. Denote $N_{T}(v) \cap V_{0}(T)=$ $\left\{v_{1}, v_{2}, \ldots, v_{t-1}\right\}$. Set $T^{\prime}=T-v v_{1}-v v_{2}-\cdots-v v_{t-1}+v^{\prime} v_{1}+v^{\prime} v_{2}+\cdots+v^{\prime} v_{t-1}$. Then

$$
\begin{aligned}
w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right) & >(t-1) t^{\alpha}+s^{\alpha} t^{\alpha}-t(s+t-1)^{\alpha} \\
& =(t-1)\left[t^{\alpha}-(s+t-1)^{\alpha}\right]+(s t)^{\alpha}-(s+t-1)^{\alpha} \\
& =-\alpha(t-1)(s-1) \xi^{\alpha}+\alpha(t-1)(s-1) \eta^{\alpha} \\
& =\alpha(t-1)(s-1)\left(\eta^{\alpha}-\xi^{\alpha}\right)>0
\end{aligned}
$$

where $\xi \in(t, s+t-1)$ and $\eta \in(s+t-1$, st).
By Facts 1 and 2, the proof of the theorem is complete.
Theorem 3.3. Let $T \in \mathscr{T}_{n, \Delta}$. Then

$$
\begin{equation*}
w_{\alpha}(T) \geq\left(\Delta-1+2^{\alpha}\right) \Delta^{\alpha}+2^{\alpha}+(n-\Delta-2) 4^{\alpha} \tag{4}
\end{equation*}
$$

and equality holds if and only if $T \cong Y_{n, \Delta}$ for $\alpha>0$.
Proof. First we note that if $T \cong Y_{n, \Delta}$, then the equality in (4) holds.
Now we prove that if $T \in \mathscr{T}_{n, \Delta}$, then (4) holds and the equality in (4) holds only if $T \cong Y_{n, \Delta}$.

Let $T \in \mathscr{T}_{n, \Delta}$. We choose T such that $w_{\alpha}(T)$ is as small as possible. Let $w \in V(T)$ with $d_{T}(w)=\Delta \geq 3$. By an argument similar to the proof of Theorem 3.2, we have $\left|N_{T}(w) \cap V_{0}(T)\right|=\Delta-1$, that is, w is a claw. Therefore, we can let u be the unique vertex with $w u \in E(T)$ and $d_{T}(u) \geq 2$. Let T_{u} be the subtree containing u in $T-w$.

Fact A. $T_{u} \cong P_{n-\Delta}$.
Proof of Fact A. Assume that $T_{u} \not \not P_{n-\Delta}$. Then there is a vertex v such that $d_{T}(v)=s \geq 3$. Choose v such that $d_{T_{u}}(u, v)$ is as large as possible. Let $P_{l}^{0}=v_{0} v_{1} \cdots v_{l}\left(v_{l}=v\right)$ is a pendant chain with end vertex v. Since T_{u} ia a tree, there is a unique path between u and v and only one of v 's neighbors, say v^{\prime}, is on the path. Let $N_{T_{u}}(v) \backslash\left\{v^{\prime}, v_{l-1}\right\}=\left\{x_{1}, \ldots, x_{s-2}\right\}$. Then $d_{T_{u}}\left(x_{i}\right)=a_{i} \geq 1$ and $d_{T_{u}}\left(v^{\prime}\right)=b \geq 2$. Set $T^{\prime}=T-v x_{1}-\cdots-v x_{s-2}+v_{0} x_{1}+\cdots+v_{0} x_{s-2}$. Then $T^{\prime} \in \mathscr{T}_{n, \Delta}$. If $l=1$, then

$$
\begin{aligned}
w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right) & =b^{\alpha}\left(s^{\alpha}-2^{\alpha}\right)+\sum_{i=1}^{s-2} a_{i}^{\alpha}\left(s^{\alpha}-(s-1)^{\alpha}\right)+s^{\alpha}-(2 s-2)^{\alpha} \\
& \geq 2^{\alpha}\left(s^{\alpha}-2^{\alpha}\right)+(s-2)\left(s^{\alpha}-(s-1)^{\alpha}\right)+s^{\alpha}-(2 s-2)^{\alpha} \\
& >2^{\alpha}\left(s^{\alpha}-2^{\alpha}\right)+s^{\alpha}-(2 s-2)^{\alpha} \\
& =2^{\alpha}\left(s^{\alpha}-(s-1)^{\alpha}\right)+s^{\alpha}-4^{\alpha}
\end{aligned}
$$

Thus if $s \geq 4$, then $w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right)>0$; if $s=3$, then $w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right)>6^{\alpha}+3^{\alpha}-$ $2 \cdot 4^{\alpha}>0$.

If $l \geq 2$, then

$$
\begin{aligned}
& w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right) \\
= & b^{\alpha}\left(s^{\alpha}-2^{\alpha}\right)+\sum_{i=1}^{s-2} a_{i}^{\alpha}\left(s^{\alpha}-(s-1)^{\alpha}\right)+2^{\alpha}\left(s^{\alpha}-2^{\alpha}\right)+2^{\alpha}\left(1-(s-1)^{\alpha}\right) \\
\geq & 2^{\alpha}\left(s^{\alpha}-2^{\alpha}\right)+(s-2)\left(s^{\alpha}-(s-1)^{\alpha}\right)+2^{\alpha}\left(1-2^{\alpha}+s^{\alpha}-(s-1)^{\alpha}\right) .
\end{aligned}
$$

Thus if $s \geq 4$, then $w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right)>2^{\alpha}\left(4^{\alpha}-2^{\alpha+1}+1\right)=2^{\alpha}\left(2^{\alpha}-1\right)^{2}>0$; if $s=3$, then $w_{\alpha}(T)-w_{\alpha}\left(T^{\prime}\right) \geq 2^{\alpha}\left(3^{\alpha}-2^{\alpha}\right)+\left(3^{\alpha}-2^{\alpha}\right)+2^{\alpha}\left(1-2^{\alpha}+3^{\alpha}-2^{\alpha}\right)>6^{\alpha}+3^{\alpha}-2 \cdot 4^{\alpha}>0$.

Therefore, in either case, we get a tree $T^{\prime} \in T_{n, \Delta}$ such that $w_{\alpha}(T)>w_{\alpha}\left(T^{\prime}\right)$, a contradiction with our choice.

By Fact A, the proof of the theorem is complete.

References

[1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with its Applications, MacMillan, New York, 1976.
[3] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50(1998) 225-233.
[4] L. H. Clark, J. W. Moon, On the general Randić index for certain families of trees, Ars Combin. 54(2000) 223-235.
[5] C. Delorme, O. Favaron and D. Rautenbach, On the Randić index, Discrete Math. 257(2002) 29-38.
[6] Y. Hu, X. Li and Y. Yuan, Trees with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 52(2004) 119-128.
[7] Y. Hu, X. Li and Y. Yuan, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52(2004) 129-146.
[8] L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, San Francisco, 1976.
[9] L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
[10] H. Li and M. Lu, The m-connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 54(2005) 417-423.
[11] X. Li, X. Wang and B. Wei, On the lower and upper bounds for general Randić index of chemical (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 52(2004) 157-166.
[12] X. Li and Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem. 51(2004) 155-166.
[13] X. Li, L. Wang and Y. Zhang, Complete solution for unicyclic graphs with minimum general Randic index, MATCH Commun. Math. Comput. Chem. 55 (2006) 391-408.
[14] X. Li and J.Zheng, Extremal chemical trees with minimum or maximum general Randic index, MATCH Commun. Math. Comput. Chem. 55 (2006) 381-390.
[15] X. Li, Y. Shi and T. Xu, Unicyclic graphs with maximum general Randic index for $\alpha>0$, MATCH Commun. Math. Comput. Chem. 56 (2006) 557-570.
[16] H.Q. Liu, M. Lu and F. Tian, On the Randić Index, J. Math. Chem. 38 (2005) 345-354.
[17] H.Q. Liu, M. Lu and F. Tian, Trees of extremal connectivity index, Discrete Appl. Math. 154 (2006) 106-119.
[18] H.Q. Liu, M. Lu and F. Tian, On the ordering of trees with the general Randic index of the Nordhaus-Gaddum Type, MATCH Commun. Math. Comput. Chem. 55(2006) 419-426.
[19] H.Q. Liu, X.F. Pan and J.-M. Xu, On the Randić index of unicyclic conjugated molecules, J. Math. Chem. 40(2006) 135-143.
[20] M. Lu, H. Liu and F. Tian, The connectivity index, MATCH Commun. Math. Comput. Chem. 51(2004) 149-154.
[21] X. Pan, H.Q. Liu and J. Xu, Sharp lower bounds for the general Randic index of trees with a given size of matching, MATCH Commun. Math. Comput. Chem. $54(2005)$ 465-480.
[22] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97(1975) 6609-6615.
[23] B. Wu and L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 455-464.

[^0]: *email: liuhuiqing@eyou.com; Partially supported by NSFC (No. 10571105).
 ${ }^{\dagger}$ email: yanxun1@163.com
 \ddagger email: yanzhenghubei@yahoo.com.cn

