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Abstract

The general Randić index of an organic molecule whose molecular graph

is G is defined as the sum of (d(u)d(v))α over all pairs of adjacent vertices of

G, where d(u) is the degree of the vertex u in G and α is a real number with

α �= 0. In this paper, we characterize the trees with minimal and maximal

general Randić indices, respectively, among all trees with a given maximum

degree.

1. Introduction

Given a molecular graph G, the general Randić index, denoted by wα(G), is

defined as the sum of (d(u)d(v))α over all pairs of adjacent vertices of G, where d(u)
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is the degree of the vertex u in G and α is a real number with α �= 0. Recently,

the problem concerning graphs with maximal or minimal general Randić indices

of a given class of graphs has been studied extensively by many researches, and

many results have been achieved (see[3]-[7], [10]-[21],[23]). It is well known that

the Randić index w− 1
2
(G) was proposed by Randić [22] in 1975 and Bollobás and

Erdős [3] generalized the index by replacing −1
2

with any real number α in 1998.

The research background of Randić index together with its generalization appears

in chemical field and can be found in the literature (see [8, 9, 22]).

Here, we characterize the trees with minimal and maximal general Randić indices,

respectively, among all trees with a given maximum degree.

In order to discuss our results, we first introduced some terminologies and no-

tations of graphs. Other undefined notations may refer to [1, 2]. Let G = (V, E)

be a graph. For a vertex u of G, we denote the neighborhood and the degree of

u by NG(u) and dG(u), respectively. A pendant vertex is a vertex of degree 1. A

vertex v called a claw if all but one of neighbors of v are pendant vertices. Denote

V0(G) = {v ∈ V (G) : dG(v) = 1} and V1(G) = {v ∈ V (G) : NG(v) ∩ V0(G) �= ∅}.
The maximum degree of G is denoted by Δ = Δ(G). We use G−u or G−uv to denote

the graph that arises from G by deleting the vertex u ∈ V (G) or the edge uv ∈ E(G).

Similarly, G+uv is a graph that arises from G by adding an edge uv /∈ E(G), where

u, v ∈ V (G). A pendant chain P 0
s = v0v1 · · · vs of a graph G is a sequence of vertices

v0, v1, . . . , vs such that v0 is a pendant vertex of G, dG(v1) = · · · = dG(vs−1) = 2

(unless s = 1) and dG(vs) ≥ 3. We also call that vs and s the end-vertex and the

length of the pendant chain P 0
s , respectively. If s = 1, then the pendant chain P 0

s is

a pendant edge. Let P(T )={P 0
i : i ≥ 1}.

A tree is a connected acyclic graph. Let T be a tree with n vertices and maximum

degree Δ. If Δ = 2, then T ∼= Pn, a path of order n; and if Δ = n − 1, then

T ∼= K1,n−1. Therefore, in the following, we assume that 3 ≤ Δ ≤ n − 2. Let

Tn,Δ = {T : T is a tree with n vertices and maximum degree Δ, 3 ≤ Δ ≤ n − 2}.
In order to formulate our results, we need to define three trees Sn,Δ (n ≤ 2Δ),

Wn,Δ and Yn,Δ (shown in Figure 1) as follows:

Sn,Δ (n ≤ 2Δ) is a graph obtained from the star K1,Δ by attaching one pendant

vertex to each of n − Δ − 1 pendant vertices of K1,Δ.
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Wn,Δ is a graph obtained from the star K1,Δ by attaching n − Δ − 1 pendant

vertices to one pendant vertex of K1,Δ.

Yn,Δ is a graph obtained from the path Pn−Δ+1 of order n − Δ + 1 by attaching

Δ − 1 pendant vertices to one end-vertex of Pn−Δ.

Note that Sn,Δ, Yn,Δ ∈ Tn,Δ, and if n ≤ 2Δ, then Wn,Δ ∈ Tn,Δ.

{
Δ − 1

Yn,Δ

Pn−Δ+1︷ ︸︸ ︷

Sn,Δ

{
n − Δ − 1 2Δ − n + 1

}

Figure 1

{
n − Δ − 1

}
Δ − 1

Wn,Δ

2. Upper Bound

In this section, we first give some lemmas that used in the proof of our results.

Lemma 2.1. For α < 0 (or α > 1) and l > 0, the function f(x) = (x + l)α − xα

is monotonously increasing in x ≥ 1.

Proof. Note that df(x)
dx

= α[(x + l)α−1 − xα−1] > 0 for α < 0 (or α > 1), and

hence the lemma holds.

Lemma 2.2. Let G be a graph, and let u, v ∈ V (G) with dG(u), dG(v) ≥ 3.

Suppose that u0u and v0v1 · · · vl (vl = v) are the pendant chains of G with end

vertices u, v, respectively (see Figure 2). Set G∗ = G − v0v1 + u0v0. If l ≥ 3, then,

for α �= 0,

wα(G∗) > wα(G).

Proof. Let dG(u) = t. Then t ≥ 3. Note that

wα(G∗) − wα(G) = (2t)α + 2α − tα − 4α = (tα − 2α)(2α − 1) > 0,

and hence the lemma holds.

- 157 -



v0v1v2vl−1

G

vuu0 v0v1v2vl−1u0

G∗

vu

Figure 2

Lemma 2.3. Suppose that G is a graph and u, v ∈ V (G) with dG(u) > dG(v) ≥ 2.

Let uu0, vv0 ∈ E(G) with u0 ∈ V0(G), NG(v0) \ {v} = {v1, v2, . . . , vs} (s ≥ 1) and v0

being not on the path connecting u to v (see Figure 3). Set G′ = G − v0v1 − · · · −
v0vs + u0v1 + · · · + u0vs. Then, for α �= 0,

wα(G′) > wα(G).

Proof. Note that

wα(G′) − wα(G) = (s + 1)αdα
G(v) + dα

G(u) − (s + 1)αdα
G(u) − dα

G(v)

= (dα
G(u) − dα

G(v))((s + 1)α − 1) > 0,

and hence the lemma holds.

u
u0

v1

vs

G

v
v0

u
u0

v1

vs

G′

v
v0

Figure 3

Lemma 2.4. Let G be a connected graph of order n ≥ 4, and let v ∈ V (G).

Suppose that u0, v0 ∈ NG(v)∩V0(G). Set G∗ = G− vu0 +u0v0 (see Figure 4). Then,

for α < 0,

wα(G∗) > wα(G).

Proof. Let dG(v) = t. Since G is connected and n ≥ 4, t ≥ 3. Thus

wα(G∗) − wα(G) =
∑

u∈NG(v)\{v0,u0}
dα

G(u) · [(t − 1)α − tα] + (2t − 2)α + 2α − 2 · tα

> 2α(t − 1)α + 2α − 2 · tα = [(2t − 2)α − tα] − (tα − 2α)

> 0.
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The last inequality follows by Lemma 2.1 as 2t − 2 > t.

v0

u0

G

v
v0 u0

G∗

v

Figure 4

Theorem 2.5. Let T ∈ Tn,Δ and 3 ≤ �n
2
� ≤ Δ ≤ n − 2. Then

wα(T ) ≤ (2Δ − n + 1)Δα + 2α(n − Δ − 1)(1 + Δα) (1)

and equality holds if and only if T ∼= Sn,Δ for α < 0.

Proof. First we note that if T ∼= Sn,Δ, then the equality in (1) holds.

Now we prove that if T ∈ Tn,Δ and 3 ≤ �n
2
� ≤ Δ ≤ n − 2, then (1) holds and

the equality in (1) holds only if T ∼= Sn,Δ.

Let T ∈ Tn,Δ. Let w ∈ V (T ) with dT (w) = Δ ≥ 3. Since Δ ≥ �n
2
�, we have

NT (w) ∩ V0(T ) �= ∅. Let u0 ∈ V0(T ) with wu0 ∈ E(T ).

We choose T such that wα(T ) is as large as possible. We will show three facts.

Fact 1. For any P 0
l ∈ P(T ), we have l ≤ 2.

Proof of Fact 1. Assume P 0
l = v0v1 · · · vl ∈ P(T ) with end vertex vl, where

v0 ∈ V0(T ) and l ≥ 3. Let T ′ = T − v0v1 + u0v0. Then T ′ ∈ Tn,Δ. By Lemma 2.2,

we have wα(T ′) ≥ wα(T ), a contradiction with our choice.

Fact 2. Let P 0
l = v0v1 · · · vl ∈ P(T ) with end vertex vl and v0 ∈ V0(T ). If

vl �= w, then l = 1.

Proof of Fact 2. Assume that l ≥ 2. Then by Fact 1, l = 2. Since Δ ≥ �n
2
�

and vl �= w, we have dT (vl) ≤ n − Δ − 1 ≤ �n
2
� − 1 < Δ = dT (w). Set

T ′ = T − v0v1 + u0v0.

Then T ′ ∈ Tn,Δ. By Lemma 2.3, wα(T ′) ≥ wα(T ), a contradiction with our choice.

Fact 3. For any vertex v ∈ V (T ) \ {w}, we have dT (v) ≤ 2.
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Proof of Fact 3. Assume that dT (v) ≥ 3 for some v ∈ V (T ) \ {w}. We choose

v such that dT (w, v) is as large as possible. Then |NT (v)∩V0(T )| ≥ 2 by Fact 2. Let

u′, v′ ∈ NT (v) ∩ V0(T ). Set

T ′ = T − u′v + u′v′.

Then T ′ ∈ Tn,Δ. By Lemma 2.4, we have wα(T ′) ≥ wα(T ), a contradiction with our

choice.

By Fact 3, the proof of the theorem is complete.

By Theorem 2.5, we have wα(Sn,Δ−1) ≥ wα(Sn,Δ) for α < 0 and �n
2
� + 1 ≤ Δ ≤

n − 1. Thus we obtain the following result.

Corollary 2.6. Let T ∈ Tn,Δ and Δ ≥ l ≥ �n
2
�. Then, for α < 0, wα(T ) ≤

wα(Sn,l) with equality if and only if T ∼= Sn,l.

In [21], Pan, Liu and Xu has shown the following result.

Lemma 2.7 [21]. Let T be a tree with n vertices and m-matching, where n ≥ 2m.

Then, for −1
2
≤ α < 0, wα(T ) ≥ wα(Sn,n−m) with equality if and only if T ∼= Sn,n−m.

By Lemma 2.7 and Theorem 2.5, we have the following result.

Corollary 2.8. Let T1 and T2 be trees of order n, n ≥ 4. If T1 has m-matchings

and Δ(T2) = Δ′ ≥ n − m, then wα(T1) ≥ wα(T2) with equality if and only if T1
∼=

T2
∼= Sn,Δ′ for −1

2
≤ α < 0.

v′ u′H uv

}{
t − 1s − 1

Qs,t

Figure 5

Lemma 2.9. Let Qs,t be a graph shown in Figure 5, where H is a connected

graph. If s ≥ t ≥ 2 and dG(v) ≥ dG(u), then, for α ≥ 1,

wα(Qs,t) < wα(Qs+1,t−1).

Proof. Set dG(v) = p, dG(u) = q. Then p ≥ q and

wα(Qs+1,t−1) − wα(Qs,t)
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= (s + pα)(s + 1)α + (t − 2 + qα)(t − 1)α − (s − 1 + pα)sα − (t − 1 + qα)tα

= [(s + 1)α+1 − sα+1] − [tα+1 − (t − 1)α+1]

+(pα − 1)[(s + 1)α − sα] − (qα − 1)[tα − (t − 1)α].

If α = 1, then

wα(Qs+1,t−1) − wα(Qs,t) = [(s + 1)2 − s2] − [t2 − (t − 1)2] + p − q

≥ [(s + 1)2 − s2] − [t2 − (t − 1)2] > 0,

if α > 1, then

wα(Qs+1,t−1) − wα(Qs,t) = [(s + 1)α+1 − sα+1] − [tα+1 − (t − 1)α+1]

+(pα − 1)[(s + 1)α − sα] − (qα − 1)[tα − (t − 1)α]

> (pα − 1)[((s + 1)α − sα) − (tα − (t − 1)α)] > 0,

the last inequality follows by Lemma 2.1 as s > t − 1, p ≥ q ≥ 2. Hence the lemma

holds.

Theorem 2.10. Let T ∈ Tn,Δ and 3 ≤ �n
2
� ≤ Δ ≤ n − 2. Then

wα(T ) ≤ (Δ − 1)Δα + (n − Δ − 1)(n − Δ)α + Δα(n − Δ)α (2)

and equality holds if and only if T ∼= Wn,Δ for α ≥ 1.

Proof. First we note that if T ∼= Wn,Δ, then the equality in (2) holds.

Now we prove that if T ∈ Tn,Δ, then (2) holds and the equality in (2) holds only

if T ∼= Wn,Δ for 3 ≤ �n
2
� ≤ Δ ≤ n − 2.

Let T ∈ Tn,Δ. Let w ∈ V (T ) with dT (w) = Δ ≥ 3. Since Δ ≥ �n
2
�, we have

NT (w) ∩ V0(T ) �= ∅. We choose T such that wα(T ) is as large as possible. Let

u0 ∈ V0(T ) with wu0 ∈ E(T ). We first show two facts.

Fact 1. For any vertex u ∈ NT (w) \ V0(T ), u is a claw.

Proof of Fact 1. Assume that u ∈ NT (w) \V0(T ) is not a claw. Then there is a

vertex u′ ∈ NT (u)\{w} such that u′ /∈ V0(T ). Denote NT (u′)\{u} = {u1, . . . , us}(s ≥
1). Since Δ ≥ �n

2
� and u �= w, dT (u) ≤ n − Δ − 1 ≤ �n

2
� − 1 < Δ = dT (w). Set

T ′ = T − u′u1 − · · · − u′us + u0u1 + · · · + u0us.
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Then T ′ ∈ Tn,Δ. By Lemma 2.3, wα(T ′) > wα(T ), a contradiction with our choice.

Fact 2. w is a claw.

Proof of Fact 2. Assume that w is not a claw. Then there are at least two

vertices u, v ∈ NT (w) such that dT (u) = s ≥ 2, dT (v) = t ≥ 2. By Fact 1, u, v are

claws. Denoted by H the non-trivial component of T − {u, v}. Then T ∼= Qs,t (see

Figure 5). Assume that s ≥ t. Then wα(Qs+1,t−1) > wα(Qs,t) by Lemma 2.9. Since

Δ ≥ �n
2
�, s + t − 1 ≤ n − Δ ≤ �n

2
� ≤ Δ. Thus Qs+1,t−1 ∈ Tn,Δ, and hence we get a

contradiction with our choice.

By Facts 1 and 2, the proof of the theorem is complete.

3. Lower Bound

Lemma 3.1. Suppose that G is a graph and u, v ∈ V (G) with dG(u) > dG(v) ≥ 2.

Let uu0, vv0 ∈ E(G) with v0 ∈ V0(G), NG(u0) \ {u} = {u1, u2, . . . , us−1} (s ≥ 2) and

u0 being not on the path connecting u to v. Set G′ = G−u0u1−· · ·−u0us−1 +v0u1 +

· · · + v0us−1. Then, for α �= 0,

wα(G′) < wα(G).

Proof. Note that

wα(G′) − wα(G) = sαdα
G(v) + dα

G(u) − sαdα
G(u) − dα

G(v)

= (dα
G(v) − dα

G(u))(sα − 1) < 0,

and hence the lemma holds.

From Lemma 3.1, we immediately get the following result.

Theorem 3.2. Let T ∈ Tn,Δ and 3 ≤ �n
2
� ≤ Δ ≤ n − 2. Then

wα(T ) ≥ (Δ − 1)Δα + (n − Δ − 1)(n − Δ)α + Δα(n − Δ)α (3)

and equality holds if and only if T ∼= Wn,Δ for α < 0.

Proof. First we note that if T ∼= Wn,Δ, then the equality in (3) holds.

Now we prove that if T ∈ Tn,Δ, then (3) holds and the equality in (3) holds only

if T ∼= Wn,Δ for 3 ≤ �n
2
� ≤ Δ ≤ n − 2.

Let T ∈ Tn,Δ. Let w ∈ V (T ) with dT (w) = Δ ≥ 3. Since Δ ≥ �n
2
�, we have

NT (w) ∩ V0(T ) �= ∅. Let u0 ∈ V0(T ) with wu0 ∈ E(T ).
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We choose T such that wα(T ) is as small as possible. We first show two facts.

Fact 1. w is a claw.

Proof of Fact 1. Assume that w is not a claw. Let v ∈ V1(T ) \ {w} with vv0 ∈
E(T ), where v0 ∈ V0(T ). Then there is a vertex u ∈ NT (w)\V0(T ) such that u is not

on the only path connecting w and v. Denote NT (u) \ {w} = {u1, . . . , us}(s ≥ 1).

Since Δ ≥ �n
2
� and v �= w, we have dT (v) ≤ n − Δ − 1 ≤ �n

2
� − 1 ≤ Δ − 1 < dT (w).

Set

T ′ = T − uu1 − · · · − uus + v0u1 + · · · + v0us.

Then T ′ ∈ Tn,Δ. By Lemma 3.1, we have wα(T ′) ≤ wα(T ), a contradiction with our

choice.

By Fact 1, we can let u be the unique vertex with wu ∈ E(T ) and dT (u) ≥ 2.

Let Tu be the subtree containing u in T − w.

Fact 2. Tu
∼= K1,n−Δ−1.

Proof of Fact 2. Assume that Tu �∼= K1,n−Δ−1.Then there exists an edge v′v

such that v′v is not a pendant edge. Then dT (v′) = s ≥ 2, dT (v) = t ≥ 2. Choose v′v

such that dT (w, v) is as large as possible. Then v is a claw. Denote NT (v)∩V0(T ) =

{v1, v2, . . . , vt−1}. Set T ′ = T − vv1 − vv2 − · · · − vvt−1 + v′v1 + v′v2 + · · · + v′vt−1.

Then

wα(T ) − wα(T ′) > (t − 1)tα + sαtα − t(s + t − 1)α

= (t − 1)[tα − (s + t − 1)α] + (st)α − (s + t − 1)α

= −α(t − 1)(s − 1)ξα + α(t − 1)(s − 1)ηα

= α(t − 1)(s − 1)(ηα − ξα) > 0,

where ξ ∈ (t, s + t − 1) and η ∈ (s + t − 1, st).

By Facts 1 and 2, the proof of the theorem is complete.

Theorem 3.3. Let T ∈ Tn,Δ. Then

wα(T ) ≥ (Δ − 1 + 2α)Δα + 2α + (n − Δ − 2)4α (4)

and equality holds if and only if T ∼= Yn,Δ for α > 0.

Proof. First we note that if T ∼= Yn,Δ, then the equality in (4) holds.

Now we prove that if T ∈ Tn,Δ, then (4) holds and the equality in (4) holds only

if T ∼= Yn,Δ.
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Let T ∈ Tn,Δ. We choose T such that wα(T ) is as small as possible. Let w ∈ V (T )

with dT (w) = Δ ≥ 3. By an argument similar to the proof of Theorem 3.2, we have

|NT (w)∩ V0(T )| = Δ− 1, that is, w is a claw. Therefore, we can let u be the unique

vertex with wu ∈ E(T ) and dT (u) ≥ 2. Let Tu be the subtree containing u in T −w.

Fact A. Tu
∼= Pn−Δ.

Proof of Fact A. Assume that Tu �∼= Pn−Δ. Then there is a vertex v such

that dT (v) = s ≥ 3. Choose v such that dTu(u, v) is as large as possible. Let

P 0
l = v0v1 · · · vl(vl = v) is a pendant chain with end vertex v. Since Tu ia a tree,

there is a unique path between u and v and only one of v’s neighbors, say v′, is

on the path. Let NTu(v) \ {v′, vl−1} = {x1, . . . , xs−2}. Then dTu(xi) = ai ≥ 1 and

dTu(v′) = b ≥ 2. Set T ′ = T −vx1−· · ·−vxs−2 +v0x1 + · · ·+v0xs−2. Then T ′ ∈ Tn,Δ.

If l = 1, then

wα(T ) − wα(T ′) = bα(sα − 2α) +
s−2∑
i=1

aα
i (sα − (s − 1)α) + sα − (2s − 2)α

≥ 2α(sα − 2α) + (s − 2)(sα − (s − 1)α) + sα − (2s − 2)α

> 2α(sα − 2α) + sα − (2s − 2)α

= 2α(sα − (s − 1)α) + sα − 4α.

Thus if s ≥ 4, then wα(T )−wα(T ′) > 0; if s = 3, then wα(T )−wα(T ′) > 6α + 3α −
2 · 4α > 0.

If l ≥ 2, then

wα(T ) − wα(T ′)

= bα(sα − 2α) +
s−2∑
i=1

aα
i (sα − (s − 1)α) + 2α(sα − 2α) + 2α(1 − (s − 1)α)

≥ 2α(sα − 2α) + (s − 2)(sα − (s − 1)α) + 2α(1 − 2α + sα − (s − 1)α).

Thus if s ≥ 4, then wα(T )−wα(T ′) > 2α(4α − 2α+1 + 1) = 2α(2α − 1)2 > 0; if s = 3,

then wα(T )−wα(T ′) ≥ 2α(3α−2α)+(3α−2α)+2α(1−2α+3α−2α) > 6α+3α−2·4α > 0.

Therefore, in either case, we get a tree T ′ ∈ Tn,Δ such that wα(T ) > wα(T ′), a

contradiction with our choice.

By Fact A, the proof of the theorem is complete.
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index of chemical (n,m)-graphs, MATCH Commun. Math. Comput. Chem.

52(2004) 157-166.

[12] X. Li and Y. Yang, Sharp bounds for the general Randić index, MATCH Com-
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