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Abstract

The Randić index of a simple connected graph G is defined as
∑

uv∈E(G)(d(u)d(v))−
1
2 .

In this paper, we give the first three largest Randić indices of unicyclic graphs and char-
acterize the extreme graphs that achieve those bounds.

1 Introduction

A single number that can be used to characterize some property of the graph of a molecule
is called a topological index. For quite some time there has been rising interest in the field of
computational chemistry in topological indices that capture the structural essence of com-
pounds. The interest in topological indices is mainly related to their use in nonempirical
quantitative structure-property relationships and quantitative structure-activity relation-
ships.

One of the most important topological indices is the well-known branching index intro-
duced by Randić [6] which is defined as the sum of certain bond contributions calculated
from the vertex degree of the hydrogen suppressed molecular graphs.
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The Randić index, which is the sum of all relative accessibility areas in the molecule, is
the relative molecular accessibility area expressed in R2. These areas represent the total area
which are accessible from the environment surrounding the molecules. This explains why
the Randić index has been so successful in modeling very diverse physical and biological
properties. The molecules can be represented as molecular graphs, namely as hydrogen
depleted graphs in which vertices represent atoms and edges represent covalent bonds. For
a molecular graph G = (V (G), E(G)) where V (G) and E(G) denote the the set of vertices
and the set of edges of G respectively, the Randić index of G is defined as

R(G) =
∑

uv∈E(G)

(d(u)d(v))−
1
2 ,

where d(·) denotes the degree of the corresponding vertex. The Randić index has received
intensive attention recently. Much effort has been spent to derive nontrivial bounds for the
Randić index of molecular graphs. For general graphs, a lower bound of R(G) was given
by Bollobás and Erdös [1], while an upper bound was recently presented in [4]. A lot of
research focused on special classes of graphs. For example, trees with the largest and the
smallest Randić index were considered in [3, 7, 8]. In [2], Lu et. al. gave a sharp lower bound
for the Randić index of trees with n vertices and k pendants where 2 ≤ k ≤ n − 1. An
upper bound of the Randić index of trees with n vertices and k pendants where n ≥ 3k − 2
was given in [9].

Here, we will investigate the Randić index of unicyclic graphs. Gao and Lu [2] obtained
sharp lower and upper bounds for the Randić index of unicyclic graphs. Pan et. al. [5] gave
a sharp lower bound for unicyclic graphs with k pendants. In this paper, we will obtain
the first three largest Randić indices of unicyclic graphs. We will also characterize extreme
unicyclic graphs which achieve those bounds.

Before proceeding, we introduce some notations. A pendant of a graph is a vertex with
degree 1. We use Un to denote the set of all unicyclic graphs of order n. We use Un,p to
denote the subset of Un consisting of all graphs with p pendants. We use Uk

n to denote
another subset of Un consisting of all graphs with a k-cycle. For any G ∈ Un, we denote its
unique cycle by C(G). The maximum degree of G is denoted by Δ(G). An i-vertex of G

means a vertex with degree i. We let ni(G) denote the number of i-vertices of G. As usual,
Cn denotes the cycle on n vertices, Pn denotes the path on n vertices, and Sn denotes the
star on n vertices. Let Gk

n ∈ Uk
n denote the graph obtained by attaching Pn−k+1 to Ck. Let

Gn,n−k denote the graph obtained by identifying the center of Sn−k+1 with a vertex of Ck.
Pan et. al. gave the following sharp lower bound on the Randić index of Un,p with p

pendants.
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Theorem 1.1 (Pan et. al. [5]) Let G ∈ Un,p. Then

R(G) ≥ n − p − 2
2

+
p +

√
2√

p + 2
,

where equality holds if and only if G = Gn,p.

Guo and Lu [2] showed that the largest Randić index is achieved by the graph Cn, a
cycle on n-vertices.

Theorem 1.2 (Gao and Lu [2]) Let G be a unicyclic graph on n vertices. Then

1
2

+
n − 3 +

√
2√

n − 1
≤ R(G) ≤ n

2

with left equality if and only if G = Gn,n−3 and with right equality if and only if G = Cn.

In this paper, we give the first three largest Randić indices of unicyclic graphs.

Theorem 1.3 Among all the unicyclic graphs on n vertices,
(1) The first largest Randić index of unicyclic graphs on n vertices is n

2 , which is achieved
only by the graph Cn;

(2) The second largest Randić index of unicyclic graphs on n vertices is n−4
2 + 3√

6
+ 1√

2

and it is achieved only by each graph in {Gk
n : 3 ≤ k ≤ n − 2};

(3) The third largest Randić index of unicyclic graphs on n vertices is n−3
2 + 2√

6
+ 1√

3

and Gn−1
n is the only graph that has the second largest Randić index.

In order to prove Theorem 1.3, we need to look at a partition of all unicyclic graphs on
n vertices. In our proof, we partition Un according to the length of the cycles. Precisely,
we partition Un into U3

n,U4
n, · · · ,Un−1

n ,Un
n , where Uk

n is the set of unicyclic graphs on n

vertices with a k-cycle. We then investigate the largest and smallest Randić indices within
each subclass Uk

n . We prove the following theorem (Theorem 1.4). Theorem 1.3 follows
straightly from Theorem 1.4.

Theorem 1.4 Let G be a unicyclic graph with a k-cycle, i.e., G ∈ Uk
n . Then

(1) k−2
2 + n−k+

√
2√

n−k+2
≤ R(G) with equality if and only if G = Gn,n−k;

(2) R(G) ≤ n−4
2 + 3√

6
+ 1√

2
if k ≤ n−2 with equality if and only if G is in {Gk

n : 3 ≤ k ≤ n−2};
(3) R(G) = R(Gn−1

n ) = n−3
2 + 2√

6
+ 1√

3
if k = n − 1;

(4) R(G) = R(Cn) = n
2 if k = n.

Clearly, Un
n = {Cn} and Un−1

n = {Gn−1
n } = {Gn,1}. So we only need to prove our

theorem for k ≤ n − 2. In the following we always assume 3 ≤ k ≤ n − 2. The proofs of
Theorem 1.4 will be given in Sections 2 and 3. We will prove the upper bound in Section 2
and the proof of lower bound is presented in Section 3.
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2 Upper bound of the Randić index of unicyclic graphs with

a k-cycle

In this section we show that Gk
n has the largest Randić index among the graphs in Uk

n .
For any G ∈ Un, a ray of G is a path v0v1 · · · vt such that d(vt) = 1, v0 ∈ C(G), and

vi �∈ C(G) for each i = 1, 2, · · · , t. Define Ray(G) = max{|P | : P is a ray of G} where |P |
is the number of edges in P . If |P | = Ray(G), we say P is a maximum ray.

Theorem 2.1 Let G ∈ Uk
n where 3 ≤ k ≤ n − 2 and G �= Gk

n. Then R(G) < R(Gk
n) =

n−4
2 + 3√

6
+ 1√

2
.

Proof. It is not hard to check that the theorem is true if n − k ≤ 3.
Let G ∈ Uk

n be a counterexample to the theorem such that
(1) n − k is as small as possible;
(2) subject to (1), Ray(G) is as large as possible;
(3) subject to (1) and (2), n1(G) is as small as possible.
Then we have the following two easy observations.

Observation 1 R(G) ≥ R(Gk
n), and for any graph H ∈ Uk

n , R(H) ≤ R(Gk
n) ≤ R(G) if

Ray(H) > Ray(G), or if Ray(H) ≥ Ray(G) and n1(H) < n1(G).

Observation 2 For any H ∈ Uk
n−1 and H �= Gk

n−1, R(H) < R(Gk
n−1) = R(Gk

n) − 1
2 .

Now we derive some properties of G in order to draw a contradiction.

Claim 1. Each vertex of G is adjacent to at most one 1-vertex.
Proof of Claim 1. Suppose on the contrary that a vertex y is adjacent to two 1-vertices,
say x, z. Let N(y) = {x, z, y3, · · · , yd} where d = d(y) ≥ 3, and let G′ = G − yz + xz ∈ Uk

n .
Then

R(G) − R(G′) =
d∑

i=3

1√
d(yi)d(y)

+
2√
d(y)

−
(

d∑
i=3

1√
d(yi)(d(y) − 1)

+
1√

2(d(y) − 1)
+

1√
2

)

≤ 2√
d(y)

− 1√
2(d(y) − 1)

− 1√
2

= f(d(y)),

where f(x) = 2√
x
− 1√

2(x−1)
− 1√

2
.

Now we show f(x) < 0 for any integer x ≥ 3. First f(3) = 2√
3
− 1

2 − 1√
2

< 0. If x ≥ 4,
then

f(x) =
2√
x
− 1√

2(x − 1)
− 1√

2
<

2√
x
− 1√

2x
− 1√

2
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=
(

2 − 1√
2

)
1√
x
− 1√

2
≤

(
2 − 1√

2

)
1√
4
− 1√

2

= 1 − 3
√

2
4

< 0.

Therefore, R(G)−R(G′) < 0, i.e., R(G) < R(G′). This is a contradiction to Observation
1 since Ray(G′) ≥ Ray(G) and n1(G) = n1(G′) + 1 > n1(G′). This contradiction proves
Claim 1.

Claim 2. If u ∈ V (G) is adjacent to a 1-vertex, then d(u) ≤ 3.
Proof of Claim 2. Assume on the contrary that d(u) ≥ 4. Let s = d(u) and v be the
1-vertex that is adjacent to u. Let N(u) = {v, u2, · · · , us} and G′ = G − v ∈ Uk

n−1. Then

R(G) − R(G′) =
s∑

i=2

1√
d(ui)d(u)

+
1√
d(u)

−
s∑

i=2

1√
d(ui)(d(u) − 1)

<
1√
d(u)

≤ 1
2
.

Hence, R(G) < R(G′)+ 1
2 . Since G′ ∈ Uk

n−1, by Observation 2 we have R(G′) ≤ R(Gk
n−1) =

R(Gk
n)− 1

2 . Therefore, R(G) < R(Gk
n), a contradiction to Observation 1. This proves Claim

2.

Claim 3. Ray(G) ≥ 2.
Proof of Claim 3. Since n1(G) ≥ 2, we have Ray(G) ≥ 1. By contradiction, assume
Ray(G) = 1. Then each 1-vertex is adjacent to some vertex of C(G). By Claim 1, the
degree of each vertex of C(G) is either 2 or 3. Since n1(G) ≥ 2, let x, u be two 1-vertices
and y, v be the neighbors of x, u, respectively. Then d(v) = d(y) = 3. Let N(y) = {y1, y2, x}
and N(v) = {v1, v2, u}. Clearly, y1, y2 ∈ C(G), so d(y1) ≤ 3 and d(y2) ≤ 3. Consider
G′ = G − xy + xu ∈ Uk

n . We have

R(G) − R(G′) =
1√

d(y1)d(y)
+

1√
d(y2)d(y)

+
1√
d(y)

+
1√
d(v)

− 1√
d(y1)(d(y) − 1)

− 1√
d(y2)(d(y) − 1)

− 1√
2
− 1√

2d(v)

=
(

1√
3
− 1√

2

)(
1√

d(y1)
+

1√
d(y2)

)
+

2√
3
− 1√

2
− 1√

6

≤ 2√
3

(
1√
3
− 1√

2

)
+

2√
3
− 1√

2
− 1√

6
< 0.

Therefore R(G) < R(G′). Since Ray(G′) = Ray(G) + 1 > Ray(G), by Observation 1
we have R(G) ≥ R(G′), a contradiction. This proves Claim 3.

Claim 4. For each maximum ray P = v0v1 · · · vt of G, we have d(vt−1) = 2.
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It follows from Claims 2 and 3 and the maximality of the ray.

Claim 5. G does not contain the configuration in Figure 1.

�u � v

�w

�y

�
�

��
�

�

d(v) = d(y) = 1, d(u) = 2

Figure 1

Proof of Claim 5. Suppose on the contrary that G contains the configuration in Figure 1.
Then by Claim 2, d(w) = 3. Let N(w) = {z, u, v}. Let G′ = G − wv + yv ∈ Uk

n . We have

R(G) − R(G′) =

(
1√

3d(z)
+

1√
6

+
1√
3

+
1√
2

)
−

(
1√

2d(z)
+

1
2

+
1
2

+
1√
2

)

<
1√
6

+
1√
3
− 1 < 0.

Therefore R(G) < R(G′). Note that Ray(G′) ≥ Ray(G) and n1(G′) = n1(G) − 1 < n1(G).
By Observation 1 we have R(G′) ≤ R(Gk

n) ≤ R(G). This contradiction proves Claim 5.

Claim 6. G does not contain the configuration in Figure 2.

�u � w

�a

� v

� z�y �x

�
�

��
�

�

d(u) = d(v) = d(w) = 2, d(x) = d(y) = d(z) = 1

Figure 2

Proof of Claim 6. Suppose on the contrary that G contains the configuration in Figure 2. Let
d = d(a). Clearly, d ≥ 4. Let N(a) = {u, v, w, x4, . . . , xd}. Let G′ = G−av−aw+vy+wz ∈
Uk

n . We have

R(G′) − R(G) =

(
1√
2

+ 2 +
1√

2(d − 2)
+

d∑
i=4

1√
d(xi)(d − 2)

)

−
(

3√
2

+
3√
2d

+
d∑

i=4

1√
d(xi)d

)

> 2 −
√

2 +
1√

2(d − 2)
− 3√

2d
:= g(d).
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Taking derivative of g(d) we have

g′(d) =
1

2
√

2

(
3√
d3

− 1√
(d − 2)3

)
> 0,

when d ≥ 4. It is easy to check that g(4) > 0. Hence g(d) > 0, i.e., R(G′) > R(G). Since
Ray(G′) ≥ Ray(G) and n1(G′) < n1(G), by Observation 1, we have R(G′) ≤ R(Gk

n) ≤
R(G). This contradiction proves Claim 6.

Claim 7. G does not contain the configuration in Figure 3.

�u � w

�a�v � z

�y �x

�
�

��
�

�

d(u) = d(w) = 2, d(x) = d(y) = 1, d(a) = 4, d(v) ≤ 4, d(z) ≤ 4

Figure 3

Proof of Claim 7. Suppose on that contrary that G contains a configuration in Figure 3.
Let G′ = G − aw + yw. We have

R(G′) − R(G) =

(
1√
2

+ 1 +
1√
6

+
1√
3

(
1√
d(v)

+
1√
d(z)

))

−
(√

2 +
1√
2

+
1
2

(
1√
d(v)

+
1√
d(z)

))

= 1 +
1√
6
−
√

2 +
(

1√
3
− 1

2

)(
1√
d(v)

+
1√
d(z)

)

≥ 1 +
1√
6
−
√

2 +
(

1√
3
− 1

2

)(
1√
4

+
1√
4

)

=
1
2

+
1√
6
−
√

2 +
1√
3

> 0,

so R(G′) > R(G).
On the other hand, notice that Ray(G′) ≥ Ray(G) and n1(G′) < n1(G), by Observation

1, we also have R(G′) ≤ R(Gk
n) ≤ R(G). This contradiction proves Claim 7.
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Claim 8. G does not contain the configuration in Figure 4.

�u �w

�a�v

�y �x

�
�

��
�

�

d(u) = d(w) = 2, d(x) = d(y) = 1, d(a) = 3, d(v) ≤ 30

Figure 4

Proof of Claim 8. Assume that G contains a configuration in Figure 4. Let G′ = G− aw +
yw ∈ Uk

n . We have

R(G′) − R(G) =

(
1√
2

+
3
2

+
1√

2d(v)

)
−

(√
2 +

2√
6

+
1√

3d(v)

)

=
(

1√
2
− 1√

3

)
1√
d(v)

+
1√
2

+
3
2
−

√
2 − 2√

6

≥
(

1√
2
− 1√

3

)
1√
30

+
1√
2

+
3
2
−

√
2 − 2√

6
> 0,

so R(G′) > R(G).
On the other hand, notice that Ray(G′) ≥ Ray(G) and n1(G′) < n1(G), by Observation

1, we also have R(G′) ≤ R(Gk
n) ≤ R(G). This contradiction proves Claim 8.

Claim 9. Ray(G) ≥ 3.
Proof of Claim 9. Suppose on the contrary that Ray(G) ≤ 2. Then by Claim 3, Ray(G) = 2.

We now argue that every vertex of C(G) has degree ≤ 4. Let v ∈ C(G). If d(v) ≥ 3,
then either v is adjacent to a 1-vertex or v is the initial vertex of d(v) − 2 maximum
ray(s) (length= 2). For the first case, by Claim 2, we have d(v) = 3. For the second case,
by Claim 6, we have d(v) ≤ 4.

Moreover, by Claim 1 and Claim 7, no two rays share a common vertex since Ray(G) = 2.
Hence Δ(G) = 3. If G has two maximum rays xyz and uvw where x, u ∈ C(G), then
d(x) = d(u) = 3, d(y) = d(v) = 2, and d(z) = d(w) = 1. Let N(x) = {y, x1, x2} and
G′ = G − xy + wy ∈ Uk

n . Note Ray(G′) > Ray(G), hence by Observation 1 R(G′) ≤
R(Gk

n) ≤ R(G). On the other hand, we also have

R(G′) − R(G) =

(
1√

2d(x1)
+

1√
2d(x2)

+ 1 +
1√
2

)
−

(
1√

3d(x1)
+

1√
3d(x2)

+
1√
6

+
2√
2

)

=
(

1√
2
− 1√

3

)(
1√

d(x1)
+

1√
d(x2)

)
+ 1 − 1√

2
− 1√

6
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≥
(

1√
2
− 1√

3

)
2√
3

+ 1 − 1√
2
− 1√

6
> 0,

which is a contradiction. Thus G has only one maximum ray.
Since n1(G) ≥ 2, there exists a vertex u ∈ C(G) that is adjacent to a 1-vertex, say v. Let

xyz be a maximum ray with d(y) = 2, d(z) = 1, and d(x) = 3. Let G′′ = G−uv + zv ∈ Uk
n .

Since Ray(G′′) = 3 > Ray(G), again by Observation 1 R(G′′) ≤ R(Gk
n) ≤ R(G). On the

other hand, similarly to G′, we can also show that R(G′′) > R(G). This contradiction
proves Claim 9.

Claim 10. For each maximum ray P = v0v1 · · · vt−1vt of G, we have d(vt−2) = 3 and
d(vt−3) ≥ 31.
Proof of Claim 10. By Claim 9, t ≥ 3, hence vt−2 /∈ C(G). Clearly d(vt−2) ≥ 2.

If d(vt−2) = 2, we let G′ be the graph obtained by identifying vt−2 with vt−1 and
removing the loop. So G′ ∈ Uk

n−1. Since G �= Gk
n, G′ �= Gk

n−1. Then by Observation 2
we have R(G) − 1

2 = R(G′) < R(Gk
n−1) = R(Gk

n) − 1
2 ≤ R(G) − 1

2 , a contradiction. So
d(vt−2) ≥ 3.

Let N(vt−2) = {vt−1, vt−3, x3, · · · , xd(vt−2)}. By Claim 5, d(xi) ≥ 2 for each i ≥ 3. For
any i ≥ 3, let y ∈ N(xi) and y �= vt−2. Then v0v1 · · · vt−2xiy must be a maximum ray
since it has the same length as P does. Hence by Claim 4 we have d(xi) = 2 and d(y) = 1.
Moreover, by Claim 6 we have d(vt−2) = 3 otherwise G contains a configuration in Figure
2.

Since d(vt−2) = 3, by Claim 8 we have d(vt−3) ≥ 31.

Claim 11. Let P = v0v1 · · · vt be a maximum ray of G. For each vertex u ∈ N(vt−3) and
u �∈ P ∪ C(G), d(u) ≤ 3.
Proof of Claim 11. For the sake of convenience, let x = vt, y = vt−1, z = vt−2, and w = vt−3.
By Claims 4, 8, and 10, d(x) = 1, d(y) = 2, d(z) = 3, and d(w) ≥ 31. Let u ∈ N(w) and
u �∈ P ∪ C(G). Assume d(u) ≥ 4. Then by Claim 2 we know that every neighbor of u

has degree at least two. Let N(u) = {w, u2, u3, · · · , ud(u)}. Let u′
i ∈ N(ui) and u′

i �= u for
i = 2, · · · d(u). Note that the path v0v1 · · · vt−3uuiu

′
i is a maximum ray since it has the same

length as P . Then by Claim 10, d(u) = 3, a contradiction. Therefore, d(u) ≤ 3.

With all these preparations, now we can prove that such a counterexample G does not exist.
The final step. Let P = v0v1 · · · vt be a maximum ray of G. Then by Claims 4 and 10, we
have d(vt) = 1, d(vt−1) = 2, d(vt−2) = 3, d(vt−3) ≥ 31. Let w ∈ N(vt−3), and w /∈ C(G)∪P ,
then Claim 11 gives d(w) ≤ 3. Since d(vt−2) = 3, we let N(vt−2) = {vt−1, vt−3, u}. By
Claims 1, 5, and the maximality of P we know d(u) = 2. Let N(u) = {vt−2, v}, then v must
be a 1-vertex. Therefore, G contains a configuration in Figure 5

- 121 -



� vt−1
� u

� vt−2

�vt−3 �w

� vt
� v

�
�

��
�

�

Figure 5

In this configuration, d(v) = d(vt) = 1, d(u) = d(vt−1) = 2, d(vt−2) = 3, d(vt−3) ≥ 31,
and d(w) ≤ 3. Let d = d(vt−3), m = d(w), and N(vt−3) = {vt−2, w, x3, · · ·xd}. Let
G′ = G − vt−3w − vt−2u + uvt + vt−2w ∈ Uk

n . We have

R(G′) − R(G) =

(
d∑

i=3

1√
(d − 1)d(xi)

+
1√
3m

+
1√

3(d − 1)
+

1√
6

+
2
2

+
1√
2

)

−
(

d∑
i=3

1√
dd(xi)

+
1√
dm

+
1√
3d

+
2√
6

+
2√
2

)

>
1√
3m

− 1√
dm

+ 1 − 1√
6
− 1√

2

=
(

1√
3
− 1√

d

)
1√
m

+ 1 − 1√
6
− 1√

2

≥
(

1√
3
− 1√

31

)
1√
3

+ 1 − 1√
6
− 1√

2
> 0.

On the other hand, it is clear that Ray(G′) > Ray(G), thus by Observation 1 we have
R(G′) ≤ R(Gk

n) ≤ R(G).
This contradiction shows that such a counterexample does not exist, thus completes the

proof of the theorem.

3 Lower bound of the Randić index of unicyclic graphs with

a k-cycle

In this section we prove that Gn,n−k has the smallest Randić index in Uk
n .

Theorem 3.1 Let G ∈ Uk
n where 3 ≤ k ≤ n. If G �= Gn,n−k, then R(G) > R(Gn,n−k) =

k−2
2 + n−k+

√
2√

n−k+2
.
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Proof. With k fixed, we prove the theorem by doing induction on n ≥ k.
When n ≤ k + 2 the claim can be easily checked to be true.
Now assume that it holds for Uk

n−1.
Let G ∈ Uk

n and G �= Gn,n−k.
If all pendant vertices of G are adjacent to C(G), then G is a unicyclic graph with n−k

pendants. Thus by Theorem 1.1, we have R(G) > R(Gn,n−k).
Now suppose there are two vertices v1 and u such that d(v1) = 1, u ∈ N(v1), and

u /∈ C(G). Let d = d(u) ≤ n − k. Let l ≥ 1 denote the number of non-pendant neighbors
of u. Then r = d − l − 1 ≥ 0 is the number of pendant neighbors of u except v1.

Let N(u) = {v1, v2, . . . , vd} such that 1 = d(v1) = . . . = d(vr+1) < 2 ≤ d(vr+2) ≤ . . . ≤
d(vd).

Let G′ = G − v1 ∈ Uk
n−1. By our induction hyperthesis, R(G′) ≥ R(Gn−1,n−k−1). We

also have

R(G) − R(G′) =
1√
d

+
d∑

i=2

1√
d(vi)d

−
d∑

i=2

1√
d(vi)(d − 1)

=
r + 1√

d
− r√

d − 1
+

d∑
i=2+r

1√
d(vi)

(
1√
d
− 1√

d − 1

)

≥ r + 1√
d

− r√
d − 1

+
l√
2

(
1√
d
− 1√

d − 1

)

=
d − l√

d
− d − 1 − l√

d − 1
+

l√
2

(
1√
d
− 1√

d − 1

)

=
√

d − l√
d
−√

d − 1 +
l√

d − 1
+

l√
2

(
1√
d
− 1√

d − 1

)

=
√

d −√
d − 1 + l

(
1√

d − 1
− 1√

d

)
− l√

2

(
1√

d − 1
− 1√

d

)

=
√

d −√
d − 1 + l

(
1 − 1√

2

)(
1√

d − 1
− 1√

d

)

>
√

d −√
d − 1

=
1√

d +
√

d − 1

≥ 1√
n − k +

√
n − k − 1

=
√

n − k −√
n − k − 1.

So

R(G) > R(G′) +
√

n − k −√
n − k − 1

≥ R(Gn−1,n−k−1) +
√

n − k −√
n − k − 1

=
k − 2

2
+

n − k − 1 +
√

2√
n − k + 1

+
√

n − k −√
n − k − 1
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=
k − 2

2
+

n − k +
√

2√
n − k + 2

− n − k +
√

2√
n − k + 2

+
n − k − 1 +

√
2√

n − k + 1
+

√
n − k −√

n − k − 1

= R(Gn,n−k) − n − k + 2 − 2 +
√

2√
n − k + 2

+
n − k + 1 − 2 +

√
2√

n − k + 1
+

√
n − k −√

n − k − 1

= R(Gn,n−k) +
(√

n − k −√
n − k − 1

)
−

(√
n − k + 2 −√

n − k + 1
)

−(2 −
√

2)
(

1√
n − k + 1

− 1√
n − k + 2

)
.

Consider f(x) =
√

x −√
x − 1 where x ≥ 2. Clearly

f ′(x) =
1

2
√

x
− 1

2
√

x − 1
=

−1
2
√

x(x − 1)(
√

x +
√

x − 1)

is an increasing function.
By the mean value theorem we have

(√
n − k −√

n − k − 1
)
−

(√
n − k + 2 −√

n − k + 1
)

= f(n − k) − f(n − k + 2)

= −2f ′(ξ) ξ ∈ (n − k, n − k + 2)

≥ −2f ′(n − k + 2)

=
1√

n − k + 1
− 1√

n − k + 2
.

Hence

R(G) > R(Gn,n−k) +
1√

n − k + 1
− 1√

n − k + 2
− (2 −

√
2)

(
1√

n − k + 1
− 1√

n − k + 2

)

= R(Gn,n−k) + (
√

2 − 1)
(

1√
n − k + 1

− 1√
n − k + 2

)

> R(Gn,n−k),

which completes the proof.
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