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Abstract. A 4D representation of RNA secondary structures using a four cartesian co-
ordinates system has been derived for mathematical denotation of RNA structure. The
four-dimensional representation also avoids loss of information accompanying alterna-
tive 2D and 3D representation in which the curve standing for RNA structure overlaps
and intersects itself, and resolves structures’ degeneracy. The RNA pseudoknot also
can be represented as four-dimensional representations. The examination of similari-
ties/dissimilarities among the secondary structures belonging to different species illus-
trates the utility of our approach.

1. Introduction

Mathematical analysis of the large volume genomic sequence or structure data is one of
the challenges for bio-scientists. Graphical representation of DNA sequence provides a simple
way of viewing, sorting and comparing various gene structures[1-15]. Graphical techniques
have emerged as a very powerful tool for the visualization and analysis of long DNA sequences.
These techniques provide useful insights into local and global characteristics and the occurrences,
variations and repetition of the nucleotides along a sequence which are not as easily obtainable
by other methods[11,22-26].

Ribonucleic acid(RNA) is an important molecule which performs a wide range of functions
in the biological system. In particular, it is RNA(not DNA) that contains genetic information of
virus such as HIV and therefore regulates the functions of such virus. RNA has recently become
the center of much attention because of its catalytic properties, leading to an increased interest in
obtaining structural information. Similar with the graphical representations of DNA sequences,
we also can outline several graphical representations of RNA primary sequences based on 2-D
and 3-D representation to compute the similarity of RNA primary sequences. Current RNA
secondary structure comparison algorithms have focused exclusively on tree structures owing to
their relative simplicity for quantitative analysis[16-18]. But tree structures refer to mathemat-
ical constructs for RNA secondary structures without pseudoknots. So we should present a new
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representation to analyze and to compare RNA secondary structures with pseudoknots. Re-
cently, we have proposed 3D, 6D and 7D representation of RNA secondary structures[19-21,29],
but the representation is not unique or the properties is not valuable.

Here, we present a four-dimensional representation of RNA secondary structures, which has
no circuit or degeneracy, so that the correspondence between RNA secondary structures and
RNA graphs is one to one. We make comparison among six RNA secondary structures(see Figure
1)which were reported by Bol [27] and T.Schlick[28] to illustrate the utility of our approach.

Figure 1: RNA secondary structures

2. 4-D representation of RNA secondary structures

The secondary structure of an RNA is a set of free bases and base pairs forming hydrogen
bonds between A-U and G-C. Let A′, U ′, G′, C ′ denote A, U,G, C in the base pair A-U and G-C,
respectively. Then we can obtain a special sequence representation of the secondary structure.
We call it characteristic sequence of the secondary structure. For example, pseudoknot B corre-
sponds the characteristic sequence C ′U ′G′G′C ′G′AUUGCG′A′G′A′C ′C ′A′UGUC ′G′C ′

C ′A′G′CUCU ′G′G′U ′C ′U ′C ′CA (from 3′ to 5′)(see Figure 2).
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Figure 2: pseudoknot

We will illustrate the four-dimensional characterization of RNA secondary structure. We
construct a map between the bases of characteristic sequences and plots in 4-D space, then we
will obtain a 4-D representation of the corresponding RNA secondary structure. In 4-D space
points, vectors and directions have four components, and we will assign the following basic
elementary directions to the four free bases and two base pairs.
(m,−√

n, 0, 0) −→ A, (
√

n,−m, 0, 0) −→ G, (
√

n,m, 0, 0) −→ C, (m,
√

n, 0, 0) −→ U

(0, 0, s,−√
l) −→ A′, (0, 0,

√
l,−s) −→ G′, (0, 0,

√
l, s) −→ C ′, (0, 0, s,

√
l) −→ U ′

where m, s is a real number, n, l is a positive real number but not a perfect square number.
So that we will reduce a RNA secondary structure into a series of nodes P0, P1, P2, . . . , PN ,
whose coordinates xi, yi, zi, vi(i = 0, 1, 2, . . . , N , where N is the length of the RNA secondary
structure being studied)satisfy⎧⎪⎪⎨

⎪⎪⎩
xi = aim + gi

√
n + ci

√
n + uim

yi = −ai
√

n − gim + cim + ui
√
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zi = a′is + g′i
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l + c′i

√
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is
vi = −a′i

√
l − g′is + c′is + u′

i

√
l

where ai, ci, gi, ui, a
′
i, c

′
i, g

′
i and u′

i are the cumulative occurrence numbers of A, C, G , U,
A′, C ′, G′, and U ′, respectively, in the subsequence from the 1st base to the i-th base in the
sequence. We define a0 = c0 = g0 = u0 = a′0 = c′0 = g′0 = u′

0 = 0.

3. Properties

Property 1 For a given RNA secondary structure there is a unique 4D representation corre-
sponding to it.
Proof. Let (xi, yi, zi, vi) be the coordinates of the i-th base of RNA secondary structure, then
we have
ai(m,−√

n, 0, 0)+gi(
√

n,−m, 0, 0)+ci(
√

n,m, 0, 0)+ui(m,
√

n, 0, 0)+a′i(0, 0, s,−√
l)+g′i(0, 0,

√
l,−s)+

- 689 -
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l) = (xi, yi, zi, vi) i.e.⎧⎪⎪⎨
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aim + gi
√
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n + uim = xi

−ai
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(1)

Obviously, xi and yi are irrational numbers of form jm + k
√

n, while zi and vi are irrational
numbers of form bs + d

√
l, where j, k, b and d are integers. We suppose

xi = jxm + kx

√
n

yi = jym + ky

√
n

zi = bzs + dz

√
l

vi = bvs + dv

√
l

then we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai + ui = jx

gi + ci = kx

−gi + ci = jy

−ai + ui = ky

a′i + u′
i = bz

g′i + c′i = dz

−g′i + c′i = bv

−a′i + u′
i = dv

(2)

So, for given x-projection, y-projection ,z-projection and v-projection of any point P = (x, y, z, v)
on the structure, after uniquely determining jx, kx, jy, ky, bz, dz, bv, dv from x, y, z and v, the
number ap, gp, cp, up, a

′
p, g

′
p, c

′
p and u′

p of A, G, C, U, A′, G′, C ′ and U ′ from the beginning of the
sequence to the point P can be found by solving linear system(2). By successive x-projection,
y-projection, z-projection and v-projection of points on the sequence, we can recover the original
RNA secondary structure uniquely from the RNA graph.

The vector pointing to the point Pi from the origin O is denoted by ri. The component of
ri,i.e. xi, yi, zi and vi are calculated by Eq.(1). Let Δri = ri − ri−1, then we have Property 2.
Property 2 For any i = 1, 2, . . . , N , where N is the length of the studied RNA secondary struc-
ture, the vector Δri has only four possible direction. Furthermore, the length of Δri,i.e.,|Δri|,
is always equal to

√
m2 + n or

√
s2 + l, for any i = 1, 2, . . . , N .

Proof. Actually, the components of Δri,i.e., Δxi,Δyi, Δzi and Δvi can be calculated for each
possible residue (A,G,C, U, A′, G′, C ′and U ′ ) at the i-th position of the RNA secondary structure
by using Eq.(1). For example, when the i-th residue is A, we find Δxi = m,Δyi = −√

n,Δzi = 0
and Δvi = 0. This result is independent of the conformation state of the (i-1)-th residue. The
four numbers (m,−√

n, 0, 0) are called the direction of Δri. The direction number and the
length of Δri for each possible residue type at the i-th position are summarized as follows(Table
1).
Property 3 There is no circuit or degeneracy in our four-dimensional representation.
Proof. We assume that:(1) the number of nucleotide forming a circuit is e; (2) the number
of A,G,C, U, A′, G′, C ′ and U ′ in a circuit is ae, ge, ce, ue, a

′
e, g

′
e, c

′
e and u′

e, respectively. So
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Table 1: Eight possible direction

Δxi Δyi Δzi Δvi |Δri|
A m −√

n 0 0
√

m2 + n

G
√

n −m 0 0
√

m2 + n

C
√

n m 0 0
√

m2 + n

U m
√

n 0 0
√

m2 + n

A′ 0 0 s −√
l

√
s2 + l

G′ 0 0
√

l −s
√

s2 + l

C′ 0 0
√

l s
√

s2 + l

U ′ 0 0 s
√

l
√

s2 + l

ae +ge +ce +ue +a′e +g′e +c′e+u′
e = e. Because aeA, geG, ceC, ueU, a′eA′, g′eG′, c′eC ′ and u′

eU form
a circuit, the following equation holds: ae(m,−√

n, 0, 0) + ge(
√

n,−m, 0, 0) + ce(
√

n,m, 0, 0) +
ue(m,

√
n, 0, 0)+a′e(0, 0, s,−√

l)+g′e(0, 0,
√

l,−s)+c′e(0, 0,
√

l, s)+u′
e(0, 0, s,

√
l) = (0, 0, 0, 0) i.e.⎧⎪⎪⎨

⎪⎪⎩
aem + ge

√
n + ce

√
n + uem = 0

−ae
√

n − gem + cem + ue
√

n = 0
a′es + g′e

√
l + c′e

√
l + u′

es = 0
−a′e

√
l − g′es + c′es + u′

e

√
l = 0

(3)

Clearly Eq.(3) hold if , and only if ae = ge = ce = ue = a′e = g′e = c′e = u′
e = 0. Therefore, e = 0,

which means no circuit exists in this graphical representation.
Property 4 The 4D representation possesses the reflection symmetry.
Proof. usually the sequence is expressed in the order from 5′ to 3′. Suppose that the 4D
representation for RNA secondary structure is described by (xi, yi, zi, vi), i = 0, 1, 2, . . . , N .
Suppose again that the 4D representation for the reverse structure, i.e, the same sequence
but from 3′ to 5′ is described by (x̂i, ŷi, ẑi, v̂i), we find⎧⎪⎨

⎪⎩
x̂i = xN − xN−i

ŷi = yN − yN−i

ẑi = zN − zN−i

v̂i = vN − vN−i

(4)

4. Similarities/Dissimilarities

In this section, we will make a comparison for the secondary structures belonging to six
different species(see Figure1) based on our 4D representation.

A direct comparison of these RNA secondary structures using computer codes is somewhat
less straightforward due to the fact that the RNA secondary structures have different lengths.
We will construct a 4-component vector consisting of the normalized leading eigenvalue of the
L/L matrix and M/M matrix of the 4D representation with different parameters. Similar with
M.Randic’s methods[7], we define the L/L matrix and M/M matrix as following: The elements
of the L/L matrix are defined as the quotient of the Euclidean distance between a pair of
vertices(dots) corresponding the bases of RNA secondary structures and the sum of distances
between the same pair of vertices. In other words, L/L = (li,j), where li,j = di,j

j−1
k=i dk,k+1

, di,j =
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√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + (vi − vj)2. while M/M = (mi,j), where mi,j = di,j

|i−j| .
For our application, we will use the following four 4D representation:

Case a. Letting m = 1/2;n = 3/4; s = 1/3 and l = 4/5, then we get⎧⎪⎪⎨
⎪⎪⎩

xi = ai/2 + gi

√
3/4 + ci

√
3/4 + ui/2

yi = −ai

√
3/4 − gi/2 + ci/2 + ui

√
3/4

zi = a′i/3 + g′i
√

4/5 + c′i
√

4/5 + u′
i/3

vi = −a′i
√

4/5 − g′i/3 + c′i/3 + u′
i

√
4/5

Case b. Letting m = 1/3; n = 4/5; s = 1/4 and l = 1/3, then we get⎧⎪⎪⎨
⎪⎪⎩

xi = ai/3 + gi

√
4/5 + ci

√
4/5 + ui/3

yi = −ai

√
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√
4/5

zi = a′i/4 + g′i
√

1/3 + c′i
√

1/3 + u′
i/4

vi = −a′i
√

1/3 − g′i/4 + c′i1/4 + u′
i

√
1/3

Case c. Letting m = 1/2;n = 4/7; s = 1/2 and l = 5/9, then we get⎧⎪⎪⎨
⎪⎪⎩

xi = ai/2 + gi

√
4/7 + ci

√
4/7 + ui/2

yi = −ai

√
4/7 − gi/2 + ci/2 + ui

√
4/7
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√
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vi = −a′i
√

5/9 − g′i/2 + c′i/2 + u′
i

√
5/9

Case d. Letting m = 1/4; n = 9/11; s = 3/4 and l = 4/7, then we get⎧⎪⎪⎨
⎪⎪⎩

xi = ai/4 + gi

√
9/11 + ci

√
9/11 + ui/4

yi = −ai

√
9/11 − gi/4 + ci/4 + ui

√
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zi = a′i × (3
4) + g′i

√
4/7 + c′i

√
4/7 + u′

i × (3
4)

vi = −a′i
√

4/7 − g′i × (3
4) + c′i × (3

4) + u′
i

√
4/7

Table 2: The similarity/dissimilarity matrix for the six RNA secondary structures based on the Euclidean distances

between the end points of the 4-component vectors of the normalized leading eigenvalues of the M/M matrices

Species AlMV-3 pkb240 pkb 223 EMV-3 pkb 4 AVII

AlMV-3 0 0.1811 0.0929 0.1325 0.1762 0.1163

pkb240 0 0.1480 0.1532 0.0197 0.1645

pkb 223 0 0.0428 0.1351 0.0303

EMV-3 0 0.1370 0.0224

pkb 4 0 0.1496

AVII 0

In Table 2, we give the similarities and dissimilarities for the six RNA secondary structures
based on the Euclidean distances between the end points of the 4-component vectors of the
normalized leading eigenvalues of the M/M matrices. We believe that it is not accidental that
the smallest entries in Table 2 are associated with the pairs(pkb240, pkb4), and (EMV-3, AVII).
In Table 3, we give the similarities and dissimilarities for the six RNA secondary structures based
on the Euclidean distances between the end points of the 4-component vectors of the normalized
leading eigenvalues of the L/L matrices. The similarities of RNA secondary structures based
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Table 3: The similarity/dissimilarity matrix for the six RNA secondary structures based on the Euclidean distances

between the end points of the 4-component vectors of the normalized leading eigenvalues of the L/L matrices

Species AlMV-3 pkb240 pkb 223 EMV-3 pkb 4 AVII

AlMV-3 0 0.1688 0.0461 0.0768 0.1638 0.0546

pkb240 0 0.1262 0.1310 0.0153 0.1441

pkb 223 0 0.0430 0.1198 0.0315

EMV-3 0 0.1208 0.0233

pkb 4 0 0.1352

AVII 0

on the normalized leading eigenvalues of the M/M matrices are compared with the similarities
based on the normalized leading eigenvalues of the L/L matrices as illustrated in Figure 3.
Entries that remain close to the line y = x indicate one can obtain similar results using the two
different methods.

Figure 3: Comparison of Table 2 and Table 3

5. Conclusion

High complexity and degeneracy are major problems in previous RNA secondary struc-
ture representations. Our representation provides a direct plotting method to denote RNA
secondary structures without degeneracy. From the RNA representation, the A,U,G,C,A-U and
C-G usage as well as the original RNA structure can be recaptured mathematically without loss
of textual information. The current four-dimensional representation of RNA secondary struc-
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ture provides different approaches for both computational scientists and molecular biologists to
analysis RNA secondary structures efficiently with different parameter n,m, s and l. A math-
ematical representation is presented and is applied to comparing the similarity between RNA
secondary structures, the structure alignment is not deeded. In our future research, the current
four-dimensional representation of RNA secondary structures and the similarity between RNA
secondary structures will be applied to predict the biological function of RNA.
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