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Abstract 

Let G be a connected graph, u; v be vertices of G and e = uv. The number of edges 
of G lying closer to u than to v is denoted by neu(e|G) and the number of edges of G 
lying closer to v than to u is denoted by nev(e|G). The PI polynomial of G is defined 
as PI(G; x) = N(u,v)

{u,v} V(G)
x ,

⊆∑ where N(u,v) = neu(e|G) + nev(e|G), if e = uv; and 

= 0, otherwise. In this paper, we prove a simple formula which is useful for 
computing PI polynomial of graphs. Using this formula, the PI polynomial of some 
important classes of benzenoid graphs, which some of them are related to 
nanostructures, are computed. 

1. Introduction 

A topological index is a real number related to a molecular graph. It must be a 

structural invariant, i.e., it does not depend on the labelling or the pictorial 

representation of a graph. The Wiener index W is the first topological index 
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proposed to be used in chemistry. It was introduced in 1947 by Harold Wiener for 

characterization of alkanes. This index is defined as the sum of all distances 

between distinct vertices, see [23]. 

 A new topological index introduced very recently by P V. Khadikar, [13-

16]. It is defined as the sum of [neu(e|G) + nev(e|G)] between all edges e=uv of a 

graph G, where neu(e|G) is the number of edges of G lying closer to u than to v 

and nev(e|G) is the number of edges of G lying closer to v than to u. Mathematical 

properties of the PI index for some classes of chemical graphs can be found in 

recent papers, [1-6,8,16,19,24,25]. 

 We now describe some notations which will be kept throughout. 

Benzenoid graphs (graph representations of benzenoid hydrocarbons) are defined 

as finite connected plane graphs with no cut-vertices, in which all interior regions 

are mutually congruent regular hexagons. More details on this important class of 

molecular graphs can be found in the book of Gutman and Cyvin [10], and in the 

references cited therein. 

 In [16], Khadikar and co-authors critically examined PI index of organic 

compounds acting as drugs and discussed its applications in Computer-Aided 

designing of bioactive compounds with special reference to designing of carbonic 

anhydrase inhibitors, lipophilicity, toxicity, tadpole narcosis, bio-concentration 

factor, diuretic activity and carcinogenic activity of aromatic hydrocarbons and 

heterocycles etc. We encourage reader to consult this paper for recent progress in 

computing PI index of some important classes of chemical compounds and their 

applications in biochemistry. 

 Suppose G is a connected graph, u, v are vertices of G and e = uv. In [6], 

the present authors defined the notion of PI polynomial of a graph as PI(G;x) = 

Σ{u,v}⊆V(G) xN(u,v), where 

eu evn (e | G) n (e | G) uv E(G)
N(u,v) .

0 uv E(G)
+ ∈⎧

= ⎨ ∉⎩

In [20,21] Shiu and co-authors computed the Wiener indices of some 

important classes of benzenoid graphs. We are very grateful from the referee for 

pointing out the Wiener indices of these benzenoid graphs and many other 

benzenoid graphs have also been independently computed by Klavzar, Gutman, 
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Mohar and Rajapakse, [11,17,18]. In this paper the PI polynomial and then PI 

indices of these graphs are also computed. We only consider connected graphs. 

Our notation is standard and mainly taken from [7,22]. 

2. Results and Discussion 

Let G be a benzenoid graph. If all vertices of G lie on its perimeter, then G is said 

to be catacondensed; otherwise it is pericondensed. In this section we calculate the 

PI polynomial of some benzenoid graphs. 

 Suppose G is a benzenoid graph and e ∈ E(G). We define P(e) to be the set 

of all edges parallel to e and N(e) = |P(e)|. It is clear that N(e) = |E| − (neu(e|G) + 

nev(e|G)), where e is an arbitrary edge of the graph G. Thus PI(G) = |E|2 − ∑e∈E(G)

N(e). In [25], we computed the values of N(e) for some classes of benzenoid 

graphs. We use these values freely throughout the paper. We also prove a formula 

which is useful in our calculations. Let T be a graph. Then we have: 

N(u,v)
{u,v} V

N(u,v)
uv E uv E

|E|-N(e)
e=uv E n

|E|-N(e)
e E

PI(T; x) x

= x 1

= x | E(K ) | | E | | V |
| V | 1

= x | E | .
2

⊆

∈ ∉

∈

∈

= ∑

+∑ ∑

+ − +∑
+⎛ ⎞

+ −∑ ⎜ ⎟
⎝ ⎠

Example 1. Consider the hexagonal triangle graph T(n) of Figure 1, containing j 

hexagons in the jth row, 1 ≤ j ≤ n. This graph is related to the atomic structure of 

bipod shaped nanocrystals, see Figure 13 of [12]. Since the graph G has an 

equilateral figure, |E(G)| = 3(2 + 3 + 4 + … + (n + 1)) = 3/2(n2 + 3n) and |V(G)| = 

3 + 5 + … + (2n+1) = n2 + 4n + 1.

2 2n+1 3/ 2(n 3n) i 2

i=2

N(u,v)
{u,v} V(T(n))

|E(T(n))|-N(e)
e E(T(n))

PI(T(n); x)

n 4n 2= 3 ix 3/ 2(n 3n).
2

x

| V(T(n)) | 1
= x | E(T(n)) |

2

+ −

⊆

∈

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞+ ++ − +∑ ⎜ ⎟
⎝ ⎠

∑

+
+ −∑
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Figure 1. The Hexagonal Triangle Graph T(n)  

Example 2. Let Hn be an n-hexagonal net, which is a benzenoid graph consisting 

of one central hexagon and is surrounded by n − 1 layers of hexagonal cells when 

n ≥ 1, Figure 2. Hn is a molecular graph, corresponding to benzene (n=1), 

coronene (n=2) circumcoronene (n=3), circum−circumcoronene (n=4), etc. In 

[20], Shiu and Lam computed the Wiener index of an n-hegagonal net. They 

proved that W(Hn) = 1/5(164n5 − 30n3 + n). Here the PI polynomial of this graph 

is computed. Since the jth row of the graph Hn has exactly k + j vertical edges, 

|E(Hn)| = 3{2[(n+1) + (n+2) + … + (2n − 1)]+ 2n} = 9n2 − 3n. A similar 

calculation shows that |V(G)| = 6n2.

n

n
n

2 2

n

n
n

2n-1 9n 3n (n i) 9n 5n 2

i=1

N(u,v)
{u,v} V(H )

|E(H )|-N(e)
e E(H )

PI(H ;x)

6n 1= 3(2 (n i)x 2nx ) 9n 3n.
2

x

| V(H ) | 1
= x | E(H ) |

2

− − + −

⊆

∈

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞++ + + − +∑ ⎜ ⎟
⎝ ⎠

∑

+
+ −∑

Example 3. A graph formed by a row of n hexagonal cells is called an n-

hexagonal chain. A hexagonal parallelogram Qn,m, is a graph containing m n-

hexagonal chain in every row, Figure 3. Consider a hexagonal parallelogram Qn,m
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to compute its PI polynomial. It is clear that |E(Qn,m)| = 3mn+2m+2n-1 and 

|V(Qn,m)| = 2(mn + n + m). 

Figure 2. A 4-hexagonal net (circum-circumcoronene). 

Without loss of generality, we can assume that m ≤ n. It is easy to see that 

every edge of Qn,m is vertical, left oblique and right oblique, Figure 3. If e is 

vertical then N(e) = n + 1 and if e is left oblique then we can consider e as the 

vertical edge of Qm,n and so N(e) = m + 1. Finally, in the case that e is a right 

oblique, there are n−m+1 right oblique chains of hexagons (each of which has m 

hexagons). So by our formula, we have: 

n,m

n,m
n,m

n,m

n,m
n,m

3mn+2m+n-2 3mn m 2n 2

N(u,v)
{u,v} V(Q )

|E(Q )|-N(e)
e E(Q )

PI(Q ; x)

= m(n+1)x (nm 2n m 1)x 3mn 2m
2(mn n

2n 1+

x

| V(Q ) | 1
= x | E(Q ) |

2
+ + −

⊆

∈

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ + − + − −

+
− +

∑

+
+ −∑

m-1 3mn 2m 2n (i 2)

i=1

m) 1
2 (i 1)x

2
+ + − ++ +⎛ ⎞

+ +∑⎜ ⎟
⎝ ⎠

.

In [6], we proved that for every graph G, PI′(G;1) = PI(G). Using this 

result, we have: 
2 2 2 2 3 2 2

n,m 2 2 2 2 3 2 2

n m9m n 12m n 11mn 2mn 5 / 3m 4m 16 / 3m 4n 5n 3PI(Q )
n m9m n 10m n 11mn 4mn 1/ 3m 4m 19 / 3m 4n 6n 2

<⎧ + + − − + − + − += ⎨ ≥+ + − + + − + − +⎩
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Figure 3. The Hexagonal Parallelogram Qn,m.

Example 4. Following Shiu, Tong and Lam [21], a hexagonal rectangle is called 

hexagonal jagged-rectangle, or simply HJR, if the number of hexagonal cells in 

each row is alternative between n and n − 1. Obviously, there are three types of 

HJR. If the top and bottom rows are longer we shall call it HJR of type I and 

denote by In,m. If the top and bottom rows are shorter we shall call it HJR of type 

K and denote by Kn,m. The last one is called HJR of type J and denoted by Jn,m.

In the mentioned paper, Shiu, Tong and Lam computed the Wiener index 

of an arbitrary HJR. The exact expression for the Wiener index of an arbitrary 

HJR is lengthy to be included here. In what follows, we compute the PI index and 

then the PI polynomials of In,m, Jn,m and Kn,m. In [6], we proved that for every 

graph G, PI′(G;1) = PI(G) and so it is enough to compute the PI polynomial of 

these graphs. We first compute the value of N(e) in these graphs. To do this, we 

notice that |E(In,m)| = 6mn + m − n, |V(In,m)| = 2m(2n+1), |E(Jn,m)| = 6mn + m + 2n 

− 2, |V(Jn,m)| = 4mn + 2m + 2n −1, |E(Kn,m)| = 6mn + 7m – n – 6 and |V(Kn,m)| = 

4mn + 6m − 4.

Consider the graph In,m and its arbitrary edge e. To compute N(e), we 

consider two cases that e is vertical or oblique. Suppose A and B are sets of all 

vertical edges lie in the long and small rows of this graph, respectively (Figure 

4(a)). Then we have: 

n 1 e A
N(e) .

n e B
+ ∈⎧

= ⎨ ∈⎩
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Suppose e is an oblique edge in the right ith oblique row, Figure 4(a). We 

consider two cases that n < m and n ≥ m. If n < m then N(e) = 2i and if n ≥ m then 

we have 
2i 1 i m

N(e) .
m m i n

≤ <⎧
= ⎨ ≤ ≤⎩

If e is an oblique edge in the left ith oblique row 

then by symmetry we find the same formulae for N(e). 

n,m
n,m

n,m
n,m

n,m
n,m

6mn+m-2n-1 6mn+m-2n

|E(I )|-N(e)
e E(I )

N(u,v)
{u,v} V(I )PI(I ; x)

=

(6mn

=

m(n+1)x  + (m-1)nx +

| V(I ) | 1x | E(I ) |
2

4mn 2m 1
2

x

∈

⊆=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

− +

++ −∑

+ +

∑

m-1 6mn m n 2i 2 6mn m n

i=1
m-1 6mn m n 2i

i=1

4 2ix 8m (n m 1)x n m
m n) .

4 2ix n m

+ − − − −

+ − −

⎧ + − + ≥∑⎪⎪− + ⎨
⎪ <∑
⎪⎩

Since PI(In,m) = PI′(In,m,1), we have: 

2 2 2 2 3 2 2
n,m

2 2 2 2 3 2 2

n m36m n 4m n 14mn 4mn 8 / 3m m 11/ 3m 2nPI(I )
n m36m n 12m n 14mn 4mn 16 / 3m 9m 11/ 3m 2n

≥⎧ + − − + + − += ⎨ <+ − − − + − +⎩

We now consider the graph Jn,m to compute its PI polynomial and PI index. 

Suppose A1 and B1 are the set of all vertical edges lie in the long and small rows 

of this graph, respectively (Figure 4(b)). Then we have: 

1

1

n 1 e A
N(e) .

n e B
+ ∈⎧

= ⎨ ∈⎩

Using a similar argument on oblique edges, we have: 

n,m

n,m
n,m

n,m

n,m
n,m

6mn+m+n-3 6mn+n+m-2

N(u,v)
{u,v} V(J )

|E(J )|-N(e)
e E(J )

PI(J ;x)

= m(n+1)x +mnx + (6mn 2n m 2)

x

| V(J ) | 1 = x | E(J ) |
2

4mn 2m 2n
2

⊆

∈
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=

− + + − +

∑

++ −∑

+ +

m m6mn 2n m 2 2i 6mn 2n m 1 2i 6mn 2n m 3

i=1 i 2
m m6mn 2n m 2 2i 6mn 2n m 1 2i

i=1 i 2

2 (2i)x 2 (2i 1)x 2(n m)(2m 1)x n m
+

2 (2i)x 2 (2i 1)x n m

+ + − − + + − − + − −

=

+ + − − + + − −

=

⎧ + − + − + >∑ ∑⎪⎪
⎨
⎪ + − ≤∑ ∑
⎪⎩

Therefore, 
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2 2 2 2 3 2 2
n,m

2 2 2 2 3 2 2

n > m36m n 4m n 22mn 30mn 8/ 3m 5m 11/ 3m 4n 10n 6PI(J )
n m36m n 12m n 22mn 22mn 16 / 3m 3m 17 / 3m 4n 8n 6

⎧ + + − + + − + − += ⎨ ≤+ + − − − − + − +⎩

Finally, we compute the PI polynomial and PI index of the graph Kn,m.

Using a similar argument as above, we have: 

n,m

n,m
n,m

n,m

n,m
n,m

6mn+7m-2n-7 6mn+7m-2n-8

N(u,v)
{u,v} V(K )

|E(K )|-N(e)
e E(K )

PI(K ;x)

= m(n+1)x +(m-1)(n+2)x + (6mn 7m n 6)

x

| V(K ) | 1= x | E(K ) |
2

4mn 6m 3
2

⊆

∈
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

− + − −

∑

++ −∑

+ −

m 6mn 7m n 5 2i

i=1
m 6mn 7m n 5 2i 6mn 5m n 6

i=1

4 (2i-1)x n m
+

4 (2i-1)x 4m(n m 1)x n m

+ − − −

+ − − − + − −

⎧
⎪⎪
⎨
⎪
⎪⎩

<∑

+ − + ≥∑

2 2 2 2 3 2 2
n,m

2 2 2 2 3 2 2

n < m36m n 84m n 14mn 92mn 16 / 3m 49m 271/ 3m 2n 16n 36PI(K )  
n m36m n 88m n 14mn 92mn 4 / 3m 53m 271/ 3m 2n 16n 36

⎧ + − − + + − + + += ⎨ ≥+ − − + + − + + +⎩

(a) In,m (b) Jn,m (c) Kn,m

Figure 4. Two types of benzenoid graphs introduced by Shiu et al [20].  

Example 5. Consider the benzenoid graph U(n,m) consisting of m chains of n-

hexagons, Figure 5. This graph has exactly 2(mn+m+n) vertices and 3mn + 2m+ 

2n − 1 edges. If e is a vertical edge then N(e) = n+1. Suppose e is a right oblique 

edge in the ith row. Our main proof will consider two cases: 

Case 1. [m/2] ≤ n. In this case we have: 
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2i 1 i [m / 2]
N(e)

m 1 [m / 2] i n
≤ ≤⎧

= ⎨ + < ≤⎩
,

where [x] denotes the greatest integer ≤ x. Therefore, 

[m / 2] 1 3mn 2m 2n 2 2i

i 1

|E(U(n,m))|-N(e)
e E(U(n,m))

[m/2] 3mn 2m 2n 1 2i
i=1

N(u,v)
{u,v} V(U(n,m))

2 (2i 1)x

PI(U(n,m);x)

| V(U(n,m)) | 1
| E(U(n,m)) |

2

2ix

= x

= 2

x

− + + − −

=

∈

+ + − −

⊆

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ +∑

+

=

+ −∑

∑

∑

3mn+2m+n-2

3mn m 2n 2 2(mn m n) 1
2(

+m(n+1) (3mn 2m 2n 1)

n [m / 2])(m 1) .
2

x

x + + −

−

⎛ ⎞+ + +
+ + ⎜ ⎟

⎝ ⎠

+ + −

− +

Case 2. [m/2] > n. In this case we consider two separate cases that m is 

odd or even. If m is even and e is an edge of right ith oblique row then N(e) = 2i, 1 

≤ i ≤ n and if e is left ith oblique row then N(e) = 2i + 1, 1 ≤ i ≤ n−1. Therefore by 

symmetry of the graph, we have: 

n 1 3mn 2m 2n 2 2i

i 1

|E(U(n,m))|-N(e)
e E(U(n,m))

n 3mn 2m 2n 1 2i
i=1

N(u,v)
{u,v} V(U(n,m))

2 (2i 1)x

PI(U(n,m);x)

| V(U(n,m)) | 1
| E(U(n,m)) |

2

2ix

= x

= 2

x

− + + − −

=

∈

+ + − −

⊆

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ +∑

+

=

+ −∑

∑

∑

3mn+2m+n-2

3mn 2n 2 2(mn m n) 1
2(

+m(n+1) (3mn 2m 2n 1)

m / 2 n)(2n 1) .
2

x

x + −

−

⎛ ⎞+ + +
+ + ⎜ ⎟

⎝ ⎠

+ + −

− +

If m is odd, a similar argument shows: 

n 1 3mn 2m 2n 2 2i

i 1

|E(U(n,m))|-N(e)
e E(U(n,m))

n 3mn 2m 2n 1 2i
i=1

N(u,v)
{u,v} V(U(n,m))

2 (2i 1)x

PI(U(n,m);x)

| V(U(n,m)) | 1
| E(U(n,m)) |

2

2ix

= x

= 2

x

− + + − −

=

∈

+ + − −

⊆

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ +∑

+

=

+ −∑

∑

∑

3mn+2m+n-2

3mn 2n 2 2(mn m n) 1
2([

+m(n+1) (3mn 2m 2n 1)

m / 2] n 1)(2n 1) .
2

x

x + −

−

⎛ ⎞+ + +
+ + ⎜ ⎟

⎝ ⎠

+ + −

− + +

 Finally, using equation PI(G) = PI′(G;1), one can calculate the PI index of the 

graph U(n,m). 
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Figure 5. The Benzenoid Graph of U(n,m). 

Acknowledgment. The authors are indebted to the referee for his/her helpful 

remarks. The first author was partially supported by ACECR and the third author 

was partially supported by a grant from IUT (CEAMA).

- 662 -



REFERENCES 

1. A. R. Ashrafi and A. Loghman, PI Index of Zig-Zag Polyhex Nanotubes, MATCH 

Commun. Math. Comput. Chem. 55 (2006) 447−452. 

2. A. R. Ashrafi and G.R. Vakili-Nezhad, Computing the PI Index of some Chemical 

Graph Related to Nanostructures, J. Phys. Conference Series 29 (2006) 181−184.

3. A. R. Ashrafi and A. Loghman, PI Index of Armchair Polyhex Nanotubes, Ars 

Combin. 80 (2006) 193-199. 

4. A. R. Ashrafi and A. Loghman, Padmakar-Ivan Index of TUC4C8(S) Carbon 

Nanotubes, J. Comput. Theor. Nanosci. 3 (2006) 378-381. 

5. A. R. Ashrafi and F. Rezaei, PI Index of Polyhex Nanotori, MATCH Commun. Math. 

Comput. Chem. 57 (2007) 243-250. 

6. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, On the PI Polynomial of a 

Graph, Util. Math. (in press). 

7. P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. 

Press, Cambridge, 1994. 

8. H. Deng, Extremal Catacondensed Hexagonal Systems with Respect to the PI Index, 

MATCH Commun. Math. Comput. Chem. 55 (2006) 453−460.

9. M. V. Diudea and I. Gutman, Wiener-Type Topological Indices, Croat. Chem. Acta

71 (1998) 21−51.

10. I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons,

Springer-Verlag, Berlin, 1989. 

11. I. Gutman, S. Klavzar, A method for calculating Wiener numbers of benzenoid 

hydrocarbons, Models Chem. 133 (1996) 389–399. 

12. Y.-W. Jun, J.-W. Seo, S. J. Oh and J. Cheon, Recent Advances in the Shape Control 

of Inorganic Nano-Building Blocks, Coord. Chem. Rev. 249 (2005) 1766–1775. 

13. P.V. Khadikar, On a Novel Structural Descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 

113−118.

14. P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar and V. K. Agrawal, 

Novel PI Indices of Hexagonal Chains, J. Math. Chem. 29 (2001) 143−150.

15. P. V. Khadikar, S. Karmarkar and R. G. Varma, The Estimation of PI Index of 

Polyacenes, Acta Chim. Slov. 49 (2002) 755−771. 

- 663 -



16. P.V. Khadikar, M.V. Diudea, J. Singh, P.E. John, A. Shrivastva, S. Singh, S. 

Karmarkar, M. Lakhwani, P. Thakur, Use of PI Index in Computer-Aided Designing of 

Bioactive Compounds, 2 (2006) 19−56.

17. S. Klavzar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects the 

vertex-distance relation, J. Chem. Inf. Comput. Sci. 35 (1995) 590–593. 

18. S. Klavzar, I. Gutman and A. Rajapakse, Wiener numbers of pericondensed 

benzenoid hydrocarbons, Croat. Chem. Acta 4 (1997) 979–999. 

19. G. A. Moghani and A.R. Ashrafi, On the PI Index of some Nanotubes, J. Phys. 

Conference Series 29 (2006) 159−162.

20. W. C. Shiu and P. C. B. Lam, The Wiener Number of the Hexagonal Net, Discrete 

Appl. Math. 73 (1997) 101−111.

21. W. C. Shiu, C. S. Tong and P. C. B. Lam, Wiener Number of Hexagonal Jagged-

Rectangles, Discrete Appl. Math. 80 (1997) 83−96.

22. N. Trinajstic, Chemical Graph Theory, 2nd edn, CRC Press, Boca Raton, FL, 1992. 

23. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc.

69 (1947) 17−20.

24. S. Yousefi and A. R. Ashrafi, An Exact Expression for the Wiener Index of a 

Polyhex Nanotorus, MATCH Commun. Math. Comput. Chem. 56 (2006) 169−178.

25. H. Yousefi-Azari, B. Manoochehrian and A. R. Ashrafi, PI and Szeged indices of 

some Benzenoid Graphs Related to Nanostructures, submitted.

- 664 -


