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Abstract

Clar sextet theory is well known for its role in the research of molecule stability
and resonance energy. The count of Clar structures of C60 and the associated Clar
polynomial and sextet polynomial were already given by W.C. Shiu et al. For
boron-nitrogen fullerenes, the corresponding problems have not been solved. In
this paper we consider three BN-fullerenes (B12N12,B16N16 and B28N28) which are
anomalously stable and one type of capped boron-nitride nanotubes. By combinatorial
enumeration we obtain the Clar polynomials and the sextet polynomials of B12N12 and
B16N16. Furthermore, the results of B28N28 is also enumerated by the usage of computer.
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1 Introduction

Many researchers (see [1-7]) considered the possible existence of the inorganic analogues
of the fullerene cages which have the same number of boron and nitrogen atoms. As pointed
out in [7], a boron-nitrogen polyhedron (BN)x forms a planar bipartite graph with four- and
six- membered rings as its faces. By a systematic density functional tight-binding study, the
magic clusters B12N12, B16N16 and B28N28 were determined in [7]. Clearly B12N12 is the
smallest boron-nitrogen polyhedron with isolate squares and it plays a similar role as C60 in
fullerenes. Similar to the isolated-pentagon rule for fullerenes, it was found in [7] that the
stablest isomer corresponding to a boron-nitrogen polyhedron has isolated squares.

Note that B12N12 and C60 can be considered as truncated octahedron and icosahedron
respectively. The Clar polynomial and the sextet polynomial of C60 were obtained recently
in [8,9]. A natural question is to calculate these two polynomials for B12N12 and the other
BN-fullerenes and BN-nanotubes. In this paper we deal with B12N12 and B16N16 by using
some combinatorial techniques. As for the case of larger BN-fullerenes, we find it necessary
to use computers. So we design a program for enumeration of such cases. As an illustration,
the Clar polynomial and the sextet polynomial of B28N28 are given.

A Kekulé structure of a molecule G is a chemical notion which coincides with what is
known in graph theory under the name ”perfect matching”, i.e., a set of pairwise disjoint
edges of G that cover all vertices of G. For example, the double bonds in Fig.1 show a
Kekulé structure of B12N12.

The notion of Clar structure was first defined by Clar [10] for hexagonal systems, and
it has been extended to fullerenes [9,11-13] and nanotubes [14]. We recall it as follows: a
Clar structure of G is obtained by drawing circles in some hexagons of G and these circles
represent the so-called ”aromatic sextets”. The three rules of drawing circles are as follows:

(a) circles are not allowed to be drawn in adjacent hexagons;
(b) circles can be drawn in hexagons if the rest of G either has at least one Kekulé

structure or is empty;
(c) a Clar structure contains the maximum number of circles which can be drawn using

(a) and (b).

Figure 1: One type of Clar strutures of B12N12

The number of aromatic sextets in a Clar structure of G is called the Clar number of G
and denoted as CL(G). It is clear that the Clar number of a benzenoid molecule is unique
no matter which circles are drawn. The main chemical implication of the Clar number is
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the following empirically established regularity: If Ga and Gb are two isomeric benzenoid
hydrocarbons and CL(Ga)>CL(Ga), then the compound Ga is more stable both chemically
and thermodynamically.

A set of circles is said to be a sextet pattern if only the rules (a) and (b) are obeyed.
It is not necessary for two sextet patterns to own the same number of circles. Hosoya and
Yamaguchi defined sextet polynomial for a benzenoid system G [16] as follows:

BG(x) =
m∑

i=0

σ(G, i)xi

where m = CL(G) and σ(G, i) denotes the number of sextet patterns of G with i hexagons.
The sextet polynomial was used to define and discuss resonance energies (RE). For some

large benzenoid systems, however, the corresponding sextet polynomial may have no accept-
able physical meaning[19,20]. So Herndon and Hosoya [13] gave an alternative extension of
Clar structure by replacing rule (c) by (d) the set of circles is maximal, i.e. no new circle can
be drawn using (a) and (b). In this paper we will follow this definition for a Clar structure,
and rename the original definition by Clar as proper Clar structure. So, the circles in Fig.1
give a Clar structure, but not a proper Clar structure of B12N12.

Figure 2: B16N16

The count polynomial of Clar structures, referred to as Clar polynomial, was defined by
El-Basil[11] for a benzenoid system G:

ξ(G; x) =
m∑

i=0

ρ(G, i)xi

where ρ(G, i) is the number of Clar structures of G with i circles and m is the number of
circles of a proper Clar structure of G.

In this paper, we always use | I | for the cardinality of I; N(u) for the set of vertices
adjacent to u; N(I) for the set of vertices adjacent to at least one vertex of I. In a graph
G, we say some hexagons are independent if and only if any two of them have no common
vertex. Two hexagons in G are said to be adjacent if they have at least one common edge.
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2 Clar polynomial and sextet polynomial of B12N12

For convenience of calculation, we will employ a concept called the hexagon-dual, which
was introduced by W.C. Shiu et al. [9]. Let G be a graph containing at least one induced
subgraph as a hexagon. The hexagon − dual of G is a graph G∗ defined as follows: cor-
responding to each hexagon of G there is a vertex of G∗; two vertices of G∗ are joined by
an edge if and only if the corresponding hexagons share an edge. Note that the definition
of hexagon-dual is simply the reverse of Fowler’s leapfrog transform [15] in the study of
fullerenes. It is easily seen that the hexagon-dual of B12N12 is the 3-cube Q3(see Fig.3).

Figure 3: Two diagrams of the 3-cube Q3

It should be noticed that B12N12 has a nice property: any set S of independent hexagons
in B12N12 is a sextet pattern. This can be easily shown as follows. Set M = {e | e is a common
edge of two hexagons in B12N12) }. It is easy to see from Fig. 1 that M is a perfect matching
of B12N12. Then the property follows from the fact that the restriction of M on B12N12 − S
is a perfect matching of B12N12 − S. Note that, in general, this property is not valid for
B16N16 and other BN -fullerences. By this property of B12N12 , there is a natural bijection
between the sextet patterns (the Clar structures, resp.) of B12N12 and the independent sets
(the maximal independent sets, resp.) of Q3. Therefore, the sextet polynomial and the
Clar polynomial of B12N12 are the same as the independent set polynomial and the maximal
independent set polynomial of Q3, respectively. Recall that the independent set polynomial
of G was defined [17,18] as:

I(G, x) =
α∑

k=0

b(G, k)xk

where α is the maximum of cardinalities of the independent sets of G, b(G, k) is the number
of independent sets of G each of which has exactly k vertices.

The maximal independent set polynomial of a graph G was defined in [9] as:

Im(G, x) =
∑

T

x|T | =
∑

k

β(G, k)xk

where T is taken over all maximal independent sets of G, β(G, k) is the number of maximal
independent sets of G each of which has exactly k vertices.

Thus, we get the following result:

Proposition 1.
(a) ξ(B12N12; x) = Im(Q3, x)
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(b) BB12N12(x) = I(Q3, x)

Now we can get ξ(B12N12; x) and BB12N12(x) as follows.
Note that Q3 is a bipartite graph. Let (X, Y ) be the bipartition of Q3. Obviously

| X |=| Y |= 4. Let T be a maximal independent set of Q3. There are two possibilities of T
as follows:

(1) T = X or T = Y . Then | T |= 4;
(2) None of T ∩ X and T ∩ Y is empty. Note that Q3 is 3-regular and it has 4 vertices

in each of X and Y . It is easy to see that if T contains two vertices of X then T can not
contain any vertex of Y . So | T ∩ X |= 1. For a vertex x in T ∩ X, there is a unique vertex
of Y that is not adjacent to x. So, there are exactly 4 such maximal independent sets T of
Q3 since | X |= 4.

Thus we have Im(Q3, x) = 2x4 + 4x2, and so:

ξ(B12N12; x) = 2x4 + 4x2

Let I be an independent set of Q3. Then it is clear that | I |≤ 4. So, according to the
number of vertices in I, there are four possibilities:

(1) | I |= 4. Then there are two cases: I = X or I = Y ;
(2) | I |= 3. Then all vertices of I must belong to X (or Y ). Otherwise, at least two

of them are adjacent. Any three vertices of X (or Y ) make up such an independent set. So

there are 8 (= 2 ×
(

4
3

)
) cases;

(3) | I |= 2. If one vertex of I belongs to X and the other belongs to Y , then as we
explained before, I is a maximal independent set of Q3, and there are exactly 4 such cases.

If both vertices of I belong to X (or Y ), there are 12 (= 2 ×
(

4
2

)
) such cases;

(4) | I |= 1. Each vertex of Q3 makes up such an independent set and so there are 8
cases.

Thus we have I(Q3, x) = 2x4 + 8x3 + 16x2 + 8x + 1, and so

BB12N12(x) = 2x4 + 8x3 + 16x2 + 8x + 1

3 Clar polynomial and sextet polynomial of B16N16 and B28N28

The graph B16N16 contains 32 vertices, and 18 faces which are 12 hexagons and 6 squares.
As a 3-regular graph without cut edges, B16N16 has a Kekulé structure. In the planar
embedding of B16N16 (see Fig.4), we use hi (i=1, 2,· · · , 12) to represent its hexagons. In the
hexagon-dual C12 of B16N16 (see Fig.5), we use vi to represent the vertex corresponding to
hi.

From the 3-dimensional figure of B16N16 (Fig.2), we can easily see that B16N16 can be
positioned such that any chosen hexagonal face lies at the bottom with the whole figure
left unchanged. This means that for any two hexagons hi and hj, there is an element g in
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Figure 4: A planar embedding of B16N16

Aut(B16N16), the automorphism group of B16N16, such that g(hi)=hj. That is, the action
of Aut(B16N16) on the set of twelve hexagons of B16N16 is transitive. It follows that the
hexagon-dual C12 is vertex-transitive.

Proposition 2. Let I be a maximal independentset of C12, then 3 ≤| I |≤ 4
Proof. Let T be a set of any two non-adjacent vertices of C12. Since C12 is a 4-regular

graph, then
| T ∪ N(T ) |≤ 2 + 2 × 4 = 10 < 12 =| V (C12) | .

So there is at least one vertex of C12 that is not adjacent to any vertex in T . It follows that
| I |≥ 3.

On the other hand, note that the twelve vertices of C12 belong to the four pairwise disjoint
triangles: �v1v5v6, �v3v9v10, �v4v7v11, �v2v8v12. Since any two vertices in a triangle are
adjacent, I has at most one vertex in each triangle. It follows that | I |≤ 4. This completes
the proof. �
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Figure 5: C12

From Proposition 2, we see that if I is an independent set of C12 with | I |= 4, then I is
a maximal independent set. Let S denote the set of hexagons in B16N16 corresponding to I.
Then S is a maximal set of independent hexagons with | S |= 4.

Proposition 3. Let S be a maximal set of independent hexagons in B16N16 with | S |= 4,
then B16N16 − S has a perfect matching.

Proof. The action of Aut(B16N16) on the set of twelve hexagons in B16N16 is transitive.
So, without loss of generality, we can assume that h1 ∈ S. Then the four hexagons which
are adjacent to h1 do not belong to S. Let I denote the vertex set in C12 corresponding to
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S, and G1 denote the hexagon-dual of B16N16 − h1 (see Fig.6). Then the restriction of I
on G1 is an independent set of G1 which has exactly three vertices. Obviously, it has three
possible cases: {v2, v3, v4}, {v2, v10, v11}, {v4, v9, v12}. In the first case, B16N16 − S consists
of two independent squares. In the other two cases, B16N16 − S consists of four edges in
which no two are adjacent. So, B16N16 − S has a perfect matching in all cases. �

Figure 6: G1

Proposition 4. Let I0={u, v} be an independent set of C12. Then there is a maximal
independent set I containg I0 with | I |= 4.

Proof. Without loss of generality, we may assume u = v1 since C12 is vertex-transitive
(see Fig. 5). It is easy to see that v ∈ {v2, v3, v4, v9, v10, v11, v12}. Then by direct verification,
we see that I0 can always be extended to a maximal independent set I with | I |= 4. �

Proposition 5. Let I be a maximal independent set of C12 with | I |= 3, and let S be
the set of hexagons of B16N16 corresponding to I. Then B16N16−S has no perfect matching.

Proof. Without loss of generality, we may assume that v1 ∈ I. Then the restriction of
I on G1 is a maximal independent set of G1 with two vertices, which is clearly seen from
Fig.6 to be either {v9, v11} or {v10, v12}. So S must be either {h1, h9, h11} or {h1, h10, h12}.
Then it is easy to see that B16N16 − S consists of two connected components each of which
is a tree with seven vertices. Therefore, B16N16 − S has no perfect matching. �

Theorem 6. Let S be a set of independent hexagons of B16N16. Then S is a Clar
structure of B16N16 if and only if | S |= 4.

Proof. It is clear that | S |≤ 4. We discuss all possible cases as follows:
If | S |= 1 or | S |= 2, by Proposition 4, there is S0 with | S0 |= 4 such that S ⊂ S0. By

Proposition 3 B16N16 − S0 has a perfect matching. So S is not a Clar structure of B16N16.
If | S |= 3 and S is not a maximal set of independent hexagons, we can obtain the same

conclusion as above by analogous discussion.
If | S |= 3 and S is maximal, then by Proposition 5, B16N16−S has no perfect matching.
If | S |= 4, we know S is maximal by Proposition 2. Then by Proposition 3, B16N16 − S

has a perfect matching. So S is a Clar structure of B16N16. �

Proposition 7. Let S be a set of independent hexagons of B16N16 with | S |= 3. Then
S is a sextet pattern if and only if S is not maximal.

Proof. Suppose that S is a sextet pattern. If S is maximal, then by Proposition 5,
B16N16−S has no perfect matching. It follows that S is not a sextet pattern, a contradiction.

Conversely, suppose that S is not maximal, then there is a maximal set S0 of four
independent hexagons such that S ⊂ S0. By Theorem 6, B16N16−S0 has a perfect matching.
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Since a hexagon itself always has a perfect matching, B16N16−S has a perfect matching and
S is a sextet pattern. �

Figure 7: C12 − T − N(T )

Proposition 8. Let I1, I2 be two distinct maximal independent sets of C12. Then
| I1 ∩ I2 |≤ 2

Proof. By Proposition 2, | I1 ∩ I2 |≤ 3. We prove | I1 ∩ I2 |	= 3 as follow:
Suppose that | I1 ∩ I2 |= 3. Set {u} = I1 − I2 and {v} = I2 − I1. Then u and v are

adjacent in C12. Otherwise I1 ∪{v} is an independent set of C12, contradicting the choice of
I1.

Let T = {u, v}. Then I1 ∩ I2 is an independent set of C12 − T − N(T ) (see Fig.7). On
the other hand, it is obvious that C12 − T − N(T ) has no independent set of three vertices,
a contradiction. Then the result follows. �

Now we focus on the count of Clar structures with four hexagons in B16N16. Since
there are three independent sets with three vertices in G1, by Proposition 3 there are three
such Clar structures containing a given hexagon h. Furthermore, the action of Aut(B16N16)
on the set of twelve hexagons in B16N16 is transitive. So the number of times that each
hexagon appears in these Clar structures must be the same. Thus we get the number of Clar
structures with four hexagons in B16N16:

ρ(B16N16, 4) =

3 ×
(

12
1

)
4

= 9

By Theorem 6 we know a Clar structure of B16N16 always has four hexagons. Therefore,
the Clar polynomial of B16N16 is

ξ(B16N16; x) = 9x4 (1)

Now we compute the number of sextet patterns S consisting of three independent hexagons
in B16N16. By Proposition 7, each S is not maximal and it is contained in a maximal set S0

with | S0 |= 4. By Proposition 8, all these S are distinct from each other. So

σ(B16N16, 3) =

(
4
3

)
× ρ(B16N16, 4) = 36 (2)

From the proof of Theorem 6, we can see that any two independent hexagons in B16N16

make up a sextet pattern. When one hexagon is fixed, the other has seven choices. Then

σ(B16N16, 2) =

(
12
1

)
× 7

2
= 42 (3)
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Notice that every sextet pattern with four independent hexagons is a Clar structure and
the number of sextet patterns with exactly one hexagon is the number of hexagons in B16N16.
Then by (1),(2) and (3), we finally arrive at the sextet polynomial of B16N16:

BB16N16(x) = 9x4 + 36x3 + 42x2 + 12x + 1

For larger BN-fullerenes, it is difficult to compute these polynomials only using pen and
paper. We design a program for enumeration of such cases. For B28N28, the program gives
the following result:

ξ(B28N28; x) = 3x8 + 48x7 + 156x6 + 96x5 + 9x4

BB28N28(x) = 3x8 + 72x7 + 522x6 + 1434x5 + 1719x4 + 894x3 + 216x2 + 24x + 1
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