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Abstract

The first and second Zagreb indices are defined as 2
1 i

i V
M d  and 2

,
i j

i j E
M d d .

Recently, it has been proved that 1 2/ /M n M m  (where m  is the number of edges and n  the 
number of vertices) for chemical graphs and that this result does not hold for general graphs. 
Here, generalizations of this result are analyzed. Variable first and second Zagreb indices are 
defined by 2

1 i
i V

M d  and 2
,

i j
i j E

M d d . In this paper, it is shown that 

1 2/ /M n M m  for all graphs and for all 0, 1/ 2 ; and that 1 2/ /M n M m  for all 

chemical graphs for all 0,1 . Also, it is shown that for every \ 0,1R  and every 

complete unbalanced bipartite graphs G  it holds that 1 2/ /M G n M G m . Hence, the 

results for chemical graphs cannot be extended. It is shown that for each \ 0, 2 / 2R ,

there is graph G  such that 1 2/ /M G n M G m . As an open problem remains the 

question if 1 2/ /M n M m  holds for all graphs for some 1/ 2, 2 / 2 .

Introduction

The first and second Zagreb indices are among the oldest and the most famous topological 
indices (see [1-4] and references within) and they are defined as:

2
1 i

i V
M d  and 2

,
i j

i j E
M d d ,
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where V  is the set of vertices, E  is set of edges and id  is degree of vertex i .

These indices have been generalized to variable first and second Zagreb indices [5] defined as

2
1 i

i V
M d  and 2

,
i j

i j E
M d d .

Recently, the system AutoGraphiX [6-8] proposed the following conjecture: 

Conjecture 1. For all simple connected graphs G ,

1 2/ /M n M m

and the bound is tight for complete graphs.

In the paper [9], it has been shown that this conjecture is not true. However, the claim holds if 
we restrict our attention to the class of chemical graphs (i.e., graphs with maximal degree at 
most 4). Namely, the following theorem is given [9]: 

Theorem 1. For all chemical graphs G  with order n , size m , first and second Zagreb indices 
1M  and 2M ,

1 2/ /M n M m .

Moreover, the bound is tight if and only if all edges ,i j  have the same pair ,i jd d  of 

degrees or if the graph is composed of disjoint stars 5S  and cylces , ,...p qC C  of any length.

The aim of this paper is to analyze the generalization of this problem to variable Zagreb 
indices. It will be shown that the claim analogous to the proposed conjecture holds for all 

0,1/ 2 , namely that: 

Theorem 2. For all graphs G  and all 0,1/ 2 , it holds that 1 2/ /M G n M G m .

The analogue of Theorem 1 can be proved for 0,1 , i.e., it will be proved that: 

Theorem 3. For all chemical graphs G  and all 0,1 , it holds that 

1 2/ /M G n M G m .

In order to see that the results of Theorem 3 cannot be extended, it will be proved that: 

Theorem 4. Let \ 0,1R  and G  be any complete unbalanced bipartite graph. Then, 

1 2/ /M G n M G m .
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It remains to analyze possible extensions of Theorem 2. In [9], it is shown that there is graph 
G  such that 1 1

1 2/ /M G n M G m . Hence, it remains to analyze the interval 1/ 2,1 . It 
will be proved that 

Theorem 5. Let 2 / 2,1 . Then, there is a graph G  such that 

1 2/ /M G n M G m .

The remaining open problem is: 

Open problem: Identify 1/ 2, 2 / 2  such that 1 2/ /M n M m  for all graphs G .

Main results 

We start with an arbitrary Lemma: 

Lemma 1. Let i  and j  be different natural numbers and let  

2 11 1,f i j i j i j
i j

.

Then, , 0f i j  for 0,1  and , 0f i j  for \ 0,1R .

Proof: Note that the expression above is symmetric in i  and j . Hence, we may assume that 

i j . Denote 1ix
j

. We have:  

2,i j f i j i j i j i j i j

1
2 1

,i j f i j
x x x x

j

1
2 1

,
1 1

i j f i j
x x x

j
.

Hence, ,f i j  has the same sign as 11 1x x x . Note that 

0x  and 
1

1

1 0,  for each 1
1 0, for each 

x
x

 and 
1 0,  for each 0
1 0, for each 0

x
x

.

Hence,

1

1

1 1 0, for each 0,1

1 1 0, for each \ 0,1

x x x

x x x R
,
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which proves the Lemma. 

Now, theorem 2 can be proved. 

Proof of Theorem 2: Denote by ijm  the number of edges with end-vertices i  and j . We 
have:

2
2 2

1

1 1

ii ij
j N

i Ni
v V G i N

ii iji
ijj Ni N

i j
i N

m m
i

d v in iM G
m mn n m

i j
i

2 1 1 2 1

1 1 1 1

ii ij ij
i N j N i j

ij ij
i j i j

m m i m i j

m m
i j i j

          

and

2
ij

uv E G i j N

ij
i j N

d u d v m i j
M G

m m m
.          

Hence, we need to prove that: 

2 1 1

1 1

ij ij
i j i j N

kl
kl k l N

k l

m i j m i j

mm
k l

2 1 1

2 1 1

, , ,

1 1. 0

1 1 0.

ij kl ij kl
i j N k l i j k l N

ij kl
i j
k l

i j k l N

m i j m m i j m
k l

i j i j m m
k l

Now, collecting in the same summand cases where roles of ,i j  and ,k l  are reversed one 
gets:
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2

2 1 1 2

,

2 1 2 1 2 1 2 1

, , ,
, ,

1 1

1 1 1 1 0.

ij
i j

i j N

ij kl
i j
k l

i j k l N
i j k l

i j i j m
i j

i j k l i j k l m m
k l i j

    (1) 

From Lemma 1, it follows that all the summands in the first sum are non-negative. Hence, it is 
sufficient to prove that all the summands in the second sum are also non-negative, i.e., that for 
each i , j , k  and l  it holds:

2 1 2 1 2 1 2 11 1 1 1, , ,g i j k l i j k l i j k l
k l i j

.

Without loss of generality, we may assume that max , , ,i i j k l  and that k l .

1 1
2 2

2

2

2 2

, , , 1 2 1

1 2

g i j k l i j i j k l i
i k l i

i j i j i k l
k i l i i i

Since,
2

2 2, ,i j i j i k l
k i l i i i

 , it follows that 
, , ,

0
g i j k l

i
. Hence, it is sufficient to 

prove the claim when max , ,i j k l . Distinguish two cases: 

CASE 1: i j .

In this case i j k l  and 1 1 1 1
k l i j

, hence 

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

1 1 1 1, , ,

1 1 1 1 from Lemma 1 0,

g i j k l i j k l i j k l
i j k l

i j i j k l k l
i j k l

which proves the claim. 

CASE 1: i k .

Without loss of generality, we may assume that j l . Note that 

2

2 2

, , ,
1 2

lg i j i l i j i l i l l
l l i l j l l

.
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Since,
2

2 2, ,
li j i l i l l

l i l j l l
 it follows that 

, , ,
0

g i j k l
i

. Hence, it is sufficient to 

prove the claim when l j . We have:

2 1 2 1 2 1 2 11 1 1 1, , ,g i j i j i j i j i j i j
i j i j

,

and the claim follows from Lemma 1.

Let us prove Theorem 3: 

Proof of Theorem 3: Similarly as in the proof of Theorem 2, one obtains that it is sufficient 
to prove that: 

2

2 1 1 2

,

2 1 2 1 2 1 2 1

, , ,
, ,

1 1

1 1 1 1 0.

ij
i j

i j N

ij kl
i j
k l

i j k l N
i j k l

i j i j m
i j

i j k l i j k l m m
k l i j

From Lemma 1, it follows that all the summands in the first sum are non-negative. Hence, it is 
sufficient to prove that all the summands in the second sum are also non-negative. Since, the 
maximum degree is at most 4, there are 45 summands. Graphs of all 45 functions 

, , , : 0,1i j k lf R  are drawn using the software package Mathematica [10]. Here, we present 
just 6 of them: 
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Figure 1. Graphs of the functions 1,1 , 2,4f , 1,2 , 3,4f , 1,4 , 2,2f , 2,4 , 3,3f , 2,4 , 4,4f  and 3,3 , 4,4f .

From these 45 graphs the claim easily follows. 

Let us prove Theorem 4: 

Proof of Theorem 4: Denote by a  and b  the cardinalities of the classes of bipartition. 
Obviously all ijm s are equal to 0 except abm . Along the same lines as in the proof of Theorem 
3 (just with the reversed inequality sign) one gets that it is sufficient to prove that: 

2 1 11 1 0aba b a b m
a b

.

Obviously 0abm  and the from Lemma 1, it follows that 2 1 11 1 0a b a b
a b

.

Before proving Theorem 5, we prove another two more Lemmas: 

Lemma 2. For each 2 / 2,1 , there are rational numbers , 1a b  such that: 

2 1a b            
2 1 2 1b            
2 2 1b a .           

Proof: It we take 1/ 2  for a  and 1 1 2
2

 for b  all three inequalities will be satisfied. 

Since the set of rational numbers is dense in R ; all functions continuous; and all inequalities 
sharp, it follows that the inequalities  are also satisfied for some rational numbers a  and b .
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Lemma 3. For each 2 / 2,1 , there are integers , , , 1i j k l  such that k l  and: 

2 1 2 1 2 1 2 11 1 1 1, , , 0g i j k l i j k l i j k l
k l i j

Proof: Let a  and b  be rational numbers that satisfy the conditions of the last Lemma and let  

r  be the common denominator of a  and b . Denote pa
r

 and qb
r

. Let x  be any integer. 

Note that: 

2 1 2 1 2 1 2 12 2, , , r p q qr p q q r p q r p q q p q rg x x x x x x x x x x x x
2 2 1 2 1 2 1 2 1

2 2
a b b a b a br r r r r rx x x x x x

If x  goes to infinity, the sign will be determined by the coefficient standing with the largest 
exponent and that is (from the last Lemma) 1. Hence, indeed the claim holds. 

Now, we can prove Theorem 5. 

Proof of Theorem 5: We need to show that there is graph G  such that  

2

2 1 1 2

,

2 1 2 1 2 1 2 1

, , ,
, ,

1 1

1 1 1 1 0,

ij
i j

i j N

ij kl
i j
k l

i j k l N
i j k l

i j i j m
i j

i j k l i j k l m m
k l i j

i.e., that: 

2

2

,
, , ,

, ,

1 , , , , , , 0,
2 ij ij kl

i j i j
i j N k l

i j k l N
i j k l

g i j i j m g i j k l m m

Let , ,i j k  (and l k ) be taken in such way that satisfy the conditions of the last Lemma. Let 

,x yG  be graph created in the following way: 
1) Take x  copies of ijK  (complete bipartite graph with i  vertices in one class and j  in 

other class)  and y  copies of kkK .
2) Connect each of these graphs (cyclically) with two neighboring graphs and delete in 

each graph one edge in order not to change degrees (see figure below; the edges that 
should be deleted are drawn with dashed lines and edges that should be added by solid 
lines) 
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Figure 2. Graph xyG .

We have: 1ij jim m xij , 2 1kkm yk , 1ik kim m , 1jk kjm m  and all other m s
are equal to 0. Hence, we need to prove that for some x  and y  we have: 

2 2

22 2

2

1 , , , 1 , , , 1 1 , , , 1
2

1, , , 1 , , , 1 , , , 1
2
1 1, , , 1 , , , , , , , , , 0
2 2

g i j i j ijx g i j k k k y ijx g i j i k ijx

g i j j k ijx g k k k k k y g k k i k k y

g k k j k k y g i k i k g i k j k g j k j k

 (2) 

Putting 2y x  we get that the coefficient standing by 4x  is , , , 0g k k k k  and the 

coefficient standing by 3x  is 2, , ,g i j k k k ij  which is a negative number. Hence for 
sufficiently large x , relation (2) will hold. 
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