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Abstract

The Zagreb indices were introduced 30 years ago. Since then also various modified

Zagreb indices were put forward, and these all happen to be special cases of the

general Randić index. In this paper we report several novel estimates of the general

Randić index and of its special cases – the ordinary and modified Zagreb indices.

1. INTRODUCTION

Two molecular structure–descriptors, denoted by M1 and M2 , were put forward

30 years ago, and are nowadays referred to as the first and second Zagreb indices.
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These are defined as

M1 = M1(G) =
n∑

i=1

d2
i ; M2 = M2(G) =

∑
i∼j

di dj

where di stands for the degree of the vertex i in the respective (molecular) graph G ,

the summation in M1 runs over all vertices i of G whereas the summation in M2 runs

over all edges of G . The symbol i ∼ j indicates that the vertices i and j are adjacent.

The quantities M1 and M2 were first encountered within a study of the structure–

dependence of the total π-electron energy [1]. Soon thereafter it was recognized that

both M1 and M2 can be viewed as measures of molecular branching [2]. The name

Zagreb index seems to be first used in the review [3]; M1 and M2 are referred to as

the first and second Zagreb index, respectively [3, 4].

The Zagreb indices do not belong among the popular and frequently used struc-

ture–descriptors, but some of their applications in QSPR and QSAR studies were

nevertheless attempted. For more data on this matter see the reviews [5, 6], the

recent works [7–11] and the papers quoted therein. Mathematical properties of the

Zagreb indices have also been much studied in the recent past [6,12–18].

In addition to the original Zagreb indices, several modified versions thereof were

also introduced [5,19–22]; for details see below.

The connectivity index, also called vertex–connectivity index or Randić index,

denoted by 1R , is given by

1R = 1R(G) =
∑
i∼j

1√
di dj

.

This index is also referred to as the first-order (vertex-)connectivity index. Its zeroth-

order variant is defined as

0R = 0R(G) =
n∑

i=1

1√
di

.

The general Randić index and the general zeroth–order Randić index are defined as

Rα = Rα(G) =
∑
i∼j

(di dj)
α

and

Qα = Qα(G) =
n∑

i=1

(di)
α .
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Evidently, for α = −1/2 the general Randić index and the general zeroth–order

Randić index reduce to the ordinary Randić index and the ordinary zeroth–order

Randić index, respectively, i. e.,

1R(G) = R−1/2(G) ; 0R(G) = Q−1/2(G) .

What also needs to be noticed is that for the general Randić index for α = 1 and the

general zeroth–order Randić index for α = 2 reduce to the second and first Zagreb

indices, respectively, i. e.,

M1(G) = Q2(G) ; M2(G) = R1(G) .

The theory of the Randić–type structure–descriptors is outlined in detail in the

recent book [23], where the interested reader may also find an exhaustive bibliography

on this matter.

The modified Zagreb indices are defined as follows

mA =
n∑

i=1

1

di

; mM1 =
n∑

i=1

1

d2
i

; mM2 =
∑
i∼j

1

di dj

.

Thus

mA = Q−1(G) ; mM1 = Q−2(G) ; mM2 = R−1(G)

and

mM1 ≤ mA ≤ 0R ≤ M1 ; mM2 ≤ 1R ≤ M2 .

In addition, M1(G) = M2(G) if and only if G is a 2-regular graph [17]; if G is

connected, then M1(G) = M2(G) holds only if G ∼= Cn .

In this paper we will compare above specified topological indices and estimate

them.
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2. COMPARING VARIOUS ZAGREB INDICES

Let G = G(V, E) be a simple graph of order n and with m edges, i. e., |V | = n ,

|E| = m . The adjacency matrix of G is denoted by A , with (A)i,j being its (i, j)-th

entry.

In [5], the following formula for M1 was given, viz.,

M1 =
1

2

[
n∑

i=1

(A4)ii + 2m

]
. (1)

We would like to point out that formula (1) is correct only for graphs that are C4-free.

In fact, for a general graph G we have:

Proposition 2.1.

M1 =
1

2

[
n∑

i=1

(A4)ii + 2m

]
− 4q (2)

where q is the number of quadrangles in G .

Proof. A result equivalent to Proposition 2.1 was reported already in the early paper

[1]. We, nevertheless, re-state its proof.

Let qi denote the number of quadrangles that contain the vertex i . Note that

(A4)ii = d2
i +

∑
j∼i

dj − di + 2 qi .

Then

n∑
i=1

(A4)ii =
n∑

i=1

d2
i +

n∑
i=1

∑
j∼i

dj −
n∑

i=1

di + 2
n∑

i=1

qi

= M1(G) + M1(G) − 2m + 8q . �

Next we state a few simple relations between the considered indices.

Proposition 2.2. Let G be a connected graph on n vertices. Then,

√
n − 1 ≤ 1R ≤ n

2
.

Equality on the left–hand side holds if and only if G ∼= K1,n−1 . Equality on the

right–hand side holds holds if and only if G is a regular graph.
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Proof. The lower bound is a difficult result, due to Bollobás and Erdős [24]. The

upper bound (which holds also for non-connected graphs) has been deduced by several

authors (for details see [23]). In what follows we offer another simple proof.

By the arithmetic–geometric inequality,

1R =
∑
i∼j

1√
di dj

≤ 1

2

∑
i∼j

(
1

di

+
1

dj

)
=

1

2

n∑
i=1

di

di

=
n

2
.

Clearly, equality holds if and only if di = dj for all pairs of vertices, i. e., if the graph

is regular. �

Proposition 2.3.

mM2 ≥ 1

m
(1R)2 ≥ n − 1

m

where the left equality holds if and only if G is regular or K1,n−1 , while the right

equality holds if and only if G ∼= K1,n−1 .

Proof.

mM2 =
∑
i∼j

⎛
⎝ 1√

di dj

⎞
⎠2

≥ 1

m

⎛
⎝∑

i∼j

1√
di dj

⎞
⎠2

(Cauchy inequality)

=
1

m
(1R)2 ≥ n − 1

m
.

The first equality holds if and only if di dj = dα dβ for i ∼ j , α ∼ β , i. e., if G is

either regular or isomorphic to K1,n−1 . The second equality holds if and only if G is

K1,n−1 . �

Proposition 2.4.
1

n
(0R)2 ≤ mA ≤

√
n · mM1

with equality holding if and only if G is a regular graph.

Proof.

mA =
n∑

i=1

(
1√
di

)2

≥ 1

n

(
n∑

i=1

1√
di

)2

=
1

n
(0R)2 (3)

mM1 =
n∑

i=1

(
1

di

)2

≥ 1

n

(
n∑

i=1

1

di

)2

=
1

n
(mA)2 . (4)
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The equality in (3) (or (4)) holds if and only if di is a constant. �

Proposition 2.5.

mA ≥
√

mM1 + 2 · mM2 and 0R ≥
√

mA + 2 · 1R .

Equality holds if and only if G ∼= Kn .

Proof.

(mA)2 =

(∑
i

1

di

)2

=
n∑

i=1

1

d2
i

+ 2
∑
i<j

1

di dj

≥ mM1 + 2
∑
i∼j

1

di dj

= mM1 + 2 · mM2

since ∑
i<j

1

di dj

=
∑
i∼j

1

di dj

holds if and only if G ∼= Kn . The other inequality in Proposition 2.5 is deduced in

an analogous manner. �

Let
n∏

i=1
di = Dn . Then we have:

Proposition 2.6.

mA ≥
√

mM1 + n(n − 1) · D−2/n
n

0R ≥
√

mA + n(n − 1) · D− 1
n

n .

Equality holds if and only if G is a regular graph.

Proof.

(mA)2 =

(
n∑

i=1

1

di

)2

=
n∑

i=1

1

d2
i

+ 2
∑
i<j

1

di dj

.

By the arithmetic–geometric inequality,

2

n(n − 1)

∑
i<j

1

di dj

≥
[

n∏
i=1

(
1

di

)n−1
]2/[n(n−1)]

=

(
n∏

i=1

1

di

)2/n

= D−2/n
n

with equality holding if and only if 1/(di dj) is a constant for all i, j , i. e., if G is

regular. Thus

mA ≥
√

mM1 + n(n − 1) · D− 2
n

n
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and the equality holds if and only if G is regular. Similarly, from

(0R)2 =

(
n∑

i=1

1√
di

)2

=
n∑

i=1

1

di

+ 2
∑
i<j

1√
di dj

follows that

0R ≥
√

mA + n(n − 1) · D−1/n
n .

Equality holds if and only if G is regular. �

Let

A(a) =
1

n

n∑
k=1

ak (the arithmetic mean)

H(a) = n

(
n∑

k=1

1

ak

)
(the harmonic mean)

G(a) =

(
n∏

i=1

ai

)1/n

(the geometric mean)

where a1, a2, . . . , an are positive real numbers.

By the well known inequality

1 <
A(a) − H(a)

A(a) − G(a)
< n

we have the following:

Proposition 2.7.

nD−1/n
n < mA <

n2

n2 D
1/2
n − 2(n − 1)m

.

By the Sierpiński inequality

(A(a))n−1 H(a) ≥ (G(a))n ≥ A(a) (H(a))n−1 (n ≥ 2)

we have:

Proposition 2.8. For n ≥ 2 ,

n
(

n

2m
Dn

)−1/(n−1)

≤ mA ≤
(

2m

n

)n−1 n

Dn

.
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3. ESTIMATING THE GENERAL RADIĆ INDEX

We now consider the general cases. Namely we estimate Rα(G) and Qα(G) for

any real number α . There are numerous known estimates of this kind; for details see

the book [23] and the newest papers [25–31].

Recalling the Jensen inequality

(
n∑

k=1

as
k

)1/s

≤
(

n∑
k=1

ar
k

)1/r

for 0 < r < s , where a1, a2, . . . , an are positive real numbers, we have:

Proposition 3.1. For any real number α > 1 ,

Rα(G) ≤ Mα
2 .

Proof. By the Jensen inequality,

⎛
⎝∑

i∼j

(di dj)
α

⎞
⎠1/α

≤∑
i∼j

di dj . �

Proposition 3.2. For any real number α ,

Qα(G) ≥ 2 R(α−1)/2(G) .

Equality holds if and only if α = 1 or G is regular.

Proof.

Qα(G) =
n∑

i=1

dα
i =

∑
i∼j

(
dα−1

i + dα−1
j

)

≥ 2
∑
i∼j

√
dα−1

i dα−1
j (arithmetic–geometric inequality)

= 2
∑
i∼j

(di dj)
(α−1)/2 = 2 R(α−1)/2(G) .

Equality holds if and only if dα−1
i = dα−1

j , i. e., if either α = 1 or G is regular. �

Proposition 3.3. For integral α ≥ 1 ,

Qα(G) ≤ m(m + 1)α−1 .
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For a connected graph G , the above equality holds if and only if α = 2 and G ∼=
K1,n−1 .

Proof.

Qα(G) =
n∑

i=1

dα
i =

∑
i∼j

(dα−1
i + dα−1

j )

≤ ∑
i∼j

(di + dj)
α−1 ≤∑

i∼j

(m + 1)α−1 = m(m + 1)α−1 .

If G is connected, then by Lemma 1 in [17] the above equalities hold if and only if

α = 2 and G ∼= K1,n−1 . �

Corollary 3.1. For a connected graph G ,

Q3(G) ≤ m(m + 1)2 − 2 M2

where the equality holds if and only if G ∼= K1,n−1 .

Proof.

Q3(G) =
n∑

i=1

d3
i =

∑
i∼j

(d2
i + d2

j)

=
∑
i∼j

(di + dj)
2 − 2

∑
i∼j

di dj ≤ m(m + 1)2 − 2 M2 .

By Lemma 1 in [17], the equality holds if and only if G ∼= K1,n−1 . �

Next we will make some estimations for Qα and Rα in terms of minimum vertex

degree δ and maximum vertex degree Δ .

Proposition 3.4. For α ≥ 2 ,

Qα ≤ 2mδα−1 + (2m − n δ)
α−2∑
j=0

Δα−1−j δj .

Equality holds if G is of bidegree δ and Δ or regular.

Proof. Let ni be the number of vertices of degree i in the graph G , δ ≤ i ≤ Δ .

Thus

Qα =
Δ∑

i=δ

iα ni (5)
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where

Δ∑
i=δ

ni = n (6)

Δ∑
i=δ

i · ni = 2m . (7)

From (6) and (7) we have

nδ =
1

Δ − δ

⎡
⎣nΔ − 2m +

Δ−1∑
i=δ+1

(i − Δ)ni

⎤
⎦ (8)

nΔ =
1

Δ − δ

⎡
⎣2m − nδ +

Δ−1∑
i=δ+1

(δ − i)ni

⎤
⎦ . (9)

By substituting Eqs. (8) and (9) back into Eq. (5),

Qα =
1

Δ − δ
[δα (nΔ − 2m) + Δα (2m − nδ)]

+
1

Δ − δ

Δ−1∑
i=δ+1

[δα (i − Δ) + iα (Δ − δ) + Δα (δ − i)] ni

= (2m − nδ)(Δα−1 + Δα−2 · δ + · · · + Δ · δα−2) + 2mδα−1

+
Δ−1∑

i=δ+1

⎡
⎣(δ − i)

α−2∑
j=0

(Δα−1−j − iα−1−j)δj

⎤
⎦ ni

= 2m δα−1 + (2m − nδ)
α−2∑
j=0

Δα−1−j δj

+
Δ−1∑

i=δ+1

(δ − i) ni

α−2∑
j=0

(Δα−1−j − iα−1−j) δj .

Observe that δ − i < 0 , Δα−1−j − iα−1−j > 0 for δ + 1 ≤ i ≤ Δ− 1 , and α ≥ 2 .

Thus

Qα ≤ 2m δα−1 + (2m − n δ)
α−2∑
j=0

Δα−1−j δj .

Clearly the equation holds if ni = 0 for i = δ + 1, . . . , Δ − 1 , i. e., if G has vertices

of degree only δ and Δ , or if G is regular. �
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Proposition 3.5. For α > 0 ,

Rα(G) ≤ 1

2
Qα

[(
1 − 1

n

)
Qα + (Δ − n − 1)δα

]
.

Equality holds if and only if G is regular.

Proof.

Rα(G) =
∑
i∼j

(di dj)
α =

1

2

n∑
i=1

dα
i

∑
j∼i

dα
j

≤ 1

2

n∑
i=1

dα
i

(
n∑

i=1

dα
i − dα

i − (n − 1 − di)δ
α

)
(α > 0) (10)

=
1

2

⎡
⎣( n∑

i=1

dα
i

)2

−
n∑

i=1

d2α
i + δα

n∑
i=1

dα+1
i − (n − 1) δα

n∑
i=1

dα
i

⎤
⎦ (11)

≤ 1

2

(
Q2

α − (n − 1)δα Qα + δα Δ · Qα −
n∑

i=1

d2α
i

)

≤ 1

2

(
Q2

α − (n − 1)δα Qα + δα Δ · Qα − 1

n
Q2

α

)
(Cauchy inequality)

=
1

2
Qα

[(
1 − 1

n

)
Qα + (Δ − n + 1)δα

]
.

Clearly all equalities hold if and only if di is constant. �

Combing Propositions 3.4 and 3.5 we get:

Corollary 3.2. For α ≥ 2 ,

Rα ≤ 1

2

⎛
⎝2mδα−1 + (2m − nδ)

α−2∑
j=0

Δα−1−jδj

⎞
⎠

×
⎡
⎣2(1 − 1

n

)
mδα−1 +

(
1 − 1

n

)
(2m − nδ)

α−2∑
j=0

Δα−1−j δj + (Δ − n + 1) δα

⎤
⎦ .

From formula (11) in Proposition 3.5, we deduce:

Corollary 3.3. For α > 0 ,

Rα(G) ≤ 1

2

(
Q2

α − (n − 1)δα Qα + δα Qα+1 − Q2α

)
.
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In particular, for α = 1 (see [16])

M2 ≤ 2m2 − (n − 1)m δ +
1

2
(δ − 1) M1 .

Similarly, for α > 0 we can estimate Rα(G) from below:

Proposition 3.6. For α > 0 ,

Rα(G) ≥ 1

2
Qα

[
1

4n

(
4n − (n − 1)α − 1

(n − 1)α
− 2

)
Qα + (δ − n + 1)Δα

]
.

Proof.

Rα(G) =
∑
i∼j

(di dj)
α =

1

2

n∑
i=1

dα
i

∑
j∼i

dα
j

≥ 1

2

n∑
i=1

dα
i

(
n∑

i=1

dα
i − dα

i − (n − 1 − di) Δα

)

=
1

2

⎡
⎣( n∑

i=1

dα
i

)2

−
n∑

i=1

d2α
i + Δα

n∑
i=1

dα+1
i − (n − 1) Δα

n∑
i=1

dα
i

⎤
⎦ (12)

≥ 1

2

(
Q2

α − (n − 1)Δα Qα + Δα δ Qα −
n∑

i=1

d2α
i

)
.

We use the Pólya–Szegö inequality as follows. Let 0 < m1 ≤ ak ≤ M1 , 0 < m2 ≤
bk ≤ M2 (k = 1, 2, . . . , n) . Then(

n∑
k=1

a2
k

)(
n∑

k=1

b2
k

)
≤ 1

4

(√
M1M2

m1m2

+

√
m1m2

M1M2

)2 ( n∑
k=1

akbk

)2

since 0 < 1 ≤ dα
i ≤ (n − 1)α .

Let bk = 1 . Then

n∑
i=1

d2α
i ≤ 1

4n

(√
(n − 1)α +

√
1

(n − 1)α

)2 ( n∑
i=1

dα
i

)2

=
1

4n

(
(n − 1)α +

1

(n − 1)α
+ 2

)
Q2

α .

Thus

Rα(G) ≥ 1

2

[
Q2

α − (n − 1) Δα Qα + Δα δ Qα

− 1

4n

(
(n − 1)α +

1

(n − 1)α
+ 2

)
Q2

α

]

=
1

2
Qα

[
1

4n

(
4n − (n − 1)α − 1

(n − 1)α
− 2

)
Qα + (δ − n + 1) Δα

]
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from which Proposition 3.6 follows. �

From formula (12) in Proposition 3.6, we obtain

Corollary 3.4. For α > 0 ,

Rα(G) ≥ 1

2

[
Q2

α − (n − 1)Δα Qα + Δα Qα+1 − Q2α

]
.

Bearing in mind that mM2 = R−1 and 1R = R−1/2 , we consider Rα(G) for α < 0 .

Note that ∑
j∈N(i)

dα
j ≤

n∑
i=1

dα
i − dα

i − (n − 1 − di) Δα

for α < 0 . From inequality (10) in Proposition 3.5, we have

Rα(G) ≤ 1

2

n∑
i=1

dα
i

[
n∑

i=1

dα
i − dα

i − (n − 1 − di) Δα

]
(α < 0) .

Thus similar as in Proposition 3.5, we have:

Proposition 3.7. For α < 0 ,

Rα(G) ≤ 1

2

[
Q2

α − (n − 1)Δα Qα + Δα Qα+1 − Q2α

]

≤ 1

2
Qα

[(
1 − 1

n

)
Qα + (Δ − n + 1) Δα

]
.

Setting α = −1 or α = −1/2 in Proposition 3.7, we have:

Corollary 3.5. For α = −1 or α = −1/2 ,

mM2 = R−1(G) ≤ 1

2

[
(mA)2 − (n − 1)Δ−1 · mA + Δ−1n − mM1

]

1R = R−1/2(G) ≤ 1

2

[
(0R)2 − (n − 1)Δ−1/2 · 0R + Δ−1/2

√
2mn − mA

]
.

Similarly, from Proposition 3.6 we obtain

Proposition 3.8. For α < 0 ,

Rα(G) ≥ 1

2

[
Q2

α − (n − 1)δα Qα + δα Qα+1 − Q2α

]

≥ 1

2
Qα

[
1

4n

(
4n − (n − 1)α − 1

(n − 1)α
− 2

)
Qα + (δ − n + 1) δα

]
.

- 629 -



Corollary 3.6. For α = −1 or α = −1/2 ,

mM2 = R−1(G) ≥ 1

2

[
(mA)2 − (n − 1)δ−1 · mA + δ−1 n − mM1

]

1R = R−1/2(G) ≥ 1

2
0R

[
1

4n

(
4n − 1√

n − 1
−√

n − 1 + −2

)
0R +

δ − n + 1√
δ

]
.
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