A Unified Approach to the Extremal Zagreb Indices for Trees, Unicyclic Graphs and Bicyclic Graphs ${ }^{1}$

Hanyuan Deng
College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China hydeng@hunnu.edu.cn
(Received August 21, 2006)

Abstract

For a (molecular) graph, the first Zagreb index M_{1} is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M_{2} is equal to the sum of the products of the degrees of pairs of adjacent vertices. This paper presents a unified and simple approach to the largest and smallest Zagreb indices for trees, unicyclic graphs and bicyclic graphs by introducing some transformations, and characterize these graphs with the largest and smallest Zagreb indices, respectively.

1 Introduction

Let $G=(V, E)$ be a simple connected graph with the vertex set $V(G)$ and the edge set $E(G)$. The first Zagreb index M_{1} and the second Zagreb index

[^0]M_{2} of G are defined as
\[

$$
\begin{gathered}
M_{1}(G)=\sum_{x \in V(G)}\left(d_{G}(x)\right)^{2} \\
M_{2}(G)=\sum_{x y \in E(G)} d_{G}(x) d_{G}(y)
\end{gathered}
$$
\]

where $d_{G}(x)$ is the degree of vertex x in G.
The Zagreb indices M_{1} and M_{2} were introduced in [1] and elaborated in [2]. The main properties of M_{1} and M_{2} were summarized in [3,4]. These indices reflect the extent of branching of the molecular carbon-atom skeleton, and can thus be viewed as molecular structure-descriptors $[5,6]$.

Recently, finding the extremal values or bounds for the topological indices of graphs, as well as related problems of characterizing the extremal graphs, attracted the attention of many researchers and many results are obtained (see [3-16]). [4] showed that the trees with the smallest and largest M_{1} are the path and the star, respectively. [7] also showed that the trees with the smallest and largest M_{2} are the path and the star, respectively. [15] characterized the graphs with the smallest and largest M_{2} among all unicyclic graphs. [9] gave the the unicyclic graphs with the first three smallest and largest M_{1}. [16] gave the bicyclic graph with the largest M_{1}.

In this paper, we present a unified and simple approach to the largest and smallest Zagreb indices for trees, unicyclic graphs and bicyclic graphs by introducing some transformations, and characterize these graphs with the extremal Zagreb indices. The results which characterize the bicyclic graphs with extremal M_{2} are new.

2 Two transformations which increase the Zagreb indices

For any $v \in V(G), N_{G}(v)=\{u \mid u v \in E(G)\}$ denotes the neighbors of v, and $d_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v in G.

Let $E^{\prime} \subseteq E(G)$, we denote by $G-E^{\prime}$ the subgraph of G obtained by deleting the edges of $E^{\prime} . W \subseteq V(G), G-W$ denotes the subgraph of G obtained by deleting the vertices of W and the edges incident with them.

We give two transformations which will increase the Zagreb indices as follows:

Transformation A: Let $u v$ be an edge $G, d_{G}(v) \geq 2, N_{G}(u)=\left\{v, w_{1}, w_{2}\right.$, $\left.\cdots, w_{t}\right\}$, and $w_{1}, w_{2}, \cdots, w_{t}$ are leaves. $G^{\prime}=G-\left\{v w_{1}, v w_{2}, \cdots, v w_{t}\right\}+$ $\left\{u w_{1}, u w_{2}, \cdots, u w_{t}\right\}$, as shown in Figure 1.

Lemma 2.1. Let G^{\prime} be obtained from G by transformation A, then

$$
M_{1}\left(G^{\prime}\right)>M_{1}(G) \text { and } M_{2}\left(G^{\prime}\right)>M_{2}(G)
$$

Proof. Let $G_{0}=G-\left\{u, w_{1}, w_{2}, \cdots, w_{t}\right\}$. By the definition of the Zagreb indices, we have

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}(v)-d_{G}^{2}(v)+d_{G^{\prime}}^{2}(u)-d_{G}^{2}(u) \\
& =\left(d_{G}(v)+t\right)^{2}-d_{G}^{2}(v)+1-(t+1)^{2} \\
& =2 t\left(d_{G}(v)-1\right)>0 \\
M_{2}\left(G^{\prime}\right)-M_{2}(G)= & \sum_{x \in N_{G_{0}}(v)} d_{G^{\prime}}(v) d_{G^{\prime}}(x)+(t+1) d_{G^{\prime}}(v) \\
& -\sum_{x \in N_{G_{0}}(v)} d_{G}(v) d_{G}(x)-(t+1) d_{G}(v)-t(t+1) \\
= & \sum_{x \in N_{G_{0}}(v)}\left(d_{G}(v)+t\right) d_{G}(x)+(t+1)\left(d_{G}(v)+t\right) \\
& -\sum_{x \in N_{G_{0}}(v)} d_{G}(v) d_{G}(x)-(t+1) d_{G}(v)-t(t+1) \\
= & \sum_{x \in N_{G_{0}}(v)} t d_{G}(x)>0
\end{aligned}
$$

G
Figure 1. Transformation A.

Figure 2. Transformation B.

Remark 1. Repeating Transformation A, any tree can changed into a star, any unicyclic or bicyclic graph can be changed into an unicyclic or bicyclic graph such that all the edges not on the cycles are pendant edges.

Transformation B: Let u and v be two vertices in $G . u_{1}, u_{2}, \cdots, u_{r}$ are the leaves adjacent to $u, v_{1}, v_{2}, \cdots, v_{t}$ are the leaves adjacent to $v . G^{\prime}=$ $G-\left\{u u_{1}, u u_{2}, \cdots, u u_{r}\right\}+\left\{v u_{1}, v u_{2}, \cdots, v u_{r}\right\}, G^{\prime \prime}=G-\left\{v v_{1}, v v_{2}, \cdots, v v_{t}\right\}+$ $\left\{u v_{1}, u v_{2}, \cdots, u v_{t}\right\}$, as showed in Figure 2.

Lemma 2.2. Let G^{\prime} and $G^{\prime \prime}$ be obtained from G by transformation B, then either $M_{i}\left(G^{\prime}\right)>M_{i}(G)$ or $M_{i}\left(G^{\prime \prime}\right)>M_{i}(G), i=1,2$.

Proof. Let $G_{0}=G-\left\{u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{t}\right\}$.

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}(v)-d_{G}^{2}(v)+d_{G^{\prime}}^{2}(u)-d_{G}^{2}(u) \\
& =\left(d_{G}(v)+r\right)^{2}-d_{G}^{2}(v)+\left(d_{G}(u)-r\right)^{2}-d_{G}^{2}(u) \\
& =2 r\left(r+d_{G}(v)-d_{G}(u)\right) \\
M_{1}\left(G^{\prime \prime}\right)-M_{1}(G) & =d_{G^{\prime \prime}}^{2}(v)-d_{G}^{2}(v)+d_{G^{\prime \prime}}^{2}(u)-d_{G}^{2}(u) \\
& =\left(d_{G}(v)-t\right)^{2}-d_{G}^{2}(v)+\left(d_{G}(u)+t\right)^{2}-d_{G}^{2}(u) \\
& =2 t\left(t+d_{G}(u)-d_{G}(v)\right)
\end{aligned}
$$

So, $M_{1}\left(G^{\prime}\right)>M_{1}(G)$ if $d_{G}(v) \geq d_{G}(u)$; otherwise $M_{1}\left(G^{\prime \prime}\right)>M_{1}(G)$.
Let $d_{G_{0}}(u)=p$ and $d_{G_{0}}(v)=q$.
(i) If u, v are not adjacent in G, then, by the definition of M_{2}, we have

$$
\begin{aligned}
M_{2}(G)= & \sum_{x y \in E\left(G_{0}-\{u, v\}\right)} d_{G_{0}}(x) d_{G_{0}}(y)+(p+r) \sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x) \\
& +(q+t) \sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)+r(p+r)+t(q+t) \\
M_{2}\left(G^{\prime}\right)= & \sum_{x y \in E\left(G_{0}-\{u, v\}\right)} d_{G_{0}}(x) d_{G_{0}}(y)+p \sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x) \\
& +(q+t+r) \sum_{x \in N_{G_{0}(v)}} d_{G_{0}}(x)+(r+t)(q+t+r) \\
M_{2}\left(G^{\prime \prime}\right)= & \sum_{x y \in E\left(G_{0}-\{u, v\}\right)} d_{G_{0}}(x) d_{G_{0}}(y)+(p+r+t) \sum_{x \in N_{G_{0}(u)}} d_{G_{0}}(x) \\
& +q \sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)+(r+t)(p+r+t) \\
\Delta_{1}= & M_{2}\left(G^{\prime}\right)-M_{2}(G) \\
= & r\left(\sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)-\sum_{x \in N_{G_{0}(u)}} d_{G_{0}}(x)\right)+r(2 t+q-p) \\
\Delta_{2}= & \left.M_{2}\left(G^{\prime \prime}\right)-M_{2}(G) \sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)\right)+t(2 r+p-q) \\
= & t\left(\sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x)-\sum_{x, t}\right)
\end{aligned}
$$

If $\Delta_{1}=M_{2}\left(G^{\prime}\right)-M_{2}(G) \leq 0$, then

$$
\sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x)-\sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x) \geq 2 t+q-p
$$

So, $\Delta_{2}=M_{2}\left(G^{\prime \prime}\right)-M_{2}(G) \geq t(2 t+q-p)+t(2 r+p-q)=2 t(t+r)>0$.
(ii) If u, v are adjacent in G, then $u \in N_{G_{0}}(v)$ and $v \in N_{G_{0}}(u)$.

$$
\begin{aligned}
M_{2}(G)= & \sum_{x y \in E\left(G_{0}-\{u, v\}\right)} d_{G_{0}}(x) d_{G_{0}}(y)+(p+r) \sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x) \\
& +(q+t) \sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)+r(p+r)+t(q+t)-(p+r)(q+t) \\
M_{2}\left(G^{\prime}\right)= & \sum_{x y \in E\left(G_{0}-\{u, v\}\right)} d_{G_{0}}(x) d_{G_{0}}(y)+p \sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x) \\
& +(q+t+r) \sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)+(r+t)(q+t+r)-p(q+t+r) \\
M_{2}\left(G^{\prime \prime}\right)= & \sum_{x y \in E\left(G_{0}-\{u, v\}\right)} d_{G_{0}}(x) d_{G_{0}}(y)+(p+r+t) \sum_{x \in N_{G_{0}(u)}} d_{G_{0}}(x) \\
& +q \sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)+(r+t)(p+r+t)-q(p+r+t) \\
\Delta_{1}= & M_{2}\left(G^{\prime}\right)-M_{2}(G) \\
= & r\left(\sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)-\sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x)\right)+r(3 t+2 q-2 p) \\
\Delta_{2}= & M_{2}\left(G^{\prime \prime}\right)-M_{2}(G) \\
= & t\left(\sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x)-\sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x)\right)+t(3 r+2 p-2 q)
\end{aligned}
$$

If $\Delta_{1}=M_{2}\left(G^{\prime}\right)-M_{2}(G) \leq 0$, then

$$
\sum_{x \in N_{G_{0}}(u)} d_{G_{0}}(x)-\sum_{x \in N_{G_{0}}(v)} d_{G_{0}}(x) \geq 3 t+2 q-2 p
$$

So, $\Delta_{2}=M_{2}\left(G^{\prime \prime}\right)-M_{2}(G) \geq t(3 t+2 q-2 p)+t(3 r+2 p-2 q)=3 t(t+r)>0$. The proof is completed.

Remark 2. Repeating Transformation B, any unicyclic or bicyclic graph can be changed into an unicyclic or bicyclic graph such that all the pendant edges are attached to the same vertex.

3 The graphs with the largest Zagreb indices

In this section, we give the tree, the unicyclic graph and the bicyclic graphs with the largest Zagreb indices.

From Lemma 2.1, we have
Theorem 3.1 $([4,7])$. Let T be any tree of order n. If T is different from S_{n}, then $M_{1}(T)<M_{1}\left(S_{n}\right)$ and $M_{2}(T)<M_{2}\left(S_{n}\right)$.

Let U_{n}^{k} be the unicyclic graph obtained from the cycle C_{k} of length k by attached $n-k$ pendant edges to the same vertex on C_{k}. From Lemmas 2.1
and 2.2, we have
Theorem 3.2. Let G be an unicyclic graph of order n and girth k. If G is different from U_{n}^{k}, then $M_{1}(G)<M_{1}\left(U_{n}^{k}\right)$ and $M_{2}(G)<M_{2}\left(U_{n}^{k}\right)$.

Since $M_{1}\left(U_{n}^{k}\right)=4(k-1)+(n-k+2)^{2}+4(k-1)=k^{2}-(2 n+1) k+n^{2}+5 n$ and $M_{2}\left(U_{n}^{k}\right)=k^{2}-(2 n+2) k+n^{2}+6 n, M_{1}\left(U_{n}^{k}\right) \leq M_{1}\left(U_{n}^{3}\right)$ and $M_{2}\left(U_{n}^{k}\right) \leq$ $M_{2}\left(U_{n}^{3}\right)$ for $3 \leq k \leq n$ with the equality if and only if $k=3$. We have

Theorem 3.3([9,15]). U_{n}^{3} is the unique graph with the largest Zagreb indices M_{1} and M_{2} among all unicyclic graphs with n vertices.

Now, we consider the ($n, n+1$) - graph (i.e., bicyclic graph with n vertices) and give the $(n, n+1)$ - graph with the largest Zagreb indices.

Let $\mathcal{G}(n, n+1)$ be the set of simple connected graphs with n vertices and $n+1$ edges. For any graph $G \in \mathcal{G}(n, n+1)$, there are two cycles C_{p} and C_{q} in G. As in [16], we divide all the $(n, n+1)$-graphs with two cycles of lengths p and q into three classes.
(1) $\mathcal{A}(p, q)$ is the set of $G \in \mathcal{G}(n, n+1)$ in which the cycles C_{p} and C_{q} have only one common vertex;
(2) $\mathcal{B}(p, q)$ is the set of $G \in \mathcal{G}(n, n+1)$ in which the cycles C_{p} and C_{q} have no common vertex;
(3) $\mathcal{C}(p, q, l)$ is the set of $G \in \mathcal{G}(n, n+1)$ in which the cycles C_{p} and C_{q} have a common path of length l.

Note that the induced subgraph of vertices on the cycles of $G \in \mathcal{A}(p, q)$ (or $\mathcal{B}(p, q), \mathcal{C}(p, q, l)$) is showed in Figure 3(a) (or (b),(c)) and $\mathcal{C}(p, q, l)=$ $\mathcal{C}(p, p+q-2 l, p-l)=\mathcal{C}(p+q-2 l, q, q-l)$.

(a)

(b)

(c)

Figure 3.
First, we find the bicyclic graph with the largest Zagreb in $\mathcal{A}(p, q)$.
Let $S_{n}(p, q)$ be a graph in $\mathcal{A}(p, q)$ such that $n+1-(p+q)$ pendent edges are attached to the common vertex of C_{p} and C_{q}. See Figure 4.

$$
n+\underbrace{1-q)}_{1-(p}
$$

Figure 4. The graph $S_{n}(p, q)$.

Theorem 3.4. (i) ([16]) $S_{n}(p, q)$ is the graph with the largest M_{1} in $\mathcal{A}(p, q)$;
(ii) $S_{n}(p, q)$ is the graph with the largest M_{2} in $\mathcal{A}(p, q)$.

Proof. First, repeating the transformations A and B on graph G, we can get a graph G^{\prime} such that all the edges not on the cycles are the pendant edges attached to the same vertex v. By Lemmas 2.1 and 2.2, we have $M_{1}(G) \leq M_{1}\left(G^{\prime}\right)$ and $M_{2}(G) \leq M_{2}\left(G^{\prime}\right)$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G. If $G^{\prime} \not \not S_{n}(p, q)$, then $v \neq u$, where u is the common vertex of C_{p} and C_{q}.

Without loss of the generality, we assume that v is on the cycle C_{p}.

$$
\begin{aligned}
& M_{1}\left(S_{n}(p, q)\right)-M_{1}\left(G^{\prime}\right) \\
= & (n+5-p-q)^{2}+4-(n+3-p-q)^{2}-16 \\
= & 4(n+1-p-q) \geq 0
\end{aligned}
$$

with the equality if and only if $n=p+q-1$, and $G^{\prime} \cong S_{n}(p, q)$.
(i) If u and v are not adjacent (i.e., $k>1$), then

$$
\begin{aligned}
& M_{2}\left(S_{n}(p, q)\right)-M_{2}\left(G^{\prime}\right) \\
= & (n+5-p-q)(n+9-p-q)+4(p-2)+4(q-2) \\
= & -(n+3-p-q)(n+5-p-q)-4(p-4)-4(q-2)-32 \\
= & 6(n+1-p-q) \geq 0
\end{aligned}
$$

with the equality if and only if $n=p+q-1$, and $G^{\prime} \cong S_{n}(p, q)$.
(ii) If u and v are adjacent, then

$$
\begin{aligned}
& M_{2}\left(S_{n}(p, q)\right)-M_{2}\left(G^{\prime}\right) \\
= & (n+5-p-q)(n+9-p-q)+4(p-2)+4(q-2) \\
= & -(n+3-p-q)(n+7-p-q)-4(p-3)-4(q-2)-24 \\
= & (n+1-p-q) \geq 0
\end{aligned}
$$

with the equality if and only if $n=p+q-1$, and $G^{\prime} \cong S_{n}(p, q)$.

Given $p \geq 3$ and $q \geq 3$, from the theorem above, we know $S_{n}(p, q)$ is the unique graph with the largest Zagreb indices in $\mathcal{A}(p, q)$.

Lemma 3.5. (i) If $p>3$, then
$M_{1}\left(S_{n}(p, q)\right)<M_{1}\left(S_{n}(p-1, q)\right)$ and $M_{2}\left(S_{n}(p, q)\right)<M_{2}\left(S_{n}(p-1, q)\right)$;
(ii) If $q>3$, then
$M_{1}\left(S_{n}(p, q)\right)<M_{1}\left(S_{n}(p, q-1)\right)$ and $M_{2}\left(S_{n}(p, q)\right)<M_{2}\left(S_{n}(p, q-1)\right)$.
Proof. From the symmetry of p and q, we only need to prove (i).

$$
\begin{aligned}
& \quad M_{1}\left(S_{n}(p-1, q)\right)-M_{1}\left(S_{n}(p, q)\right) \\
& =(n+6-p-q)^{2}+1-(n+5-p-q)^{2}-4 \\
& =2(n+4-p-q)>0 \\
& = \\
& M_{2}\left(S_{n}(p-1, q)\right)-M_{2}\left(S_{n}(p, q)\right) \\
& =2(n+6-p-q)(n+10-p-q)-(n+5-p-q)(n+9-p-q)-4 \\
& =2(n-q)+9>0
\end{aligned}
$$

From Theorem 3.4 and Lemma 3.5, we know

Theorem 3.6. For all $p \geq 3$ and $q \geq 3, S_{n}(3,3)$ is the unique graph with the largest Zagreb indices in $\mathcal{A}(p, q)$.

Figure 5. (a) $T_{n}^{r}(p, q) ;$ (b) $T_{n}^{r}(q, p)$; (c) $T_{n}(p, q)$.
Secondly, we find the bicyclic graph with the Zagreb indices in $\mathcal{B}(p, q)$.

Let $T_{n}^{r}(p, q)$ be the $(n, n+1)$-graph obtaining from connecting C_{p} and C_{q} by a path of length r and the other $n+1-p-q-r$ edges are all attached to the common vertex of the path and C_{p}, see Figure 5(a). $T_{n}^{r}(q, p)$ is showed in Figure $5(\mathrm{~b})$. And $T_{n}(p, q)$ is the $(n, n+1)$-graph obtaining from connecting C_{p} and C_{q} by a path uvw of length 2 and the other $n-p-q-1$ edges are all attached to the vertex w of the path, as showed in Figure 5(c).

Theorem 3.7. If $G \in \mathcal{B}(p, q)$, the length of the shortest path connecting C_{p} and C_{q} in G is r, then either $(i=1,2)$
(i) $M_{i}(G) \leq M_{i}\left(T_{n}^{r}(p, q)\right)$ with the equality if and only if $G \cong T_{n}^{r}(p, q)$; or
(ii) $M_{i}(G) \leq M_{i}\left(T_{n}^{r}(q, p)\right)$ with the equality if and only if $G \cong T_{n}^{r}(q, p)$; or
(iii) $M_{i}(G) \leq M_{i}\left(T_{n}(p, q)\right)$ with the equality if and only if $G \cong T_{n}(p, q)$.

Proof. Let $W=v_{1} v_{2} \cdots v_{r} v_{r+1}$ be the shortest path connecting C_{p} and C_{q} in G, and v_{1} the common vertex W and C_{p}, v_{r+1} the common vertex W and C_{q}.

Repeating the transformations A and B on graph G, we can get a graph G^{\prime} in Figure 5 such that all the edges not on the cycles are the pendant edges attached to the same vertex v. By Lemmas 2.1 and 2.2 , we have $M_{i}(G) \leq M_{i}\left(G^{\prime}\right)(i=1,2)$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G.

Case I. v is on the cycle C_{p}, as showed in Figure 5(d).

$$
\begin{aligned}
& M_{1}\left(T_{n}^{r}(p, q)\right)-M_{1}\left(G^{\prime}\right) \\
= & (n+4-p-q-r)^{2}+4-(n+3-p-q-r)^{2}-9 \\
= & 2(n+1-p-q-r) \geq 0
\end{aligned}
$$

with the equality if and only if $n=p+q+r-1$, and then also $G^{\prime} \cong T_{n}^{r}(p, q)$.
(i) If v_{1} and v are not adjacent, then

$$
\begin{aligned}
& M_{2}\left(T_{n}^{r}(p, q)\right)-M_{2}\left(G^{\prime}\right) \\
= & (n+1-p-q-r)(n+4-p-q-r)+4(n+4-p-q-r) \\
& +(n+4-p-q-r) d\left(v_{2}\right)+8-(n+1-p-q-r)(n+3-p-q-r) \\
& -4(n+3-p-q-r)-3 d\left(v_{2}\right)-12 \\
= & (n+1-p-q-r)\left(1+d\left(v_{2}\right)\right) \geq 0
\end{aligned}
$$

with the equality if and only if $n=p+q+r-1$, and then also $G^{\prime} \cong T_{n}^{r}(p, q)$.
(ii) If v_{1} and v are adjacent, then

$$
\begin{aligned}
& M_{2}\left(T_{n}^{r}(p, q)\right)-M_{2}\left(G^{\prime}\right) \\
= & (n+1-p-q-r)(n+4-p-q-r)+4(n+4-p-q-r) \\
& +(n+4-p-q-r) d\left(v_{2}\right)+4-(n+1-p-q-r)(n+3-p-q-r) \\
& -5(n+3-p-q-r)-3 d\left(v_{2}\right)-6 \\
= & (n+1-p-q-r) d\left(v_{2}\right) \geq 0
\end{aligned}
$$

with the equality if and only if $n=p+q+r-1$, and then also $G^{\prime} \cong T_{n}^{r}(p, q)$.
Case II. v is on the cycle C_{q}, as showed in Figure 5(e). The proof is the same as in the case I.

Case III. v is on the path W, as showed in Figure 5(f). If $G^{\prime} \not \neq T_{n}(p, q)$, then $r \geq 3$. Let $v=v_{t}, 1<t \leq r$.

$$
\begin{aligned}
& M_{1}\left(T_{n}(p, q)\right)-M_{1}\left(G^{\prime}\right) \\
= & (n-1-p-q)+(n+1-p-q)^{2}-(n+1-p-q-r) \\
& -(n+3-p-q-r)^{2}-2(r-2) \\
= & (r-2)(2 n+3-2 p-2 q-r) \\
> & 0 \quad \text { (since } n+1-p-q-r \geq 0 \text { and } r>3)
\end{aligned}
$$

If $2<t<r$, then $r>3$ and

$$
\begin{aligned}
& M_{2}\left(T_{n}(p, q)\right)-M_{2}\left(G^{\prime}\right) \\
= & (n-p-q-1)(n-p-q+1)+6(n-p-q+1) \\
& -(n-p-q-r+1)(n-p-q-r+3) \\
& -4(n-p-q-r+3)-4(r-4)-12 \\
= & (r-1)(2 n-2 p-2 q-r+3)-3 \\
> & 0 \quad(\text { since } n+1-p-q-r \geq 0 \text { and } r>3)
\end{aligned}
$$

If $t=2$ or $t=r$, then

$$
\begin{aligned}
& M_{2}\left(T_{n}(p, q)\right)-M_{2}\left(G^{\prime}\right) \\
= & (n-p-q-1)(n-p-q+1)+6(n-p-q+1) \\
& -(n-p-q-r+1)(n-p-q-r+3)-5(n-p-q-r+3) \\
& -4(r-3)-6 \\
= & (n-p-q)(2 r-3)-(r-1)(r-3)+r-4 \\
\geq & (r-1)(2 r-3)-(r-1)(r-3)+r-4(\text { since } n+1-p-q-r \geq 0) \\
= & r^{2}-4>0
\end{aligned}
$$

The proof is completed.
Lemma 3.8. $M_{1}\left(T_{n}(p, q)\right) \leq M_{1}\left(T_{n}(3,3)\right)$ and $M_{2}\left(T_{n}(p, q)\right) \leq M_{2}\left(T_{n}(3,3)\right)$ with the equality if and only if $p=q=3$.

Proof. $M_{1}\left(T_{n}(p, q)\right)=(n+1-p-q)^{2}+(n-1-p-q)+18+4(p+q-2)$,
$M_{1}\left(T_{n}(3,3)\right)=(n-5)^{2}+(n-7)+18+16$,

$$
\begin{aligned}
& M_{1}\left(T_{n}(3,3)\right)-M_{1}\left(T_{n}(p, q)\right) \\
= & (2 n-p-q-4)(p+q-6)+(p+q-6)-4(p+q-6) \\
= & (p+q-6)(2 n-p-q-7) \\
\geq & (p+q-6)(n-6) \quad(\text { since } n-p-q-1 \geq 0) \\
\geq & 0
\end{aligned}
$$

with the equality if and only if $p+q=6$, i.e., $p=q=3$.

$$
\begin{aligned}
M_{2}\left(T_{n}(p, q)\right) & =(n+1-p-q)(n+5-p-q)+24+4(p+q-4), \\
M_{2}\left(T_{n}(3,3)\right)= & (n-5)(n-1)+24+8, \\
& M_{2}\left(T_{n}(3,3)\right)-M_{2}\left(T_{n}(p, q)\right) \\
= & (n-5)(n-1)-((n-5)-(p+q-6))((n-1) \\
& -(p+q-6))-4(p+q-6) \\
= & (p+q-6)(2 n-p-q-4) \\
\geq & (p+q-6)(n-3) \quad(\text { since } n-p-q-1 \geq 0) \\
\geq & 0
\end{aligned}
$$

with the equality if and only if $p+q=6$, i.e., $p=q=3$.
Lemma 3.9. If $r \geq 2$, then $M_{i}\left(T_{n}^{r}(p, q)<M_{i}\left(T_{n}^{r-1}(p, q)\right), i=1,2\right.$.
Proof. By computing immediately, we have
$M_{1}\left(T_{n}^{r}(p, q)\right)=(n+1-p-q-r)+(n+4-p-q-r)^{2}+4(p+q+r-3)+9$,
$M_{1}\left(T_{n}^{r-1}(p, q)\right)=(n+2-p-q-r)+(n+5-p-q-r)^{2}+4(p+q+r-4)+9$.
And $M_{1}\left(T_{n}^{r-1}(p, q)\right)-M_{1}\left(T_{n}^{r}(p, q)\right)=2(n+3-p-q-r)>0$.
If $r>2$, then
$M_{2}\left(T_{n}^{r}(p, q)\right)=(n+4-p-q-r)(n+7-p-q-r)+4(p+q+r-6)+18$, $M_{2}\left(T_{n}^{r-1}(p, q)\right)=(n+5-p-q-r)(n+8-p-q-r)+4(p+q+r-7)+18$.
And $M_{2}\left(T_{n}^{r-1}(p, q)\right)-M_{2}\left(T_{n}^{r}(p, q)\right)=2(n+4-p-q-r)>0$.
If $r=2$, then
$M_{2}\left(T_{n}^{r}(p, q)\right)=(n+2-p-q)(n+5-p-q)+4(p+q-4)+18$,
$M_{2}\left(T_{n}^{r-1}(p, q)\right)=(n+3-p-q)(n+7-p-q)+4(p+q-4)+12$.
And $M_{2}\left(T_{n}^{r-1}(p, q)\right)-M_{2}\left(T_{n}^{r}(p, q)\right)=3(n+2-p-q)>0$.
Lemma 3.10. $M_{i}\left(T_{n}^{1}(p, q)\right) \leq M_{i}\left(T_{n}^{1}(3,3)\right)$, with the equality if and only if $p=q=3, i=1,2$.

Proof. By computing immediately, we have
$M_{1}\left(T_{n}^{1}(p, q)\right)=(n-p-q)+(n+3-p-q)^{2}+4(p+q-2)+9$,
$M_{1}\left(T_{n}^{1}(3,3)\right)=(n-6)+(n-3)^{2}+16+9$.
And $M_{1}\left(T_{n}^{1}(3,3)\right)-M_{1}\left(T_{n}^{1}(p, q)\right)=(p+q-6)(2 n-3-p-q) \geq 0$ with the equality if and only if $p+q=6$, i.e., $p=q=3$.
$M_{2}\left(T_{n}^{1}(p, q)\right)=(n+3-p-q)(n+7-p-q)+4(p+q-4)+12$,
$M_{2}\left(T_{n}^{1}(3,3)\right)=(n-3)(n+1)+8+12$.
And $M_{2}\left(T_{n}^{1}(3,3)\right)-M_{2}\left(T_{n}^{1}(p, q)\right)=(p+q-6)(2 n-p-q) \geq 0$ with the equality if and only if $p+q=6$, i.e., $p=q=3$.

Now, we compare the Zagreb indices of $T_{n}^{1}(3,3)$ and $T_{n}(3,3)$. It can be computed out easily that $M_{i}\left(T_{n}^{1}(3,3)\right)>M_{i}\left(T_{n}(3,3)\right), i=1,2$. So, we have

Theorem 3.11. The $T_{n}^{1}(3,3)$ is the unique graph with the largest Zagreb indices among all graphs in $\mathcal{B}(p, q)$ for all $p \geq 3$ and $q \geq 3$.

Thirdly, we find the bicyclic graph with the largest Zagreb indices in $\mathcal{C}(p, q, l)$.

Let $\theta_{n}^{l}(p, q)$ be the graph obtaining from the graph in Figure 1(c) by attaching $n+1+l-(p+q)$ to one of its vertices with degree 3 (see Figure $6(a))$.

(a) G_{1}

(b) G_{2}

(d) G_{4}

(e) G_{0}

Figure 6. The graphs $G_{i}, i=0,1,2,3,4$.

Theorem 3.12. Let $G \in \mathcal{C}(p, q, l)$. Then $M_{i}(G) \leq M_{i}\left(G_{0}\right)(i=1,2)$ with the equality if and only if $G \cong G_{0}$, where G_{0} is the graph in Figure 6(e).

Proof. Repeating the transformations A and B on graph G, we can get a graph G^{\prime} such that all the edges not on the cycles are the pendant edges attached to the same vertex v_{0}, i.e., G^{\prime} is one of the graphs in Figure 6. By Lemmas 2.1 and 2.2, we have $M_{i}(G) \leq M_{i}\left(G^{\prime}\right)(i=1,2)$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G.

Let $W_{1}=u x_{1} x_{2} \cdots x_{l-1} v$ be the common path of C_{p} and C_{q} of the graph G^{\prime} in Figure 6, $W_{2}=u y_{1} y_{2} \cdots y_{r} v$ and $W_{3}=u z_{1} z_{2} \cdots z_{t} v$ the other paths from u to v on C_{p} and C_{q}, respectively; $r=p-l-1, t=q-l-1, r \geq 0$, $t \geq 0, l \geq 1$ and $r+t+l \geq 3$.

By computing immediately, we have

$$
\begin{aligned}
& M_{1}\left(G_{0}\right)=(n-4)+(n-1)^{2}+17 \\
& M_{1}\left(G_{1}\right)=(n-1-r-t-l)+(n+2-r-t-l)^{2}+4(r+t+l-1)+9 \\
& M_{1}\left(G_{2}\right)=(n-1-r-t-l)+(n+1-r-t-l)^{2}+4(r+t+l-2)+18 \\
& M_{1}\left(G_{0}\right)-M_{1}\left(G_{1}\right)=(r+t+l-3)(2 n-2-r-t-l) \geq 0 \text { since } r+t+l \geq 3
\end{aligned}
$$

and $n-r-t-l-1 \geq 0$, with the equality if and only if $r+t+l=3$, i.e., $G^{\prime} \cong G_{0} ;$
$M_{1}\left(G_{0}\right)-M_{1}\left(G_{2}\right)=(r+t+l-3)(2 n-3-r-t-l)+(n-r-t-l-$ 1) $+(n-4) \geq 0$ since $r+t+l \geq 3$ and $n-r-t-l-1 \geq 0$ and $n \geq 4$, with the equality if and only if $r+t+l=3$ and $n=4$, i.e., $G^{\prime} \cong G_{0}$ (where $n=4$).

If there is an edge $e=x y$ in G_{1} such that the degrees of x and y are equal two, then we can obtain a graph G_{1}^{\prime} by contracting the edge e and attaching a pendant edge $e^{\prime}=u u^{\prime}$ to u, and we have $M_{2}\left(G_{1}^{\prime}\right)>M_{2}\left(G_{1}\right)$ since $d_{G_{1}}(x) d_{G_{1}}(y)=4$ and $d_{G_{1}^{\prime}}(u) d_{G_{1}^{\prime}}\left(u^{\prime}\right) \geq 4$ and $d_{G_{1}}(u)<d_{G_{1}^{\prime}}(u)$. So, $M_{2}\left(G_{1}\right) \geq M_{2}\left(G_{0}\right)$ with the equality if and only if $G_{1} \cong G_{0}$.

If there are two edges e_{1} and e_{2} in G_{2} such that the degrees of their end-vertices are equal two, then we can obtain a graph G_{2}^{\prime} by contracting the edges e_{1} and e_{2} and attaching two pendant edges to x_{i}; or if there an edge e in G_{2} such that the degrees of its end-vertices and e_{2} are equal two, then we can obtain a graph G_{2}^{\prime} by contracting the edge e and attaching a pendant edge to x_{i}. And we have $M_{2}\left(G_{2}^{\prime}\right) \geq M_{2}\left(G_{2}\right)$. So, $M_{2}\left(G_{1}\right) \geq M_{2}\left(G_{3}\right)$ or $M_{2}\left(G_{2}\right) \geq M_{2}\left(G_{4}\right)$.

It is computed out easily that $M_{2}\left(G_{3}\right)<M_{2}\left(G_{0}\right)$ and $M_{2}\left(G_{4}\right)<M_{2}\left(G_{0}\right)$. So, the proof is completed.

Finally, we give the bicyclic graphs with the largest Zagreb indice.
Theorem 3.13. G_{0} is the unique graph with the the largest Zagreb indices M_{1} and M_{2} among all bicyclic graphs with n vertices.

Proof. From Theorem 3.6, Theorem 3.11 and Theorem 3.12, we only need to compare the Zagreb indices of $S_{n}(3,3), T_{n}^{1}(3,3)$ and G_{0}. Computing immediately, we have

$$
\begin{aligned}
& M_{1}\left(T_{n}^{1}(3,3)\right)<M_{1}\left(S_{n}(3,3)\right)<M_{1}\left(G_{0}\right) \\
& M_{2}\left(T_{n}^{1}(3,3)\right)<M_{2}\left(S_{n}(3,3)\right)<M_{2}\left(G_{0}\right)
\end{aligned}
$$

Therefore, G_{0} has the largest Zagreb indices among all bicyclic graphs with n vertices.

It is surprising that the graphs with the largest Zagreb indices among the trees, unicyclic graphs and bicyclic graphs of order n are the same as those with the largest Merrifield-Simmons index $[17,18,19]$ and the smallest Hosoya index [20,21].

4 Some transformations which decrease the Zagreb indices

In this section, we give two transformations which will decrease the Zagreb indices as follows:

Figure 7. Transformation C.
Transformation C. Let $G \neq P_{1}$ be a connected graph and choose $u \in V(G) . G_{1}$ denotes the graph that results from identifying u with the vertex v_{k} of a simple path $v_{1} v_{2} \cdots v_{n}, 1<k<n ; G_{2}$ is obtained from G_{1} by deleting $v_{k-1} v_{k}$ and adding $v_{k-1} v_{n}$ (see Figure 7).

Lemma 4.1. Let G_{1} and G_{2} be the graphs in Figure 7. Then $M_{i}\left(G_{1}\right)>$ $M_{i}\left(G_{2}\right), i=1,2$.

Proof. By the definition of the Zagreb indices, we have

$$
\begin{aligned}
& \quad \begin{aligned}
M_{1}\left(G_{1}\right)-M_{1}\left(G_{2}\right) & =\left(d_{G}(u)+2\right)^{2}+1-\left(d_{G}(u)+1\right)^{2}-4 \\
& =2 d_{G}(u)>0 .
\end{aligned} \\
& =\begin{array}{ll}
M_{2}\left(G_{1}\right)-M_{2}\left(G_{2}\right) \\
& \left.+d_{G_{1}}(u)+2\right)\left(v_{n-1}\right) d_{G_{1}}\left(v_{n}\right)-\left(d_{G}(u)+1\right)\left(\sum_{N_{G}}(x)+d_{G_{1}}\left(v_{k-1}\right)+d_{G_{1}}\left(v_{k+1}\right)\right) \\
& \left.-d_{G_{2}}\left(v_{n-1}\right) d_{G_{2}}(x)+d_{G_{2}}\left(v_{k+1}\right)\right)-d_{G_{2}}\left(v_{n}\right) d_{G_{2}}\left(v_{k-1}\right)
\end{array} \\
& \quad= \begin{cases}\sum_{x \in N_{G}(u)} d_{G}(x), & \text { if } k=2 \text { and } n=3 ; \\
\sum_{x \in N_{G}(u)}^{\sum_{G \in N_{G}(u)}(x)+d_{G}(u),} d_{G}(x)+d_{G}(u), & \text { if } k=2 \text { and } n>3 \text { and } n=k+1 ; \\
\sum_{x \in N_{G}(u)} d_{G}(x)+2 d_{G}(u), & \text { if } k>2 \text { and } n>k+1\end{cases} \\
& >0 .
\end{aligned}
$$

Remark 3. Repeating Transformation C, any tree T attached to a graph G can be changed into a path as showed in Figure 8. And the Zagreb indices decrease.

Figure 8.
Transformation D. Let u and v be two vertices in a graph G. G_{1} denotes the graph that results from identifying u with the vertex u_{0} of a path $u_{0} u_{1} u_{2} \cdots u_{r}$ and identifying v with the vertex v_{0} of a path $v_{0} v_{1} v_{2} \cdots v_{t}$; G_{2} is obtained from G_{1} by deleting $u u_{1}$ and adding $v_{t} u_{1}$ (see Figure 9).

Figure 9. Transformation D.
Lemma 4.2. Let G_{1} and G_{2} be the graphs in Figure 9. $d_{G}(u) \geq d_{G}(v)>$ $1, r \geq 1$ and $t \geq 0$.
(i) If $t>0$, then $M_{1}\left(G_{1}\right)>M_{1}\left(G_{2}\right)$ and $M_{2}\left(G_{1}\right)>M_{2}\left(G_{2}\right)$;
(ii) If $t=0$ and $d_{G}(u)>d_{G}(v)$, then $M_{1}\left(G_{1}\right)>M_{1}\left(G_{2}\right)$;
(iii) If $t=0$ and $\sum_{x \in N_{G}(u)-\{v\}} d_{G}(x)>\sum_{y \in N_{G}(v)-\{u\}} d_{G}(y)$, then $M_{2}\left(G_{1}\right)>$ $M_{2}\left(G_{2}\right)$.

Proof. (i) Note that $d_{G}(u)>1$ and $t>0$, we have

$$
\begin{aligned}
M_{1}\left(G_{1}\right)-M_{1}\left(G_{2}\right) & =\left(d_{G_{1}}(u)\right)^{2}+\left(d_{G_{1}}\left(v_{t}\right)\right)^{2}-\left(d_{G_{2}}(u)\right)^{2}-\left(d_{G_{2}}\left(v_{t}\right)\right)^{2} \\
& =\left(d_{G}(u)+1\right)^{2}+1-\left(d_{G}(u)\right)^{2}-4 \\
& =2 d_{G}(u)-2>0 .
\end{aligned}
$$

$$
\begin{aligned}
& M_{2}\left(G_{1}\right)-M_{2}\left(G_{2}\right) \\
= & \left(d_{G}(u)+1\right)\left(\sum_{x \in N_{G}(u)} d_{G}(x)+d_{G_{1}}\left(u_{1}\right)\right)+d_{G_{1}}\left(v_{t-1}\right) d_{G_{1}}\left(v_{t}\right) \\
& -d_{G}(u) \sum_{x \in N_{G}(u)} d_{G}(x)-d_{G_{2}}\left(v_{t-1}\right) d_{G_{2}}\left(v_{t}\right)-d_{G_{2}}\left(v_{t}\right) d_{G_{2}}\left(u_{1}\right) \\
= & \begin{cases}\sum_{x \in N_{G}(u)} d_{G}(x)+d_{G}(u)-d_{G}(v)-2, & \text { if } r=1 \text { and } t=1 ; \\
\sum_{x \in N_{G}(u)} d_{G}(x)+d_{G}(u)-3, & \text { if } r=1 \text { and } t>1 ; \\
\sum_{x \in N_{G}(u)} d_{G}(x)+2 d_{G}(u)-d_{G}(v)-3, & \text { if } r>1 \text { and } t=1 ; \\
\sum_{x \in N_{G}(u)} d_{G}(x)+2 d_{G}(u)-4, & \text { if } k>1 \text { and } t>1\end{cases} \\
> & 0 .
\end{aligned}
$$

(ii) If $t=0$ and $d_{G}(u)>d_{G}(v)$, then

$$
\begin{aligned}
M_{1}\left(G_{1}\right)-M_{1}\left(G_{2}\right) & =\left(d_{G_{1}}(u)\right)^{2}+\left(d_{G_{1}}\left(v_{t}\right)\right)^{2}-\left(d_{G_{2}}(u)\right)^{2}-\left(d_{G_{2}}\left(v_{t}\right)\right)^{2} \\
& =\left(d_{G}(u)+1\right)^{2}+\left(d_{G}(v)\right)^{2}-\left(d_{G}(u)\right)^{2}-\left(d_{G}(v)\right)^{2} \\
& =2 d_{G}(u)-2 d_{G}(v)>0 .
\end{aligned}
$$

(iii) When u and v are not adjacent, we have

$$
\left.\begin{array}{rl}
& M_{2}\left(G_{1}\right)-M_{2}\left(G_{2}\right) \\
= & \left(d_{G}(u)+1\right)\left(\sum_{x \in N_{G}(u)} d_{G}(x)+d_{G_{1}}\left(u_{1}\right)\right)+d_{G}(v) \sum_{y \in N_{G}(v)} d_{G}(y) \\
& -d_{G}(u) \sum_{x \in N_{G}(u)} d_{G}(x)-\left(d_{G}(v)+1\right)\left(\sum_{y \in N_{G}(v)} d_{G}(y)+d_{G_{2}}\left(u_{1}\right)\right) \\
= & \sum_{x \in N_{G}(u)} d_{G}(x)-\sum_{y \in N_{G}(v)} d_{G}(y)+d_{G_{1}}\left(u_{1}\right)\left(d_{G}(u)-d_{G}(v)\right) \\
> & 0 .
\end{array} \quad \quad \text { since } d_{G_{1}}\left(u_{1}\right)=d_{G_{2}}\left(u_{1}\right)\right) .
$$

When u and v are adjacent, we have

$$
\begin{aligned}
& M_{2}\left(G_{1}\right)-M_{2}\left(G_{2}\right) \\
= & \left(d_{G}(u)+1\right)\left(\sum_{x \in N_{G}(u)-\{v\}} d_{G}(x)+d_{G_{1}}\left(u_{1}\right)\right)+d_{G}(v) \sum_{y \in N_{G}(v)-\{u\}} d_{G}(y) \\
& +\left(d_{G}(u)+1\right) d_{G}(v)-d_{G}(u) \sum_{x \in N_{G}(u)-\{v\}} d_{G}(x) \\
& -\left(d_{G}(v)+1\right)\left(\sum_{y \in N_{G}(v)-\{u\}} d_{G}(y)+d_{G_{2}}\left(u_{1}\right)\right)-d_{G}(u)\left(d_{G}(v)+1\right) \\
= & \sum_{x \in N_{G}(u)-\{v\}} d_{G}(x)-\sum_{y \in N_{G}(v)-\{u\}} d_{G}(y)+\left(d_{G_{1}}\left(u_{1}\right)-1\right)\left(d_{G}(u)-d_{G}(v)\right) \\
> & 0 .
\end{aligned}
$$

Remark 4. After repeating transformation C, if we repeat transformation D, then any tree can be changed into a path, any unicyclic graph can be changed into such an unicyclic graph that a path attached to a cycle, any bicyclic graph can be changed into such a bicyclic graph that a path attached to one of the graphs in Figure 10 (Lemma 4.2(i)). Moreover, the bicyclic graph can changed into such a bicyclic graph that the path is attached to a vertex of degree 2 (Lemma 4.2(ii)(iii)). And the Zagreb indices decrease.

Figure 10.
Lemma 4.3. If there is a path $x_{1} x_{2} \cdots x_{k}(k>1)$ attached to the vertex x_{1} in G_{1}, then $M_{i}\left(G_{1}\right)>M_{i}\left(G_{2}\right), i=1,2$, where G_{2} is obtained from G_{1} by deleting $x_{1} v$ and adding $x_{k} v$, as showed in Figure 11.

Figure 11.
Proof. Note that only the degrees of x_{1} and x_{k} are changed, we have

$$
M_{1}\left(G_{1}\right)-M_{1}\left(G_{2}\right)=9+1-4-4>0
$$

If $k>2$, then

$$
M_{2}\left(G_{1}\right)-M_{2}\left(G_{2}\right)=d(u)+d(v)>0
$$

If $k=2$, then

$$
M_{2}\left(G_{1}\right)-M_{2}\left(G_{2}\right)=d(u)+d(v)-1>0
$$

So, $M_{i}\left(G_{1}\right)>M_{i}\left(G_{2}\right), i=1,2$.

5 The smallest Zagreb indices among all the trees, unicyclic graphs and bicyclic graphs

In this section, we characterize the tree, the unicyclic graph and the bicyclic graph with the smallest Zagreb index.

From Lemma 4.1, we have

Theorem 5.1 $([4,7])$. Let T be any tree of order n. If T is different from P_{n}, then $M_{1}(T)>M_{1}\left(P_{n}\right)$ and $M_{2}(T)>M_{2}\left(P_{n}\right)$.

Let F_{n}^{k} be the unicyclic graph obtained by attaching a path of length $n-k$ to the cycle C_{k} of length k. From Lemmas 4.1 and 4.2, we have

Theorem 5.2. Let G be an unicyclic graph of order n and girth k. If G is different from F_{n}^{k}, then $M_{1}(G)>M_{1}\left(F_{n}^{k}\right)$ and $M_{2}(G)>M_{2}\left(F_{n}^{k}\right)$.

Using Lemma 4.3, we have
Theorem 5.3([9,15]). The cycle C_{n} is the unique graph with the smallest Zagreb indices M_{1} and M_{2} among all unicyclic graphs with n vertices.

Let F_{1}, F_{2} and F_{3} be the bicyclic graphs with n vertices showed in Figure 10. From Remark 4 (or Lemma 4.2) and Lemma 4.3, we know that the bicyclic graph with the smallest Zagreb index is one of the graphs F_{1}, F_{2} and F_{3}. And
$M_{1}\left(F_{1}\right)=4 n+12$,
$M_{1}\left(F_{2}\right)=M_{1}\left(F_{3}\right)=4 n+10 ;$
$M_{2}\left(F_{1}\right)=4 n+20$,
$M_{2}\left(F_{2}\right)=M_{2}\left(F_{3}\right)=$
$\begin{cases}4 n+16, & \text { if two vertices with degree } 3 \text { are adjacent; } \\ 4 n+17, & \text { if two vertices with degree } 3 \text { are not adjacent }\end{cases}$
So, we have
Theorem 5.4. The bicyclic graphs of order n with the smallest Zagreb indices are the graphs F_{2} and F_{3} in which the vertices of degree 3 are not adjacent except $n=4,6$.

Finally, we survey some results on the extremal graphs for the Zagreb indices, the Hosoya index and the Merrifield-Simmons index in trees, unicyclic graphs and ($n, n+1$)-graphs from [4,7,9,15-26], respectively.

Zagreb indices	largest	smallest
trees of order n	S_{n}	P_{n}
uncyclic graphs of order n	$S_{n}+e$	C_{n}
$(n, n+1)$-graphs	F_{0}	F_{2} or F_{3}

Hosoya index	largest	smallest
trees of order n	P_{n}	S_{n}
unicyclic graphs of order n	C_{n}	$S_{n}+e$
$(n, n+1)$-graphs	H_{0} or $K_{2,3}$	F_{0}

Merrifield-Simmons index	largest	smallest
trees of order n	S_{n}	P_{n}
uncyclic graphs of order n	$S_{n}+e$ or C_{4}	C_{n}
$(n, n+1)$-graphs	F_{0}	H_{0} or $K_{2,3}$

where F_{0} is obtained from S_{n} by adding two adjacent edges, H_{0} is the graph connecting two cycle C_{3} s by a path of length $n-5$.

Remark 5. The author know that the minimum M_{1} when the numbers of vertices and edges are given was obtained by Prof. I. Gutman [27] from the the referee, also the smallest M_{1} for trees, unicyclic graphs, bicyclic graphs and more are known. The author would like to thank the referee for valuable suggestions.

References

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
[2] I. Gutman, B. Ruščić, N. Trinajstić,C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (195) 33993405.
[3] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.
[4] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004) 83-92.
[5] A. T. Balaban, I. Motoc, D.Bonchev, O. Mekenyan, Topological indices for structure-activity corrections, Topics Curr. Chem., 114 (1983) 21-55.
[6] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, WileyVCH, Weinheim, 2000.
[7] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52 (2004) 103-112.
[8] B. Liu, I. Gutman, Upper bounds for Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem., 55 (2006) 439-446.
[9] H. Zhang, S. Zhang, Uncyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem., 55 (2006) 427-438.
[10] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem., 52 (2004) 113-118.
[11] B. Zhou, I.Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem., 54 (2005) 233-239.
[12] J. Braun, A. Kerber, M. Meringer, C. Rücker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem., 54 (2005) 163-176.
[13] D. Vukičević, N. Trinajstić, On the discriminatory power of the Zagreb indices for molecular graphs, MATCH Commun. Math. Comput. Chem., 53 (2005) 111-138.
[14] I. Gutman, B. Furtula, A. A. Toropov, A. P. Toropov, The grpah of atomic orbitals and its basic properties. 2. Zagreb indices, MATCH Commun. Math. Comput. Chem., 53 (2005) 111-138.
[15] Z. Yan, H. Liu, H. Liu, Sharp bounds for the second Zagreb index of unicyclic graphs, J. Math. Chem., (2006).
[16] S. Chen, H. Deng, Extremal ($n, n+1$)-graphs with respected to zerothorder general Randić index, J. Math. Chem., (2006).
[17] H. Deng, S. Chen, J. Zhang, The Merrifield-Simmons index in $(n, n+1)$ graphs, accepted by J. Math. Chem., (2006).
[18] A. S. Pedersen, P. D. Vestergaard, The number of independent sets in unicyclic graphs, Discrete App. Math., 152 (2005) 246-256.
[19] I. Gutman, Fragmentation formulas for the number of Kekulé structures, Hosoya and Merrifield-Simmons indices and related graph invariants, Coll. Sci. Pap. Fac. Sci. Kragujevac, 11 (1990) 11-18.
[20] I. Gutman, Acyclic conjugated molecules, trees and their energies, J. Math. Chem., 29 (1987) 123-143.
[21] H. Deng, The smallest Hosoya index in ($n, n+1$)-graphs, accepted by J. Math. Chem.
[22] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16-21.
[23] X. Li, On a conjecture of Merrifield and Simmons, Australasian J. Comb. 14 (1996) 15-20.
[24] X. Li, Z. Li, L. Wang, The inverse problems for some topological indices in combi- natorial chemistry, J.Comput. Biol. 10 (2003) 47-55.
[25] H. Deng, The largest Hosoya index of ($n, n+1$)-graphs, submitted to Journal of Mathematical Chemistry.
[26] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[27] I. Gutman, Graphs with smallest sum of squares of vertex degrees, Kragujevac J. Math., 25 (2003) 51-54.

[^0]: ${ }^{1}$ A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (06C507).

