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Abstract
For a (molecular) graph, the first Zagreb index M1 is equal to

the sum of the squares of the degrees of the vertices, and the second
Zagreb index M2 is equal to the sum of the products of the degrees
of pairs of adjacent vertices. This paper presents a unified and simple
approach to the largest and smallest Zagreb indices for trees, unicyclic
graphs and bicyclic graphs by introducing some transformations, and
characterize these graphs with the largest and smallest Zagreb indices,
respectively.

1 Introduction

Let G = (V, E) be a simple connected graph with the vertex set V (G) and
the edge set E(G). The first Zagreb index M1 and the second Zagreb index
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M2 of G are defined as

M1(G) =
∑

x∈V (G)

(dG(x))2

M2(G) =
∑

xy∈E(G)

dG(x)dG(y)

where dG(x) is the degree of vertex x in G.
The Zagreb indices M1 and M2 were introduced in [1] and elaborated

in [2]. The main properties of M1 and M2 were summarized in [3,4]. These
indices reflect the extent of branching of the molecular carbon-atom skeleton,
and can thus be viewed as molecular structure-descriptors [5,6].

Recently, finding the extremal values or bounds for the topological indices
of graphs, as well as related problems of characterizing the extremal graphs,
attracted the attention of many researchers and many results are obtained
(see [3-16]). [4] showed that the trees with the smallest and largest M1

are the path and the star, respectively. [7] also showed that the trees with
the smallest and largest M2 are the path and the star, respectively. [15]
characterized the graphs with the smallest and largest M2 among all unicyclic
graphs. [9] gave the the unicyclic graphs with the first three smallest and
largest M1. [16] gave the bicyclic graph with the largest M1.

In this paper, we present a unified and simple approach to the largest
and smallest Zagreb indices for trees, unicyclic graphs and bicyclic graphs
by introducing some transformations, and characterize these graphs with the
extremal Zagreb indices. The results which characterize the bicyclic graphs
with extremal M2 are new.

2 Two transformations which increase the Za-

greb indices

For any v ∈ V (G), NG(v) = {u|uv ∈ E(G)} denotes the neighbors of v, and
dG(v) = |NG(v)| is the degree of v in G.

Let E ′ ⊆ E(G), we denote by G − E ′ the subgraph of G obtained by
deleting the edges of E ′. W ⊆ V (G), G − W denotes the subgraph of G
obtained by deleting the vertices of W and the edges incident with them.

We give two transformations which will increase the Zagreb indices as
follows:

Transformation A: Let uv be an edge G, dG(v) ≥ 2, NG(u) = {v, w1, w2,
· · · , wt}, and w1, w2, · · · , wt are leaves. G

′
= G − {vw1, vw2, · · · , vwt} +

{uw1, uw2, · · · , uwt}, as shown in Figure 1.
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Lemma 2.1. Let G′ be obtained from G by transformation A, then

M1(G
′) > M1(G) and M2(G

′) > M2(G).

Proof. Let G0 = G−{u,w1, w2, · · · , wt}. By the definition of the Zagreb
indices, we have

M1(G
′) − M1(G) = d2

G′(v) − d2
G(v) + d2

G′(u) − d2
G(u)

= (dG(v) + t)2 − d2
G(v) + 1 − (t + 1)2

= 2t(dG(v) − 1) > 0

M2(G
′) − M2(G) =

∑
x∈NG0

(v)
dG′(v)dG′(x) + (t + 1)dG′(v)

− ∑
x∈NG0

(v)
dG(v)dG(x) − (t + 1)dG(v) − t(t + 1)

=
∑

x∈NG0
(v)

(dG(v) + t)dG(x) + (t + 1)(dG(v) + t)

− ∑
x∈NG0

(v)
dG(v)dG(x) − (t + 1)dG(v) − t(t + 1)

=
∑

x∈NG0
(v)

tdG(x) > 0

...G0 v
u

w1w2

wt

G

�A .......
G0 v u

w1w2

wt

G′

Figure 1. Transformation A.
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Figure 2. Transformation B.
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Remark 1. Repeating Transformation A, any tree can changed into a
star, any unicyclic or bicyclic graph can be changed into an unicyclic or bi-
cyclic graph such that all the edges not on the cycles are pendant edges.

Transformation B: Let u and v be two vertices in G. u1, u2, · · · , ur are
the leaves adjacent to u, v1, v2, · · · , vt are the leaves adjacent to v. G′ =
G−{uu1, uu2, · · · , uur}+{vu1, vu2, · · · , vur}, G′′ = G−{vv1, vv2, · · · , vvt}+
{uv1, uv2, · · · , uvt}, as showed in Figure 2.

Lemma 2.2. Let G′ and G′′ be obtained from G by transformation B,
then either Mi(G

′) > Mi(G) or Mi(G
′′) > Mi(G), i = 1, 2.

Proof. Let G0 = G − {u1, u2, · · · , ur, v1, v2, · · · , vt}.
M1(G

′) − M1(G) = d2
G′(v) − d2

G(v) + d2
G′(u) − d2

G(u)
= (dG(v) + r)2 − d2

G(v) + (dG(u) − r)2 − d2
G(u)

= 2r(r + dG(v) − dG(u))

M1(G
′′) − M1(G) = d2

G′′(v) − d2
G(v) + d2

G′′(u) − d2
G(u)

= (dG(v) − t)2 − d2
G(v) + (dG(u) + t)2 − d2

G(u)
= 2t(t + dG(u) − dG(v))

So, M1(G
′) > M1(G) if dG(v) ≥ dG(u); otherwise M1(G

′′) > M1(G).
Let dG0(u) = p and dG0(v) = q.
(i) If u, v are not adjacent in G, then, by the definition of M2, we have

M2(G) =
∑

xy∈E(G0−{u,v})
dG0(x)dG0(y) + (p + r)

∑
x∈NG0

(u)
dG0(x)

+(q + t)
∑

x∈NG0
(v)

dG0(x) + r(p + r) + t(q + t)

M2(G
′) =

∑
xy∈E(G0−{u,v})

dG0(x)dG0(y) + p
∑

x∈NG0
(u)

dG0(x)

+(q + t + r)
∑

x∈NG0
(v)

dG0(x) + (r + t)(q + t + r)

M2(G
′′) =

∑
xy∈E(G0−{u,v})

dG0(x)dG0(y) + (p + r + t)
∑

x∈NG0
(u)

dG0(x)

+q
∑

x∈NG0
(v)

dG0(x) + (r + t)(p + r + t)

Δ1 = M2(G
′) − M2(G)

= r(
∑

x∈NG0
(v)

dG0(x) − ∑
x∈NG0

(u)
dG0(x)) + r(2t + q − p)

Δ2 = M2(G
′′) − M2(G)

= t(
∑

x∈NG0
(u)

dG0(x) − ∑
x∈NG0

(v)
dG0(x)) + t(2r + p − q)

If Δ1 = M2(G
′) − M2(G) ≤ 0, then∑

x∈NG0
(u)

dG0(x) − ∑
x∈NG0

(v)

dG0(x) ≥ 2t + q − p
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So, Δ2 = M2(G
′′) − M2(G) ≥ t(2t + q − p) + t(2r + p − q) = 2t(t + r) > 0.

(ii) If u, v are adjacent in G, then u ∈ NG0(v) and v ∈ NG0(u).

M2(G) =
∑

xy∈E(G0−{u,v})
dG0(x)dG0(y) + (p + r)

∑
x∈NG0

(u)
dG0(x)

+(q + t)
∑

x∈NG0
(v)

dG0(x) + r(p + r) + t(q + t) − (p + r)(q + t)

M2(G
′) =

∑
xy∈E(G0−{u,v})

dG0(x)dG0(y) + p
∑

x∈NG0
(u)

dG0(x)

+(q + t + r)
∑

x∈NG0
(v)

dG0(x) + (r + t)(q + t + r) − p(q + t + r)

M2(G
′′) =

∑
xy∈E(G0−{u,v})

dG0(x)dG0(y) + (p + r + t)
∑

x∈NG0
(u)

dG0(x)

+q
∑

x∈NG0
(v)

dG0(x) + (r + t)(p + r + t) − q(p + r + t)

Δ1 = M2(G
′) − M2(G)

= r(
∑

x∈NG0
(v)

dG0(x) − ∑
x∈NG0

(u)
dG0(x)) + r(3t + 2q − 2p)

Δ2 = M2(G
′′) − M2(G)

= t(
∑

x∈NG0
(u)

dG0(x) − ∑
x∈NG0

(v)
dG0(x)) + t(3r + 2p − 2q)

If Δ1 = M2(G
′) − M2(G) ≤ 0, then

∑
x∈NG0

(u)

dG0(x) − ∑
x∈NG0

(v)

dG0(x) ≥ 3t + 2q − 2p

So, Δ2 = M2(G
′′)−M2(G) ≥ t(3t+2q−2p)+t(3r+2p−2q) = 3t(t+r) > 0.

The proof is completed.

Remark 2. Repeating Transformation B, any unicyclic or bicyclic graph
can be changed into an unicyclic or bicyclic graph such that all the pendant
edges are attached to the same vertex.

3 The graphs with the largest Zagreb indices

In this section, we give the tree, the unicyclic graph and the bicyclic graphs
with the largest Zagreb indices.

From Lemma 2.1, we have

Theorem 3.1([4,7]). Let T be any tree of order n. If T is different from
Sn, then M1(T ) < M1(Sn) and M2(T ) < M2(Sn).

Let Uk
n be the unicyclic graph obtained from the cycle Ck of length k by

attached n − k pendant edges to the same vertex on Ck. From Lemmas 2.1
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and 2.2, we have

Theorem 3.2. Let G be an unicyclic graph of order n and girth k. If G
is different from Uk

n , then M1(G) < M1(U
k
n) and M2(G) < M2(U

k
n).

Since M1(U
k
n) = 4(k−1)+(n−k+2)2+4(k−1) = k2−(2n+1)k+n2+5n

and M2(U
k
n) = k2 − (2n + 2)k + n2 + 6n, M1(U

k
n) ≤ M1(U

3
n) and M2(U

k
n) ≤

M2(U
3
n) for 3 ≤ k ≤ n with the equality if and only if k = 3. We have

Theorem 3.3([9,15]). U3
n is the unique graph with the largest Zagreb

indices M1 and M2 among all unicyclic graphs with n vertices.

Now, we consider the (n, n+1)−graph (i.e., bicyclic graph with n vertices)
and give the (n, n + 1)−graph with the largest Zagreb indices.

Let G(n, n +1) be the set of simple connected graphs with n vertices and
n + 1 edges. For any graph G ∈ G(n, n + 1), there are two cycles Cp and
Cq in G. As in [16], we divide all the (n, n + 1)−graphs with two cycles of
lengths p and q into three classes.

(1) A(p, q) is the set of G ∈ G(n, n + 1) in which the cycles Cp and Cq

have only one common vertex;
(2) B(p, q) is the set of G ∈ G(n, n + 1) in which the cycles Cp and Cq

have no common vertex;
(3) C(p, q, l) is the set of G ∈ G(n, n + 1) in which the cycles Cp and Cq

have a common path of length l.
Note that the induced subgraph of vertices on the cycles of G ∈ A(p, q)

(or B(p, q), C(p, q, l)) is showed in Figure 3(a) (or (b),(c)) and C(p, q, l) =
C(p, p + q − 2l, p − l) = C(p + q − 2l, q, q − l).

Cp Cq Cp Cq Cp Cq

(a) (b)
(c)

Figure 3.

First, we find the bicyclic graph with the largest Zagreb in A(p, q).
Let Sn(p, q) be a graph in A(p, q) such that n+1− (p+ q) pendent edges

are attached to the common vertex of Cp and Cq. See Figure 4.
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Cp Cq

︸ ︷︷ ︸
n + 1 − (p + q)

Figure 4. The graph Sn(p, q).

.....

Theorem 3.4. (i) ([16]) Sn(p, q) is the graph with the largest M1 in
A(p, q);

(ii) Sn(p, q) is the graph with the largest M2 in A(p, q).
Proof. First, repeating the transformations A and B on graph G, we

can get a graph G′ such that all the edges not on the cycles are the pendant
edges attached to the same vertex v. By Lemmas 2.1 and 2.2, we have
M1(G) ≤ M1(G

′) and M2(G) ≤ M2(G
′) with the equality if and only if all

the edges not on the cycles are also the pendant edges attached to the same
vertex in G. If G′ 	∼= Sn(p, q), then v 	= u, where u is the common vertex of
Cp and Cq.

Without loss of the generality, we assume that v is on the cycle Cp.

M1(Sn(p, q)) − M1(G
′)

= (n + 5 − p − q)2 + 4 − (n + 3 − p − q)2 − 16
= 4(n + 1 − p − q) ≥ 0

with the equality if and only if n = p + q − 1, and G′ ∼= Sn(p, q).
(i) If u and v are not adjacent (i.e., k > 1), then

M2(Sn(p, q)) − M2(G
′)

= (n + 5 − p − q)(n + 9 − p − q) + 4(p − 2) + 4(q − 2)
−(n + 3 − p − q)(n + 5 − p − q) − 4(p − 4) − 4(q − 2) − 32

= 6(n + 1 − p − q) ≥ 0

with the equality if and only if n = p + q − 1, and G′ ∼= Sn(p, q).
(ii) If u and v are adjacent, then

M2(Sn(p, q)) − M2(G
′)

= (n + 5 − p − q)(n + 9 − p − q) + 4(p − 2) + 4(q − 2)
−(n + 3 − p − q)(n + 7 − p − q) − 4(p − 3) − 4(q − 2) − 24

= 4(n + 1 − p − q) ≥ 0

with the equality if and only if n = p + q − 1, and G′ ∼= Sn(p, q).
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Given p ≥ 3 and q ≥ 3, from the theorem above, we know Sn(p, q) is the
unique graph with the largest Zagreb indices in A(p, q).

Lemma 3.5. (i) If p > 3, then
M1(Sn(p, q)) < M1(Sn(p − 1, q)) and M2(Sn(p, q)) < M2(Sn(p − 1, q));
(ii) If q > 3, then
M1(Sn(p, q)) < M1(Sn(p, q − 1)) and M2(Sn(p, q)) < M2(Sn(p, q − 1)).
Proof. From the symmetry of p and q, we only need to prove (i).

M1(Sn(p − 1, q)) − M1(Sn(p, q))
= (n + 6 − p − q)2 + 1 − (n + 5 − p − q)2 − 4
= 2(n + 4 − p − q) > 0

M2(Sn(p − 1, q)) − M2(Sn(p, q))
= (n + 6 − p − q)(n + 10 − p − q) − (n + 5 − p − q)(n + 9 − p − q) − 4
= 2(n + 1 − p − q) + 9 > 0

From Theorem 3.4 and Lemma 3.5, we know

Theorem 3.6. For all p ≥ 3 and q ≥ 3, Sn(3, 3) is the unique graph with
the largest Zagreb indices in A(p, q).

Cp Cq Cp Cq

(a) (b)

u v wCp Cq Cp Cq

v

v

vCp Cq Cp Cq

(c) (d)

(e) (f)

Figure 5. (a) T r
n(p, q); (b) T r

n(q, p); (c) Tn(p, q).

Secondly, we find the bicyclic graph with the Zagreb indices in B(p, q).
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Let T r
n(p, q) be the (n, n+1)−graph obtaining from connecting Cp and Cq

by a path of length r and the other n+1−p− q− r edges are all attached to
the common vertex of the path and Cp, see Figure 5(a). T r

n(q, p) is showed in
Figure 5(b). And Tn(p, q) is the (n, n + 1)−graph obtaining from connecting
Cp and Cq by a path uvw of length 2 and the other n − p − q − 1 edges are
all attached to the vertex w of the path, as showed in Figure 5(c).

Theorem 3.7. If G ∈ B(p, q), the length of the shortest path connecting
Cp and Cq in G is r, then either (i = 1, 2)

(i) Mi(G) ≤ Mi(T
r
n(p, q)) with the equality if and only if G ∼= T r

n(p, q); or
(ii) Mi(G) ≤ Mi(T

r
n(q, p)) with the equality if and only if G ∼= T r

n(q, p);
or

(iii) Mi(G) ≤ Mi(Tn(p, q)) with the equality if and only if G ∼= Tn(p, q).
Proof. Let W = v1v2 · · · vrvr+1 be the shortest path connecting Cp and

Cq in G, and v1 the common vertex W and Cp, vr+1 the common vertex W
and Cq.

Repeating the transformations A and B on graph G, we can get a graph
G′ in Figure 5 such that all the edges not on the cycles are the pendant
edges attached to the same vertex v. By Lemmas 2.1 and 2.2, we have
Mi(G) ≤ Mi(G

′) (i = 1, 2) with the equality if and only if all the edges not
on the cycles are also the pendant edges attached to the same vertex in G.

Case I. v is on the cycle Cp, as showed in Figure 5(d).

M1(T
r
n(p, q)) − M1(G

′)
= (n + 4 − p − q − r)2 + 4 − (n + 3 − p − q − r)2 − 9
= 2(n + 1 − p − q − r) ≥ 0

with the equality if and only if n = p+ q + r−1, and then also G′ ∼= T r
n(p, q).

(i) If v1 and v are not adjacent, then

M2(T
r
n(p, q)) − M2(G

′)
= (n + 1 − p − q − r)(n + 4 − p − q − r) + 4(n + 4 − p − q − r)

+(n + 4 − p − q − r)d(v2) + 8 − (n + 1 − p − q − r)(n + 3 − p − q − r)
−4(n + 3 − p − q − r) − 3d(v2) − 12

= (n + 1 − p − q − r)(1 + d(v2)) ≥ 0

with the equality if and only if n = p+ q + r−1, and then also G′ ∼= T r
n(p, q).

(ii) If v1 and v are adjacent, then

M2(T
r
n(p, q)) − M2(G

′)
= (n + 1 − p − q − r)(n + 4 − p − q − r) + 4(n + 4 − p − q − r)

+(n + 4 − p − q − r)d(v2) + 4 − (n + 1 − p − q − r)(n + 3 − p − q − r)
−5(n + 3 − p − q − r) − 3d(v2) − 6

= (n + 1 − p − q − r)d(v2) ≥ 0
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with the equality if and only if n = p+ q + r−1, and then also G′ ∼= T r
n(p, q).

Case II. v is on the cycle Cq, as showed in Figure 5(e). The proof is the
same as in the case I.

Case III. v is on the path W , as showed in Figure 5(f). If G′ 	∼= Tn(p, q),
then r ≥ 3. Let v = vt, 1 < t ≤ r.

M1(Tn(p, q)) − M1(G
′)

= (n − 1 − p − q) + (n + 1 − p − q)2 − (n + 1 − p − q − r)
−(n + 3 − p − q − r)2 − 2(r − 2)

= (r − 2)(2n + 3 − 2p − 2q − r)
> 0 (since n + 1 − p − q − r ≥ 0 and r > 3)

If 2 < t < r, then r > 3 and

M2(Tn(p, q)) − M2(G
′)

= (n − p − q − 1)(n − p − q + 1) + 6(n − p − q + 1)
−(n − p − q − r + 1)(n − p − q − r + 3)
−4(n − p − q − r + 3) − 4(r − 4) − 12

= (r − 1)(2n − 2p − 2q − r + 3) − 3
> 0 (since n + 1 − p − q − r ≥ 0 and r > 3)

If t = 2 or t = r, then

M2(Tn(p, q)) − M2(G
′)

= (n − p − q − 1)(n − p − q + 1) + 6(n − p − q + 1)
−(n − p − q − r + 1)(n − p − q − r + 3) − 5(n − p − q − r + 3)
−4(r − 3) − 6

= (n − p − q)(2r − 3) − (r − 1)(r − 3) + r − 4
≥ (r − 1)(2r − 3) − (r − 1)(r − 3) + r − 4(since n + 1 − p − q − r ≥ 0)
= r2 − 4 > 0

The proof is completed.

Lemma 3.8. M1(Tn(p, q)) ≤ M1(Tn(3, 3)) and M2(Tn(p, q)) ≤ M2(Tn(3, 3))
with the equality if and only if p = q = 3.

Proof. M1(Tn(p, q)) = (n+1−p−q)2 +(n−1−p−q)+18+4(p+q−2),
M1(Tn(3, 3)) = (n − 5)2 + (n − 7) + 18 + 16,

M1(Tn(3, 3)) − M1(Tn(p, q))
= (2n − p − q − 4)(p + q − 6) + (p + q − 6) − 4(p + q − 6)
= (p + q − 6)(2n − p − q − 7)
≥ (p + q − 6)(n − 6) (since n − p − q − 1 ≥ 0)
≥ 0

with the equality if and only if p + q = 6, i.e., p = q = 3.
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M2(Tn(p, q)) = (n + 1 − p − q)(n + 5 − p − q) + 24 + 4(p + q − 4),
M2(Tn(3, 3)) = (n − 5)(n − 1) + 24 + 8,

M2(Tn(3, 3)) − M2(Tn(p, q))
= (n − 5)(n − 1) − ((n − 5) − (p + q − 6))((n − 1)

−(p + q − 6)) − 4(p + q − 6)
= (p + q − 6)(2n − p − q − 4)
≥ (p + q − 6)(n − 3) (since n − p − q − 1 ≥ 0)
≥ 0

with the equality if and only if p + q = 6, i.e., p = q = 3.

Lemma 3.9. If r ≥ 2, then Mi(T
r
n(p, q) < Mi(T

r−1
n (p, q)), i = 1, 2.

Proof. By computing immediately, we have
M1(T

r
n(p, q)) = (n+1−p−q−r)+(n+4−p−q−r)2+4(p+q+r−3)+9,

M1(T
r−1
n (p, q)) = (n+2−p−q−r)+(n+5−p−q−r)2+4(p+q+r−4)+9.

And M1(T
r−1
n (p, q)) − M1(T

r
n(p, q)) = 2(n + 3 − p − q − r) > 0.

If r > 2, then
M2(T

r
n(p, q)) = (n+4−p−q−r)(n+7−p−q−r)+4(p+q +r−6)+18,

M2(T
r−1
n (p, q)) = (n+5−p−q−r)(n+8−p−q−r)+4(p+q+r−7)+18.

And M2(T
r−1
n (p, q)) − M2(T

r
n(p, q)) = 2(n + 4 − p − q − r) > 0.

If r = 2, then
M2(T

r
n(p, q)) = (n + 2 − p − q)(n + 5 − p − q) + 4(p + q − 4) + 18,

M2(T
r−1
n (p, q)) = (n + 3 − p − q)(n + 7 − p − q) + 4(p + q − 4) + 12.

And M2(T
r−1
n (p, q)) − M2(T

r
n(p, q)) = 3(n + 2 − p − q) > 0.

Lemma 3.10. Mi(T
1
n(p, q)) ≤ Mi(T

1
n(3, 3)), with the equality if and only

if p = q = 3, i = 1, 2.
Proof. By computing immediately, we have
M1(T

1
n(p, q)) = (n − p − q) + (n + 3 − p − q)2 + 4(p + q − 2) + 9,

M1(T
1
n(3, 3)) = (n − 6) + (n − 3)2 + 16 + 9.

And M1(T
1
n(3, 3)) − M1(T

1
n(p, q)) = (p + q − 6)(2n − 3 − p − q) ≥ 0 with

the equality if and only if p + q = 6, i.e., p = q = 3.
M2(T

1
n(p, q)) = (n + 3 − p − q)(n + 7 − p − q) + 4(p + q − 4) + 12,

M2(T
1
n(3, 3)) = (n − 3)(n + 1) + 8 + 12.

And M2(T
1
n(3, 3)) − M2(T

1
n(p, q)) = (p + q − 6)(2n − p − q) ≥ 0 with the

equality if and only if p + q = 6, i.e., p = q = 3.

Now, we compare the Zagreb indices of T 1
n(3, 3) and Tn(3, 3). It can be

computed out easily that Mi(T
1
n(3, 3)) > Mi(Tn(3, 3)), i = 1, 2. So, we have

Theorem 3.11. The T 1
n(3, 3) is the unique graph with the largest Zagreb

indices among all graphs in B(p, q) for all p ≥ 3 and q ≥ 3.

- 607 -



Thirdly, we find the bicyclic graph with the largest Zagreb indices in
C(p, q, l).

Let θl
n(p, q) be the graph obtaining from the graph in Figure 1(c) by

attaching n + 1 + l − (p + q) to one of its vertices with degree 3 (see Figure
6(a)).

(c) G3 (d) G4 (e) G0

u

(a) G1

v v

u

x1

xi

xl−1

y1

yr

z1

zt

(b) G2

Figure 6. The graphs Gi, i = 0, 1, 2, 3, 4.

x1

xl−1

y1

y2

yr

z1

z2

zt

Theorem 3.12. Let G ∈ C(p, q, l). Then Mi(G) ≤ Mi(G0) (i = 1, 2)
with the equality if and only if G ∼= G0, where G0 is the graph in Figure 6(e).

Proof. Repeating the transformations A and B on graph G, we can get
a graph G′ such that all the edges not on the cycles are the pendant edges
attached to the same vertex v0, i.e., G′ is one of the graphs in Figure 6. By
Lemmas 2.1 and 2.2, we have Mi(G) ≤ Mi(G

′) (i = 1, 2) with the equality if
and only if all the edges not on the cycles are also the pendant edges attached
to the same vertex in G.

Let W1 = ux1x2 · · ·xl−1v be the common path of Cp and Cq of the graph
G′ in Figure 6, W2 = uy1y2 · · · yrv and W3 = uz1z2 · · · ztv the other paths
from u to v on Cp and Cq, respectively; r = p − l − 1, t = q − l − 1, r ≥ 0,
t ≥ 0, l ≥ 1 and r + t + l ≥ 3.

By computing immediately, we have
M1(G0) = (n − 4) + (n − 1)2 + 17,
M1(G1) = (n− 1− r − t− l) + (n + 2− r − t− l)2 + 4(r + t + l − 1) + 9,
M1(G2) = (n− 1− r − t− l) + (n + 1− r − t− l)2 + 4(r + t + l− 2) + 18,
M1(G0)−M1(G1) = (r+ t+ l−3)(2n−2−r− t− l) ≥ 0 since r+ t+ l ≥ 3
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and n − r − t − l − 1 ≥ 0, with the equality if and only if r + t + l = 3, i.e.,
G′ ∼= G0;

M1(G0)−M1(G2) = (r + t + l − 3)(2n− 3− r − t− l) + (n− r − t− l −
1) + (n − 4) ≥ 0 since r + t + l ≥ 3 and n − r − t − l − 1 ≥ 0 and n ≥ 4,
with the equality if and only if r + t + l = 3 and n = 4, i.e., G′ ∼= G0 (where
n = 4).

If there is an edge e = xy in G1 such that the degrees of x and y are
equal two, then we can obtain a graph G′

1 by contracting the edge e and
attaching a pendant edge e′ = uu′ to u, and we have M2(G

′
1) > M2(G1)

since dG1(x)dG1(y) = 4 and dG′
1
(u)dG′

1
(u′) ≥ 4 and dG1(u) < dG′

1
(u). So,

M2(G1) ≥ M2(G0) with the equality if and only if G1
∼= G0.

If there are two edges e1 and e2 in G2 such that the degrees of their
end-vertices are equal two, then we can obtain a graph G′

2 by contracting
the edges e1 and e2 and attaching two pendant edges to xi; or if there an
edge e in G2 such that the degrees of its end-vertices and e2 are equal two,
then we can obtain a graph G′

2 by contracting the edge e and attaching a
pendant edge to xi. And we have M2(G

′
2) ≥ M2(G2). So, M2(G1) ≥ M2(G3)

or M2(G2) ≥ M2(G4).
It is computed out easily that M2(G3) < M2(G0) and M2(G4) < M2(G0).

So, the proof is completed.

Finally, we give the bicyclic graphs with the largest Zagreb indice.

Theorem 3.13. G0 is the unique graph with the the largest Zagreb
indices M1 and M2 among all bicyclic graphs with n vertices.

Proof. From Theorem 3.6, Theorem 3.11 and Theorem 3.12, we only
need to compare the Zagreb indices of Sn(3, 3), T 1

n(3, 3) and G0. Computing
immediately, we have

M1(T
1
n(3, 3)) < M1(Sn(3, 3)) < M1(G0)

M2(T
1
n(3, 3)) < M2(Sn(3, 3)) < M2(G0)

Therefore, G0 has the largest Zagreb indices among all bicyclic graphs
with n vertices.

It is surprising that the graphs with the largest Zagreb indices among
the trees, unicyclic graphs and bicyclic graphs of order n are the same as
those with the largest Merrifield-Simmons index [17,18,19] and the smallest
Hosoya index [20,21].
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4 Some transformations which decrease the

Zagreb indices

In this section, we give two transformations which will decrease the Zagreb
indices as follows:

u
v1 vk vn

u
vk vnvk−1 v1

G G

G1 G2

Figure 7. Transformation C.

�I

Transformation C. Let G 	= P1 be a connected graph and choose
u ∈ V (G). G1 denotes the graph that results from identifying u with the
vertex vk of a simple path v1v2 · · · vn, 1 < k < n; G2 is obtained from G1 by
deleting vk−1vk and adding vk−1vn (see Figure 7).

Lemma 4.1. Let G1 and G2 be the graphs in Figure 7. Then Mi(G1) >
Mi(G2), i = 1, 2.

Proof. By the definition of the Zagreb indices, we have

M1(G1) − M1(G2) = (dG(u) + 2)2 + 1 − (dG(u) + 1)2 − 4
= 2dG(u) > 0.

M2(G1) − M2(G2)
= (dG(u) + 2)(

∑
x∈NG(u)

dG(x) + dG1(vk−1) + dG1(vk+1))

+dG1(vn−1)dG1(vn) − (dG(u) + 1)(
∑

x∈NG(u)
dG(x) + dG2(vk+1))

−dG2(vn−1)dG2(vn) − dG2(vn)dG2(vk−1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x∈NG(u)

dG(x), if k = 2 and n = 3;∑
x∈NG(u)

dG(x) + dG(u), if k = 2 and n > 3;∑
x∈NG(u)

dG(x) + dG(u), if k > 2 and n = k + 1;∑
x∈NG(u)

dG(x) + 2dG(u), if k > 2 and n > k + 1

> 0.

Remark 3. Repeating Transformation C, any tree T attached to a graph
G can be changed into a path as showed in Figure 8. And the Zagreb indices
decrease.
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TG G�

Figure 8.

Transformation D. Let u and v be two vertices in a graph G. G1

denotes the graph that results from identifying u with the vertex u0 of a
path u0u1u2 · · ·ur and identifying v with the vertex v0 of a path v0v1v2 · · · vt;
G2 is obtained from G1 by deleting uu1 and adding vtu1 (see Figure 9).

G

u u1 ur

v v1 vt

G

u

v v1 vt u1 ur

G1 G2
�D

Figure 9. Transformation D.

Lemma 4.2. Let G1 and G2 be the graphs in Figure 9. dG(u) ≥ dG(v) >
1, r ≥ 1 and t ≥ 0.

(i) If t > 0, then M1(G1) > M1(G2) and M2(G1) > M2(G2);
(ii) If t = 0 and dG(u) > dG(v), then M1(G1) > M1(G2);
(iii) If t = 0 and

∑
x∈NG(u)−{v}

dG(x) >
∑

y∈NG(v)−{u}
dG(y), then M2(G1) >

M2(G2).
Proof. (i) Note that dG(u) > 1 and t > 0, we have

M1(G1) − M1(G2) = (dG1(u))2 + (dG1(vt))
2 − (dG2(u))2 − (dG2(vt))

2

= (dG(u) + 1)2 + 1 − (dG(u))2 − 4
= 2dG(u) − 2 > 0.

M2(G1) − M2(G2)
= (dG(u) + 1)(

∑
x∈NG(u)

dG(x) + dG1(u1)) + dG1(vt−1)dG1(vt)

−dG(u)
∑

x∈NG(u)
dG(x) − dG2(vt−1)dG2(vt) − dG2(vt)dG2(u1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x∈NG(u)

dG(x) + dG(u) − dG(v) − 2, if r = 1 and t = 1;∑
x∈NG(u)

dG(x) + dG(u) − 3, if r = 1 and t > 1;∑
x∈NG(u)

dG(x) + 2dG(u) − dG(v) − 3, if r > 1 and t = 1;∑
x∈NG(u)

dG(x) + 2dG(u) − 4, if k > 1 and t > 1

> 0.
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(ii) If t = 0 and dG(u) > dG(v), then

M1(G1) − M1(G2) = (dG1(u))2 + (dG1(vt))
2 − (dG2(u))2 − (dG2(vt))

2

= (dG(u) + 1)2 + (dG(v))2 − (dG(u))2 − (dG(v))2

= 2dG(u) − 2dG(v) > 0.

(iii) When u and v are not adjacent, we have

M2(G1) − M2(G2)
= (dG(u) + 1)(

∑
x∈NG(u)

dG(x) + dG1(u1)) + dG(v)
∑

y∈NG(v)
dG(y)

−dG(u)
∑

x∈NG(u)
dG(x) − (dG(v) + 1)(

∑
y∈NG(v)

dG(y) + dG2(u1))

=
∑

x∈NG(u)
dG(x) − ∑

y∈NG(v)
dG(y) + dG1(u1)(dG(u) − dG(v))

(since dG1(u1) = dG2(u1))
> 0.

When u and v are adjacent, we have

M2(G1) − M2(G2)
= (dG(u) + 1)(

∑
x∈NG(u)−{v}

dG(x) + dG1(u1)) + dG(v)
∑

y∈NG(v)−{u}
dG(y)

+(dG(u) + 1)dG(v) − dG(u)
∑

x∈NG(u)−{v}
dG(x)

−(dG(v) + 1)(
∑

y∈NG(v)−{u}
dG(y) + dG2(u1)) − dG(u)(dG(v) + 1)

=
∑

x∈NG(u)−{v}
dG(x) − ∑

y∈NG(v)−{u}
dG(y) + (dG1(u1) − 1)(dG(u) − dG(v))

(since dG1(u1) = dG2(u1))
> 0.

Remark 4. After repeating transformation C, if we repeat transforma-
tion D, then any tree can be changed into a path, any unicyclic graph can be
changed into such an unicyclic graph that a path attached to a cycle, any bi-
cyclic graph can be changed into such a bicyclic graph that a path attached
to one of the graphs in Figure 10 (Lemma 4.2(i)). Moreover, the bicyclic
graph can changed into such a bicyclic graph that the path is attached to a
vertex of degree 2 (Lemma 4.2(ii)(iii)). And the Zagreb indices decrease.

F1 F2 F3

Figure 10.

Lemma 4.3. If there is a path x1x2 · · ·xk (k > 1) attached to the vertex
x1 in G1, then Mi(G1) > Mi(G2), i = 1, 2, where G2 is obtained from G1 by
deleting x1v and adding xkv, as showed in Figure 11.
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v

G1 G2

Figure 11.

Proof. Note that only the degrees of x1 and xk are changed, we have

M1(G1) − M1(G2) = 9 + 1 − 4 − 4 > 0.

If k > 2, then

M2(G1) − M2(G2) = d(u) + d(v) > 0.

If k = 2, then

M2(G1) − M2(G2) = d(u) + d(v) − 1 > 0.

So, Mi(G1) > Mi(G2), i = 1, 2.

5 The smallest Zagreb indices among all the

trees, unicyclic graphs and bicyclic graphs

In this section, we characterize the tree, the unicyclic graph and the bicyclic
graph with the smallest Zagreb index.

From Lemma 4.1, we have

Theorem 5.1([4,7]). Let T be any tree of order n. If T is different from
Pn, then M1(T ) > M1(Pn) and M2(T ) > M2(Pn).

Let F k
n be the unicyclic graph obtained by attaching a path of length

n − k to the cycle Ck of length k. From Lemmas 4.1 and 4.2, we have

Theorem 5.2. Let G be an unicyclic graph of order n and girth k. If G
is different from F k

n , then M1(G) > M1(F
k
n ) and M2(G) > M2(F

k
n ).

Using Lemma 4.3, we have

Theorem 5.3([9,15]). The cycle Cn is the unique graph with the smallest
Zagreb indices M1 and M2 among all unicyclic graphs with n vertices.
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Let F1, F2 and F3 be the bicyclic graphs with n vertices showed in Figure
10. From Remark 4 (or Lemma 4.2) and Lemma 4.3, we know that the
bicyclic graph with the smallest Zagreb index is one of the graphs F1, F2 and
F3. And

M1(F1) = 4n + 12,
M1(F2) = M1(F3) = 4n + 10;
M2(F1) = 4n + 20,
M2(F2) = M2(F3) ={

4n + 16, if two vertices with degree 3 are adjacent;
4n + 17, if two vertices with degree 3 are not adjacent
So, we have

Theorem 5.4. The bicyclic graphs of order n with the smallest Zagreb
indices are the graphs F2 and F3 in which the vertices of degree 3 are not
adjacent except n = 4, 6.

Finally, we survey some results on the extremal graphs for the Zagreb in-
dices, the Hosoya index and the Merrifield-Simmons index in trees, unicyclic
graphs and (n, n + 1)-graphs from [4,7,9,15-26], respectively.

Zagreb indices largest smallest
trees of order n Sn Pn

uncyclic graphs of order n Sn + e Cn

(n, n + 1)-graphs F0 F2 or F3

Hosoya index largest smallest
trees of order n Pn Sn

unicyclic graphs of order n Cn Sn + e
(n, n + 1)-graphs H0 or K2,3 F0

Merrifield-Simmons index largest smallest
trees of order n Sn Pn

uncyclic graphs of order n Sn + e or C4 Cn

(n, n + 1)-graphs F0 H0 or K2,3

where F0 is obtained from Sn by adding two adjacent edges, H0 is the graph
connecting two cycle C3s by a path of length n − 5.

Remark 5. The author know that the minimum M1 when the numbers
of vertices and edges are given was obtained by Prof. I. Gutman [27] from the
the referee, also the smallest M1 for trees, unicyclic graphs, bicyclic graphs
and more are known. The author would like to thank the referee for valuable
suggestions.
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