REMARKS ON ZAGREB INDICES

Bo Zhou
Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China
e-mail: zhoubo@scnu.edu.cn

(Received October 16, 2006)

Abstract

The first Zagreb index M_{1} is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M_{2} is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. We give upper bounds for the Zagreb indices M_{1} and M_{2} of K_{r+1}-free graphs in terms of the number of vertices and the number of edges, where $r \geq 2$, and determine the graphs for which the bounds are attained. We also consider $K_{1,1, k+1^{-}}$and $K_{2, l+1}$-free graphs, where $0 \leq k \leq l$.

INTRODUCTION

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. For $u \in V(G)$, $\Gamma(u)$ denotes the set of its (first) neighbors in G and the degree of u is $d_{u}=|\Gamma(u)|$. The first Zagreb index M_{1} and the second Zagreb index M_{2} of G are defined as follows:

$$
M_{1}=M_{1}(G)=\sum_{u \in V(G)}\left(d_{u}\right)^{2}
$$

$$
M_{2}=M_{2}(G)=\sum_{u v \in E(G)} d_{u} d_{v}
$$

The Zagreb indices M_{1} and M_{2} were introduced in [1] and recognized in [2] as measures of the branching of the molecular skeleton. These structure-descriptors [3, 4] have been widely used in QSPR and QSAR studies (see [5]). Their main properties were summarized in $[6,7]$, and some recent results can be found in [8-14].

Let G be a graph with n vertices and m edges. From the definitions of M_{1} and M_{2}, we have

$$
\begin{gathered}
M_{1}(G)=\sum_{u \in V(G)} \sum_{v \in \Gamma(u)} d_{v} \\
M_{2}(G)=\frac{1}{2} \sum_{u \in V(G)} d_{u} \sum_{v \in \Gamma(u)} d_{v} .
\end{gathered}
$$

For a nonempty subset V_{1} of $V(G), G\left[V_{1}\right]$ denotes the subgraph of G induced by V_{1}. For any $u \in V(G)$, let c_{u} be the number of edges of the subgraph $G[\Gamma(u)]$ and e_{u} be the number of edges connecting a vertex in $\Gamma(u)$ and a vertex in $V(G) \backslash(\{u\} \cup \Gamma(u))$. Note that there are d_{u} edges leading to u. Thus $\sum_{v \in \Gamma(u)} d_{v}=d_{u}+2 c_{u}+e_{u}, e_{u} \leq m-d_{u}-c_{u}$, and then

$$
\begin{equation*}
\sum_{v \in \Gamma(u)} d_{v} \leq m+c_{u} \tag{1}
\end{equation*}
$$

with equality for $d_{u}>0$ if and only if either $d_{u}=n-1$ or $G[V(G) \backslash(\{u\} \cup \Gamma(u))]$ is an empty graph if $d_{u}<n-1$.

We now give upper bounds for the Zagreb indices M_{1} and M_{2} of K_{r+1}-free graphs in terms of the number of vertices and the number of edges, where $r \geq 2$, and determine the graphs for which the bounds are attained. We also consider $K_{1,1, k+1^{-}}$ and $K_{2, l+1}$-free graphs, where $0 \leq k \leq l$.

UPPER BOUNDS FOR M_{1} AND M_{2}

Let G be a K_{r+1}-free graph with n vertices, where $r \geq 2$. If $r \geq n$, then obviously $M_{1}(G) \leq M_{1}\left(K_{n}\right)$ and $M_{2}(G) \leq M_{2}\left(K_{n}\right)$ with either equality if and only if $G \cong K_{n}$. So in the following we suppose that $2 \leq r \leq n-1$.

Theorem 1. Let G be a K_{r+1}-free graph with n vertices and $m>0$ edges, where $2 \leq r \leq n-1$. Then

$$
\begin{gather*}
M_{1}(G) \leq \frac{2 r-2}{r} n m \tag{2}\\
M_{2}(G) \leq \frac{2}{r} m^{2}+\frac{(r-1)(r-2)}{r^{2}} n^{2} m \tag{3}
\end{gather*}
$$

with either equality if and only if G is a complete bipartite graph for $r=2$ and a regular complete r-partite graph for $r \geq 3$.

Proof. Let u be any vertex of G. The subgraph $G[\Gamma(u)]$ may not contain a K_{r} as a subgraph and thus, by Turán's theorem (see [15]), $c_{u} \leq \frac{r-2}{2 r-2}\left(d_{u}\right)^{2}$ with equality if and only if $G[\Gamma(u)]$ is a regular complete $(r-1)$-partite graph (where a complete 1-partite graph is an empty graph). From (1),

$$
\sum_{v \in \Gamma(u)} d_{v} \leq m+\frac{r-2}{2 r-2}\left(d_{u}\right)^{2}
$$

and thus

$$
M_{1}(G) \leq \sum_{u \in V(G)}\left[m+\frac{r-2}{2 r-2}\left(d_{u}\right)^{2}\right]=n m+\frac{r-2}{2 r-2} M_{1}(G)
$$

from which we have (2).
Note that

$$
\begin{aligned}
\sum_{u \in V(G)}\left(d_{u}\right)^{3} & =\frac{1}{2} \sum_{u \in V(G)} \sum_{v \in \Gamma(u)}\left[\left(d_{u}\right)^{2}+\left(d_{v}\right)^{2}\right] \\
& =\sum_{u \in V(G)} \sum_{v \in \Gamma(u)} d_{u} d_{v}+\frac{1}{2} \sum_{u \in V(G)} \sum_{v \in \Gamma(u)}\left(d_{u}-d_{v}\right)^{2} \\
& =2 M_{2}(G)+\frac{1}{2} \sum_{u \in V(G)} \sum_{v \in \Gamma(u)}\left(d_{u}-d_{v}\right)^{2} \\
& \leq 2 M_{2}(G)+\frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)}\left(d_{u}-d_{v}\right)^{2} \\
& =2 M_{2}(G)+\frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)}\left[\left(d_{u}\right)^{2}+\left(d_{v}\right)^{2}\right]-\sum_{u \in V(G)} \sum_{v \in V(G)} d_{u} d_{v} \\
& =2 M_{2}(G)+n M_{1}(G)-4 m^{2} .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
M_{2}(G) & \leq \frac{1}{2} \sum_{u \in V(G)} d_{u}\left[m+\frac{r-2}{2 r-2}\left(d_{u}\right)^{2}\right]=m^{2}+\frac{r-2}{4 r-4} \sum_{u \in V(G)}\left(d_{u}\right)^{3} \\
& \leq m^{2}+\frac{r-2}{4 r-4}\left[2 M_{2}(G)+n M_{1}(G)-4 m^{2}\right]
\end{aligned}
$$

and then

$$
M_{2}(G) \leq \frac{2}{r} m^{2}+\frac{r-2}{2 r} n M_{1}(G)
$$

which, together with (2), implies (3).
Suppose that equality holds in (2). Then equality holds in (1) and $c_{u}=\frac{r-2}{2 r-2}\left(d_{u}\right)^{2}$ for any $u \in V(G)$. Thus for any $u \in V(G), G[\Gamma(u)]$ is a regular complete $(r-1)$ partite graph, and $d_{u}=n-1$ or $G[V(G) \backslash(\{u\} \cup \Gamma(u))]$ is an empty graph if $d_{u}<n-1$. Let v and w be any pair of distinct vertices that are not adjacent. Suppose that there
is a vertex $z \in \Gamma(v) \backslash \Gamma(w)$. Then $v z \in E(G)$, and $v, z \in V(G) \backslash(\{w\} \cup \Gamma(w))$. Thus $d_{w}<n-1$, but $G[V(G) \backslash(\{w\} \cup \Gamma(w))]$ is not an empty graph, which is a contradiction. So $\Gamma(v) \subseteq \Gamma(w)$ and then $\Gamma(v)=\Gamma(w)$. Thus $G \cong K_{n-d_{u}, \frac{d u}{r-1}, \cdots, \frac{d_{u}}{r-1}}$ for any $u \in V(G)$. Now it is easy to see that G is a complete bipartite graph if $r=2$ and $G \cong K_{\frac{n}{r}, \cdots, \frac{n}{r}}$ if $r \geq 3$.

Suppose that equality holds in (3). Then equality holds in (1) and $c_{u}=\frac{r-2}{2 r-2}\left(d_{u}\right)^{2}$ for any $u \in V(G)$. So G is a complete bipartite graph for $r=2$ and a regular complete ($r-1$)-partite graph for $r \geq 3$.

Conversely, it is easy to check that (2) and (3) are both equalities if G is a complete bipartite graph for $r=2$ or a regular complete $(r-1)$-partite graph for $r \geq 3$.

Remark 2. The case of K_{3}-free graphs has been treated in [10]. Let G be a K_{4}-free graph with $n \geq 3$ vertices and $m>0$ edges. From [14], we have

$$
M_{1}(G) \leq \frac{4 n m-2 s}{3}
$$

with equality if and only if $G \cong K_{\left\lfloor\frac{n}{3}\right\rfloor,\left\lfloor\frac{n+1}{3}\right\rfloor,\left\lfloor\frac{n+2}{3}\right\rfloor}$, where $2 s$ is the number of vertices of odd degrees in G.

Remark 3. Let G be a $K_{1,1, k+1^{-}}$and $K_{2, l+1}$-free graph with n vertices and $m>0$ edges, where $0 \leq k \leq l$. The cases $k=l$ (i.e., $K_{2, l+1}$-free graph) and $k=0, l=1$ (i.e., triangle- and quadrangle-free graph) have been treated in [13]. Since G is $K_{1,1, k+1^{-}}$ free, a vertex from $\Gamma(u)$ has at most k neighbors in $\Gamma(u)$, and so $2 c_{u} \leq k d_{u}$. Since G is $K_{2, l+1}$-free, a vertex from $V(G) \backslash(\{u\} \cup \Gamma(u))$ has at most l neighbors in $\Gamma(u)$, and so $e_{u} \leq l\left(n-d_{u}-1\right)$. It follows that

$$
\sum_{v \in \Gamma(u)} d_{v}=d_{u}+2 c_{u}+e_{u} \leq d_{u}+k d_{u}+l\left(n-d_{u}-1\right)=(k+1-l) d_{u}+l(n-1) .
$$

Now we can easily prove that

$$
\begin{gathered}
M_{1}(G) \leq 2(k+1-l) m+\ln (n-1) \\
M_{2}(G) \leq(k+1-l)^{2} m+l(n-1) m+\frac{1}{2}(k+1-l) \ln (n-1)
\end{gathered}
$$

with either equality if and only each pair of adjacent vertices in G has exactly k common neighbors and each pair of non-adjacent vertices in G has exactly l common neighbors.

Remark 4. Let G be a graph with n vertices, m edges and minimum vertex degree $\delta \geq 1$. Note that for all $u \in V(G)$,

$$
\sum_{v \in \Gamma(u)} d_{v} \leq 2 m-d_{u}-\left(n-1-d_{u}\right) \delta
$$

with equality if and only if either $d_{u}=n-1$ or all vertices not adjacent to u are of degree δ. Thus
$M_{2}(G) \leq \frac{1}{2} \sum_{u \in V(G)} d_{u}\left[2 m-d_{u}-\left(n-1-d_{u}\right) \delta\right]=2 m^{2}-(n-1) m \delta+\frac{1}{2}(\delta-1) M_{1}(G)$.
We can find upper bounds for $M_{2}(G)$ depending on n, m and δ by using the upper bounds for $M_{1}(G)$ (see $[13,14]$).

Acknowledgement. This work was supported by the National Natural Science Foundation of China (no. 10671076).

References

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[2] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[3] A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure-activity corrections, Topics Curr. Chem. 114 (1983) 21-55.
[4] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[5] A. Miličević, S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta 77 (2004) 97-101.
[6] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[7] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[8] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
[9] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66.
[10] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113-118.
[11] P. Hansen, H. Melot, I. Gutman, Variable neighborhood search for extremal graphs 12. A note on the variance of bounded degrees in graphs, MATCH Commun. Math. Comput. Chem. 54 (2005) 221-232.
[12] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233-239.
[13] B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. 56 (2006) 571-578.
[14] B. Zhou, Upper bounds for the Zagreb indices and the spectral radius of seriesparallel graphs, Intern. J. Quan. Chem., in press.
[15] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.

