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Abstract
This paper demonstrates the relations between a new mathematical constant and
its relevance to the molecular potential energy function commonly adopted in
computational chemistry softwares. This mathematical constant, 1.7767750401
(correct up to 12 decimal places), which fulfills the following infinite nested
radical equation
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is shown to be applicable as the indices of a generalized Lennard Jones potential
energy function. This new potential function demonstrates very good agreement
with the various versions of specific Lennard Jones potential energy functions and
the Buckingham potential function converted from the Lennard Jones(12 6)
function when the indices are positive integer multiples of the mathematical
constant or when the indices are raised to the first four positive integer powers.

1. Introduction
Well known mathematical constants such as (3.141593...) and the golden ratio
(1.618034...) were recently incorporated into a Lennard–Jones type potential
function to give [1]
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where D and r are the well depth magnitude and the interatomic distance
respectively, with whenDU Rr . The adjustable parameter can be
obtained as
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from a set of potential energy experimental data whereby
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Based on the experimental data for Argon [2] and Eqs.(1) and (2), the adjustable
parameter was obtained as . This value enables a good agreement between
Eq.(1) and the experimental results over long range. This equation also gives good
agreement with the Murrell Sorbie potential function [3]
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plot, based on the parameters given by Huxley and Murrell [4] for the covalent
bond in the Al Al diatomic molecule, within the range RrR 3.19.0 by using the
relation
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In this paper a Lennard–Jones type potential function incorporated with a new
mathematical constant is tested by comparing it with commonly used van der
Waals potential functions in computational softwares.

2. Analysis
A generalized infinite nested radical appears in the form
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(6)

An example of nested radical infinite product is shown below for describing pi [5
7]
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whereby and for)2/1(ii yx 2iz ,3,2,1i . The infinite nested radical of the
form

n n n nnf 1111)(
(8)

whereby and for1ii yx nzi ,3,2,1i describes the golden ratio [8] and the
plastic constant [9,10] when and2n 3n respectively.
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A new constant n is defined herein as the number that fulfills the equation
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This equation can be obtained by writing
n n nnnn )1( 1 . (10)

By successive recursion, Eq.(10) becomes
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then Eq.(11) becomes
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which is reflected on the right hand side of Eq.(9). It is of interest to note that
interchanging the operations and in Eq.(13) while retaining the rest of the
equation gives
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Equation (14) can be proven by writing
n n nnnn )1( 1 . (15)

Successive recursion in Eq.(15) leads to
n n n nnnn nnnnnnnn )1()1()1( 111 .

(16)

Substituting Eq.(12) into Eq.(16) gives Eq.(14). The expression shown in Eq.(14) is,
of course, redundant. It can be better expressed as

n n n nn 1111 ,
(17)

which is reflected on the left hand side (LHS) of Eq.(9). From Eq.(12), the solution
to is obtained by solvingn

1)( 11 nnng n (18)
for . The numerical solution is0)(ng n 1.7767750401, accurate up to ten
decimal places. Based on criteria for acceptable potential function
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five Lennard–Jones type potential functions that incorporate the defined
mathematical constant are proposed. In the first proposed potential function, the
indices are raised to integer powers at the repulsive and attractive parts to given
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while in the second proposed potential function the indices are integer multiples
of , i.e.n
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The first two and last two subscripts on the LHS correspond to the indices of the
repulsive and attractive parts respectively, whereby subscripts P and M refer to
integer powers and multiples respectively. The other three proposed potential
functions are hybrids of Eqs.(22) and (23), i.e. the repulsive and attractive indices
are integer multiples of and integer powers of respectively:n

3

2

7

2

2
37

7
7

7

nn
PM

r
R

nr
R

n
n

D
U , (24)

4

3

7

3

3
47

7
7

7

nn
PM

r
R

nr
R

n
n

D
U , (25)

3

2

8

2

2
38

8
8

8

nn
PM

r
R

nr
R

n
n

D
U . (26)

The coefficients selected in Eqs.(22) to (26) ensure that the criteria for acceptable
potential function as laid out in Eqs.(19) to (21) are fulfilled.

3. Results and discussion
To test the applicability of Eqs.(22) to (26) for describing van der Waals energy of
interaction, we recall the corresponding potential functions applied in
computational chemistry softwares such as the Lennard Jones(12 6)
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used in OPLS (Optimized Potentials for Liquid Simulations) [11], UFF (Universal
Force Field) [12], AMBER (Assisted Model Building and Energy Refinement) [13]
and ECEPP (Empirical Conformational Energy Programs for Peptides) [14]
softwares. AMBER and ECEPP also incorporate the Lennard Jones(12 10)
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as an option. Other softwares such as ESFF (Extensible Systemic Force Field) [15]
and CFF (Class II Force Field) [16] adopt the Lennard Jones(9 6)
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while the Lennard Jones(14 7)
714

)714( 2
r
R

r
R

D
U LJ

(30)

is employed by MMFF (Merck Molecular Force Field) [17]. The Buckingham
potential function used for van der Waals energy is normally of the form
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for conversion from Lennard Jones(12 6), which is available in UFF [12],
DREIDING [18], a modified version of DREIDING [19], and a force field by
Karasawa et al [20].
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Fig. 1. Comparison of Eqs.(22) to (25) with common used Lennard Jones potential
function in molecular force fields.
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The short and long range conversions are attained when 772.13 and 12
respectively. Comparison of the commonly used Lennard Jones potentials used in
computational chemistry softwares and those that incorporate the new
mathematical constant reveals that Eqs.(22), (23), (24) and (25) provide very good
agreement with the Lennard Jones (9 6), (14 7), (12 6) and (12 10) respectively, as
evident from Fig.1.

Figure 2 shows the correlation of Eqs.(24) and (26) with the Buckingham potential,
Eq.(31), whereby 12 and 772.13 respectively. The closeness of these four
potential energy curves may well be attributed to the fact that Eq.(31) is based on
the Lennard Jones(12 6) potential function.
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Fig. 2. Comparison of Eq.(24) and (26) with the short and long range forms of
Buckingham potential function converted from Lennard Jones(12 6).

4. Conclusions
A mathematical constant, , has been conceptualized and
incorporated into Lennard–Jones type potential function. Five types of these
potential functions that adopt , , and in the coefficients and indices

7767750401.1n

1n 2n 3n 4n
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have been shown to agree well with the type of van der Waals potential energy
functions used in typical molecular force fields. Arising from the mathematical
significance and its chemical application, it is herein suggested that this new
mathematical constant be examined for its relevance to other phenomenon of
chemical relevance.
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