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Abstract

Fujita’s proligand method, which was originally formulated by using the symmetrical

properties of cyclic subgroups (Fujita, S. (2005) Theor. Chem. Acc., 113 73–79, 80–86),

has been alternatively formulated in terms of the concept of mandalas proposed in Part 2 of

this series (Fujita, S. (2006) MATCH Commun. Math. Comput. Chem., 55, 5–38). A set

of assemblies of K-symmetry in a mandala of G-symmetry has been characterized by the

left coset representation G(/K), where achiral assemblage and chiral assemblage have been

discussed in terms of the chirality/achirality of the group K. Each K-assembled mandala

has been shown to correspond to one stereoisomer of K-symmetry, i.e., an achiral molecule

or a pair of enantiomers. The alternative formulation of Fujita’s proligand method has

been accomplished by comparing the number of fixed assemblies per stereoisomer with the

number of fixed assemblies per permutation. Thereby, stereoisomers can be enumerated

in an itemized fashion, i.e., the numbers of achiral plus chiral stereoisomers, of achiral

stereoisomers, and of chiral stereoisomers. Deficiency of Pólya’s theorem in stereoisomer
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enumeration and merits of Fujita’s proligand method have been demonstrated by using

allenes and prismanes as examples.

1 Introduction
In Part 1 of this series [1], a regular body has been discussed as a diagrammatical expression for

characterizing intramolecular stereochemistry. In Part 2 of this series [2], a mandala (a nested

regular body) has been discussed as a diagrammatical expression for characterizing stereoiso-

merism (i.e., intermolecular stereochemistry). These two types of diagrammatical expressions

can be treated commonly because they have mathematically equivalent properties. In particular,

the mathematical equivalence between the segmentation of a regular body and the assemblage

of a mandala has been demonstrated diagrammatically. In Part 3 [3], the close relationship

between the two operations (the segmentation and the assemblage) has been diagrammatically

examined so as to provide a succinct basis of stereoisomer enumeration, which has once been

formulated as Fujita’s USCI (unit-subduced-cycle-index) approach in a more algebraic fashion

[4]. Throughout this series [1, 2, 3] along with the original version of the USCI approach [4],

the concept of sphericity (the sphericities of orbits governed by coset representations) has been

emphasized as a key to characterize stereoisomers as three-dimensional objects having inner

structure (e.g., chirality/achirality of ligands).

On the other hand, Pólya’s theorem [5, 6], which has been widely used in chemical combi-

natorics [7, 8, 9], has failed in characterizing stereoisomers as three-dimensional objects having

inner structure. This failure has not been pointed out until recently and turns out to have been

demonstrated only implicitly by combining several references [10, 11]. For example, Pólya

et al. [12] have discussed stereoisomer enumeration of prismane derivatives by using the D3

permutation group as well as the permutation group corresponding to D3h-point group, where

only atoms with no inner structure have been considered as substituents on the vertices of the

prismane skeleton. Although their treatment is correct in the context of their book [12], it would

give stereochemically inconsistent results if inner structure (e.g., ligands p of one chirality and

other ligands p of the opposite chirality) is taken into consideration. In particular, their treat-

ment is incapable of discriminating properly between asymmetric cases (or enantiomeric rela-

tionship) and pseudoasymmetric cases (or diastereomeric relationship). The CI (cycle-index)

method described in Part 3 [3] and in other references [13, 14] has clarified that the reason of

the incapability is that Pólya’s theorem does not involve the sphericity concept from a viewpoint

brought about by the USCI approach.

To avoid the drawback of Pólya’s theorem, we have proposed the proligand method [15,

16, 17], which is capable of characterizing and enumerating stereoisomers as three-dimensional

objects having inner structure. For this proposal, the sphericity concept for the USCI approach,

which was originally formulated as sphericity of orbits, has been modified into a new concept

sphericities of cycles [15, 16, 17] through an intermediate concept “sphericities of orbits for

cyclic subgroups” [18, 19, 20, 21]. Even though the USCI approach has become very accessible

by means of the diagrammatical approach of the present series, a more direct modification

without such an intermediate concept would be desirable for readers who are not acquainted

with the USCI approach to comprehend the new concept sphericities of cycles.

In the present paper (Part 4), the concept of mandala introduced in Part 2 will be studied in

another way to introduce directly the sphericity concept in stereoisomer enumeration. Thereby,

an alternative formulation of the proligand method will be demonstrated.
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2 Right and Left Cosets

2.1 Reference Numbering and Inverse Numbering
In Part 1 to Part 3 [1, 2, 3], we have used the symbol G(/H) for representing coset representa-

tions (CR) so that we have not discriminated between right coset representations (RCR) and left

coset representations (LCR). To go on further and detailed discussions, we shall discriminate

between them. Thus, let us use the symbol (H\)G for representing the RCR and the symbol

G(/H) for representing the LCR. It follows that the positions of regular bodies etc. discussed in

Part 1 are considered to be controlled by the RCR (H\)G, which is correlated to permutations

on a set of right cosets H\G.1 On the other hand, the transformulas of mandalas etc. discussed

in Part 2 are considered to be controlled by the LCR G(/H), which is correlated to permutations

on a set of right cosets G/H.
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Figure 1: Regular bodies with a reference numbering (1) and with the inverse numbering (1̃).

According to eq. 73 of Part 1, the symmetry operations of D2d corresponds to the eight

positions of a regular body of D2d (1) so as to give a reference numbering as follows:

D2d = C1\D2d = { I︸︷︷︸
1

,σd(1)︸︷︷︸
2

, S4︸︷︷︸
3

,C2(1)︸︷︷︸
4

,C2(3)︸︷︷︸
5

,σd(2)︸︷︷︸
6

, S3
4︸︷︷︸

7

,C2(2)︸︷︷︸
8

}. (1)

Thus, the group D2d as an ordered set is recognized to be an ordered set C1\D2d , which is

regarded as an extreme case of an ordered set of right cosets. This means that the set C1\D2d
and the corresponding set of positions in the regular body (1) are both governed by the RCR

(C1\)D2d . The concrete form of the RCR (C1\)D2d has been shown in eqs. 14–21 of Part 1,

which have been obtained diagrammatically.

By recognizing the C1\D2d-set (eq. 1), we are able to consider another ordered set D2d/C1,

where any g ∈ D2d is replaced by g−1 as follows:

D2d/C1 = { I−1︸︷︷︸
1

,σ−1
d(1)︸︷︷︸
2

, S−1
4︸︷︷︸
3

,C−1
2(1)︸︷︷︸
4

,C−1
2(3)︸︷︷︸
5

,σ−1
d(2)︸︷︷︸
6

, S−3
4︸︷︷︸
7

,C−1
2(2)︸︷︷︸
8

}

= { I︸︷︷︸
1

,σd(1)︸︷︷︸
2

, S3
4︸︷︷︸

3

,C2(1)︸︷︷︸
4

,C2(3)︸︷︷︸
5

,σd(2)︸︷︷︸
6

, S4︸︷︷︸
7

,C2(2)︸︷︷︸
8

} (2)

which gives the corresponding inverse numbering (1̃) as shown in Fig. 1. Thus, the group D2d
is alternatively recognized to be an ordered set D2d/C1, which is regarded as an extreme case of

1Equation 75 of Part 1 should be replaced by the corresponding right coset decomposition, i.e., D2d = CsI +
CsC2(3) +CsC2(1) +CsC2(2).
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first operation

1 2 3 4 5 6 7 8

I σd(1) S4 C2(1) C2(3) σd(2) S3
4 C2(2)

1 I 1 2 3 4 5 6 7 8

2 σd(1) 2 1 4 3 6 5 8 7

3 S4 3 8 5 2 7 4 1 6

4 C2(1) 4 7 6 1 8 3 2 5

5 C2(3) 5 6 7 8 1 2 3 4

se
co

n
d

o
p
er

at
io

n

6 σd(2) 6 5 8 7 2 1 4 3

7 S3
4 7 4 1 6 3 8 5 2

8 C2(2) 8 3 2 5 4 7 6 1

Figure 2: Multiplication table of D2d

an ordered set of left cosets. The eight transformulas of a mandala (as a base body) obey such

an inverse numbering, as discussed in Part 2.

The symmetrical behavior of the regular bodies (1 and 1̃) are correlated to the multiplication

table shown in Fig. 2, which adopts the reference numbering shown in eq. 1. The concrete

permutations of the RCR (C1\)D2d for 1 (eqs. 14–21 of Part 1) are obtained by collecting every

columns of Fig. 2. On the other hand, by collecting every rows of Fig. 2, we can construct the

LCR D2d(/C1).

2.2 Effect of Segmentation
The effect of Cs-segmentation is shown in Fig. 3, where the resulting four Cs-segments are

equivalent under the action of D2d . The process of segmentation is interpreted as the superposi-

tion of a segmentation pattern of Cs (shown by oval boxes in 2) onto the regular body with the

reference numbering (1). Thereby, the corresponding segmented regular body (2) shown in Fig.

3 is explained by the following set of right cosets:

Cs\D2d =
{

CsI︸︷︷︸
1

,CsS4︸︷︷︸
2

,CsC2(3)︸ ︷︷ ︸
3

,CsS3
4︸︷︷︸

4

}

=
{
{1,2}︸ ︷︷ ︸

1

,{3,4}︸ ︷︷ ︸
2

,{5,6}︸ ︷︷ ︸
3

,{7,8}︸ ︷︷ ︸
4

}
, (3)

where the right cosets are numbered sequentially. The set of four Cs-segments, i.e., A =
{A1,A2,A3,A4}, constructs an orbit governed by the RCR (Cs\)D2d because of the corre-

spondence between Cs\D2d (eq. 3) and A of 2.

By examining the action of all of the operation of D2d on the set of four Cs-segments

(A = {A1,A2,A3,A4}) diagrammatically or by examining the corresponding action on the

set of cosets (Cs\D2d shown in eq. 3) algebraically, the concrete form of the RCR (Cs\)D2d is
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Figure 3: Segmented regular bodies with a reference numbering (2) and with the inverse num-

bering (2̃). The four oval boxes in each segmented regular body are regarded as constructing a

Cs-segmentation pattern.

calculated as follows:

I ∼
(

1 2 3 4

1 2 3 4

)
= (1)(2)(3)(4) (4)

C2(1) ∼
(

1 2 3 4

2 1 4 3

)
= (1 2)(3 4) (5)

C2(2) ∼
(

1 2 3 4

4 3 2 1

)
= (1 4)(2 3) (6)

C2(3) ∼
(

1 2 3 4

3 4 1 2

)
= (1 3)(2 4) (7)

σd(1) ∼
(

1 2 3 4

1 4 3 2

)
= (1)(3)(2 4) (8)

S4 ∼
(

1 2 3 4

2 3 4 1

)
= (1 2 3 4) (9)

S3
4 ∼

(
1 2 3 4

4 1 2 3

)
= (1 4 3 2) (10)

σd(2) ∼
(

1 2 3 4

3 2 1 4

)
= (1 3)(2)(4), (11)

where an overbar represents the inversion of one chirality into an opposite chirality. For the

sake of convenience, these permutations are classified into four proper rotations without an

overbar (the upper four) and four improper rotations with an overbar (the bottom four). These

permutations of (Cs\)D2d control the symmetrical behavior of the four positions of the allene

skeleton, where each of the segments of 2 is regarded as a position of the allene skeleton. In

other words, the RCR (Cs\)D2d governs the orbit (equivalence class) of the four positions in

the allene skeleton.

On the other hand, the Cs-segmentation pattern is superposed onto the regular body with

the inverse numbering (1̃) so as to generate the corresponding segmented regular body (2̃), as

shown in Fig. 3. The result is explained by the following set of left cosets:

D2d/Cs =
{

ICs︸︷︷︸
1

,S−1
4 Cs︸ ︷︷ ︸

2

,C−1
2(3)Cs︸ ︷︷ ︸

3

,S−3
4 Cs︸ ︷︷ ︸

4

}
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=
{

ICs︸︷︷︸
1

,S3
4Cs︸︷︷︸
2

,C2(3)Cs︸ ︷︷ ︸
3

,S4Cs︸︷︷︸
4

}

=
{
{1,2}︸ ︷︷ ︸

1

,{7,4}︸ ︷︷ ︸
2

,{5,6}︸ ︷︷ ︸
3

,{3,8}︸ ︷︷ ︸
4

}
(12)

The set of four Cs-segments, i.e., A∗ = {A∗
1,A∗

2,A∗
3,A∗

4}, constructs an orbit governed by the

LCR D2d(/Cs) because of the correspondence between D2d/Cs (eq. 12) and A∗ of 2̃.

By examining the action of all of the operation of D2d on the set of four Cs-segments

(A∗ = {A∗
1,A∗

2,A∗
3,A∗

4}) diagrammatically or by examining the corresponding action on the

set of cosets (D2d/Cs shown in eq. 12) algebraically, the concrete form of the LCR D2d(/Cs) is

calculated as follows:

I ∼
(

1 2 3 4

1 2 3 4

)
= (1)(2)(3)(4) (13)

C2(1) ∼
(

1 2 3 4

2 1 4 3

)
= (1 2)(3 4) (14)

C2(2) ∼
(

1 2 3 4

4 3 2 1

)
= (1 4)(2 3) (15)

C2(3) ∼
(

1 2 3 4

3 4 1 2

)
= (1 3)(2 4) (16)

σd(1) ∼
(

1 2 3 4

1 4 3 2

)
= (1)(3)(2 4) (17)

S4 ∼
(

1 2 3 4

4 1 2 3

)
= (1 4 3 2) (18)

S3
4 ∼

(
1 2 3 4

2 3 4 1

)
= (1 2 3 4) (19)

σd(2) ∼
(

1 2 3 4

3 2 1 4

)
= (1 3)(2)(4), (20)

The relationship between 2 and 2̃ can be easily extended into general cases. Let us select

h ∈ H, where the H is a subgroup of G. Among the right cosets contained in H\G, a right

coset Hgi is taken into consideration. Then, for ∀hgi ∈ Hgi, the inverse is obtained as follows:

(hgi)−1 = g−1
i h−1 ∈ g−1

i H. It follows that any element of the right coset Hgi corresponds

to an element of the left coset g−1
i H in one-to-one fashion. This means that a common H-

segmentation pattern operated on regular bodies with a reference numbering and with its inverse

numbering gives diagrams of the same appearance.

2.3 Effect of Subduction
The subduction of regular representations has been discussed diagrammatically in Part 1 (cf.

eq. 58) and algebraically in Section 7.1 of Fujita’s book [4]. We here adopt a subduction pattern

that represents the division of the positions of a regular body during the subduction of a regular

representation.

For example, select S4 from C1\D2d (eq. 1). The element S4 is transformed into S4I = S4,

S4σd(1) = C2(2) during the subduction by Cs. Thereby the set {S4,C2(2)} = {3,8} is generated.
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This procedure repeated to cover the set C1\D2d so as to generate the following division:

C1\D2d
↓Cs−→ { I︸︷︷︸

1

,σd(1)︸︷︷︸
2

}+{ S4︸︷︷︸
3

,C2(2)︸︷︷︸
8

}+{C2(1)︸︷︷︸
4

, S3
4︸︷︷︸

7

}+{C2(3)︸︷︷︸
5

,σd(2)︸︷︷︸
6

}. (21)

If the resulting set {S4,C2(2)} = {3,8} is regarded as corresponding to {I,σd(1)} by omitting

S4, it can be recognized to be governed by the right regular representation (C1\)Cs. The di-

vision shown in eq. 21 is illustrated by the subduced regular body (3) as shown in Fig. 4 and

summarized as the subduction as follows:

(C1\)D2d ↓ Cs = 4(C1\)Cs, (22)

which has been reported as eq. 57 of Part 1.
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Figure 4: Subduced regular bodies with a reference numbering (3) and with the inverse num-

bering (3̃).

The set {S4,C2(2)} = {3,8} is alternatively regarded as a left coset S4Cs. From this point of

view, eq. 21 for the division of the set C1\D2d by Cs is the same thing as a left coset decompo-

sition of D2d by Cs in accord with D2d/Cs (eq. 12). In other words, the subduction of the RRR

(C1\)D2d ↓ Cs (3) is correlated diagrammatically to the LCR D2d(/Cs) (2̃).

On the same line, eq. 23 corresponding to eq. 22 is obtained:

D2d(/C1) ↓ Cs = 4Cs(/C1) (23)

Moreover, the subduction of the LRR D2d(/C1) ↓ Cs (3̃) is correlated diagrammatically to the

RCR (Cs\)D2d (2).

3 Mandalas
A mandala proposed in Part 2 of this series [2] is a model for representing the symmetry of

an achiral stereoisomer or a pair of enantiomers. By considering the absence or presence of

assemblage, mandalas are classified into non-assembled mandalas and assembled ones. The

G-symmetry of a regular body is maintained in a non-assembled mandala, which models a

starting skeleton. On the other hand, a subgroup K of the group G appears as K-assemblies

in an assembled mandala, which is regarded as a model of a K-molecule derived from the G-

skeleton. In this section, the number of fixed points2 (assemblies) on the action of G is shown

to be equal to |G| with and without assemblage (i.e., regardless of K).

2The term “point” is used in an abstract fashion. Concretely speaking, the term “assembly” should be used

here in the context concerning a mandala. The term “point” refers to the term “position”, when a regular body or

a skeleton is taken into consideration.
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3.1 Non-Assembled Mandalas
Without Segmentation According to Part 2 [2], a mandala is defined as a nested regular

body, where a transformula derived from a regular body (named a corona body) is placed on

a vertex of another hypothetical regular body (named a base body), as shown in Fig. 5. As

found in the eight transformulas (corona bodies) of Fig. 5, the numbering of each vertex and the

correspondence to each symmetry operation (g ∈ D2d) in the corona body are adopted in accord

with the reference numbering shown in 1. On the other hand, each vertex of the base body is

numbered in accord with the inverse numbering shown in 1̃.
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Figure 5: Mandala (a nested regular body) containing eight transformulas ( f1– f8) at its

vertices. The alignment shown in this diagram corresponds to the inverse numbering (1):

G∗
1 = { f1, f2, f7, f4, f5, f6, f3, f8}. The full expression of the mandala is simplified into 11. The

number of fixed points is equal to |D2d| = 8 with respect to the one-membered orbit G = {G∗
1}.

Suppose that the eight positions of the reference (1) accommodate hydrogens to generate

a H8-transformula (12 as f1). On the action of D2d , the resulting set of transformulas, i.e.,

G∗
1 = { f1, f2, f7, f4, f5, f6, f3, f8}, is considered to construct a one-membered orbit G∗ = {G∗

1},

as encircled in the simplified mandala (11). The one-membered orbit is governed by the LCR

D2d(/D2d) and represents the symmetrical behavior of the H8-transformula. Hence, the simpli-

fied mandala (11) is regarded as representing a molecule of D2d-symmetry.

The one-membered orbit (G∗) governed by the LCR D2d(/D2d) is fixed by all of p[R]
g con-

tained in the RRR (C1\)D2d (g ∈ D2d). Hence, the number of fixed points (assemblies) is cal-

culated to be |D2d| (= 8). The term 8H8 is used to apply this result to chemical combinatorics,
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Figure 6: D2d-Molecules with H8 (12) and p4p4 (13 and 14). The symbols p and p represent a

pair of enantiomeric proligands.

as discussed later.

Another D2d-molecule with p4p4 (13 as f1) is also permissible because the (C1\)D2d-orbit

of the eight positions is enantiospheric. On the same line as above, the resulting set of transfor-

mulas, i.e., G∗
1 = { f1, f2, f7, f4, f5, f6, f3, f8}, is also considered to construct a one-membered

orbit G∗ = {G∗
1} (11). The one-membered orbit (G∗) in the simplified mandala (11) is governed

by the LCR D2d(/D2d) and represents a molecule of D2d-symmetry. The number of fixed points

(assemblies) is calculated to be |D2d| (= 8), because the orbit G∗ is fixed once by every p[R]
g

contained in the RRR (C1\)D2d (g ∈ D2d). To apply this result to chemical combinatorics, we

use the term 8p4p4.

There exists a further D2d-molecule with p4p4 (14 as f1), which is diastereomeric to 13. The

number of fixed points (assemblies) is also calculated to be |D2d| (= 8) on the same line. The

molecules 13 and 14 are regarded as an extended case of so-called pseudoasymmetry, which is

recognized in terms of enantiosphericity in the USCI approach [4].

With Segmentation Suppose that the segmentation pattern (2) shown in Fig. 3 is superposed

onto each regular body (corona body) of the original mandala shown in Fig. 4. Thereby, we are

able to obtain a mandala with segmented regular bodies, as shown in Fig. 7, where the segmen-

tation causes the division of the eight positions in each regular body into four Cs-segments, i.e.,

A1, A2, A3, and A4. They correspond to the right cosets shown in eq. 3 so that they construct

a four-membered orbit, i.e., A = {A1,A2,A3,A4}, which is governed by the RCR (Cs\)D2d .

The Cs-segmentation, however, maintains the symmetrical feature of the simplified mandala

(22). Thus, the one-membered orbit G∗ = {G∗
1} remains without division so as to be governed

by the LCR D2d(/D2d). Because the one-membered orbit (G∗) is fixed under D2d , the number

of fixed points (assemblies) is calculated to be |D2d| (= 8).
The segmented mandala shown in Fig. 7 has a more chemical meaning by replacing each

of the segment (A1, A2, A3, and A4) by a hydrogen atom. This procedure generates a reduced

mandala with an allene molecule (H4) as shown in Fig. 8, which has been discussed in Part 3 of

this series [3]. The reduction also maintains the symmetrical feature of the simplified mandala

(31) so that the one-membered orbit G∗ = {G∗
1} remains without division so as to be governed

by the LCR D2d(/D2d). Because the one-membered orbit (G∗) is fixed on the action of the

eight operations of D2d , the number of fixed points (assemblies) is calculated to be |D2d| (= 8).
The term 8H4 is used to apply this result to chemical combinatorics, where the coefficient 8

designates the number of fixed points (assemblies).

It is worthwhile to compare the methodology described in Part 3 [3] with the present one.

By following the methodology of the USCI approach described in Part 3 [3], the one-membered
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Figure 7: Mandala containing eight transformulas with segmentation ( f1– f8). The

alignment shown in this diagram corresponds to the inverse numbering (1): G∗
1 =

{ f1, f2, f7, f4, f5, f6, f3, f8} in a clockwise direction. The full expression of the mandala is

simplified into 22. The number of fixed points is equal to |D2d| = 8 with respect to the one-

membered orbit G = {G∗
1}.

orbit G∗ in the mandala (e.g., 11, 22, and 31) is characterized by a fixed-point vector (FPV),

which is itemized with respect to the subgroups of D2d . Thus, the one-membered orbit G∗
is characterized by an FPV = (1,1,1,1,1,1,1,1,1) so that it is concluded to be governed by

the RRR (D2d\)D2d . This methodology enables us to itemize enumeration results with respect

to the subgroups, i.e., the point-group symmetries of enumerated stereoisomers. On the other

hand, the present methodology aims at obtaining the gross number of stereoisomers, where

such symmetry itemization is not taken into consideration. Hence, the number of fixed points

is evaluated by operating all of the symmetry operations of D2d so as to be equal to the order of

the group D2d , i.e., |D2d| = 8.

3.2 Assembled Mandalas
Assembled mandalas are further classified into two subcategories, i.e., mandalas with achiral K-

assemblage for representing achiral stereoisomers and mandalas with chiral K-assemblage for

representing pairs of enantiomers. In this subsection, the number of fixed points (assemblies)

on the action of G is shown to be equal to |G| regardless of the chirality/achirality of K.
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Figure 8: Reduced mandala for allene. The full expression of the mandala is simplified into 31.

3.2.1 Achiral Assemblage

Without Segmentation Let us first examine a Cs-assembled mandala (40) shown in Fig. 9.

The eight transformulas ( f1– f8) at its vertices are assembled into four assemblies, i.e., A∗
1 =

{ f1, f2} = {32, 33}, A∗
2 = { f7, f4} = {34, 35}, A∗

3 = { f5, f6} = {36, 37}, and A∗
4 = { f3, f8}

= {38, 39}. According to this assemblage, the subduction (3) shown in Fig. 4 occurs so that

the eight positions of each regular body are partitioned into four sets, i.e., {1,2}, {3,8}, {4,7},

and {5,6} (cf. eq. 22). To show this partition explicitly, solid circles are depicted for the set

of positions {1,2} in Fig. 9. Thereby, the effect of the subduction remains, even if the Cs-

subduction pattern (the four oval boxes) is deleted.

On the action of D2d , the mandala 40 having the four-membered orbit of Cs-assemblies (A∗
= {A∗

1,A∗
2,A∗

3,A∗
4}) moves in accord with permutations due to the LCR D2d(/Cs). Even if all

of the operations of D2d are applied to the assembled mandala (40), the Cs-assembly A∗
1 (or A∗

3)

is fixed only under the action of the Cs-subgroup so that A∗
1 is fixed by I and σd(1), giving |Cs|

(= 2) as the number of fixed points (assemblies). On the other hand, the Cs-assembly A∗
2 (or

A∗
4) is fixed only under the action of the C′

s-subgroup so that A∗
1 is fixed by I and σd(2) (∈ C′

s),

giving |Cs| (= 2) as the number of fixed points (assemblies). Note that the C′
s is conjugate to Cs

under the group D2d . Because the orbit A∗ contains four (= |D2d|/|Cs| = 8/2 = 4) assemblies,

the total number of fixed points (assemblies) is calculated as follows

|Cs|× |D2d|
|Cs| = |D2d| = 8. (24)
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Figure 9: Mandala after Cs-assemblage. The eight transformulas ( f1– f8) at its vertices are

assembled into four assemblies, i.e., A∗
1 = { f1, f2}, A∗

2 = { f7, f4}, A∗
3 = { f5, f6}, and A∗

4 =
{ f3, f8}. Solid circles are added to show the Cs-symmetry explicitly. The full expression of the

mandala is simplified into 40.

Suppose that the eight positions of the reference (1) shown in Fig. 9 accommodate achi-

ral proligands (H and X) and a pair of enantiomeric proligands (p and p) in accord with the

division of the positions due to the subduction (eq. 22). Because the four (C1\)Cs-orbits are

all enantiospheric, the corresponding sphericity index c2 permits H2, X2, or pp for each of the

(C1\)Cs-orbits. Thereby, the corresponding USCI-CF (unit subduced cycle index with chirality

fittingness) c4
2 allows us to generate several Cs-molecule, as shown in Fig. 10.

Anyone of the Cs-molecules can be used in place of the reference (1) shown in Fig. 9 so that

the same simplified mandala (40) can be adopted to evaluate the corresponding number of fixed

points (assemblies). It follows that the number of fixed points (assemblies) is calculated by eq.

24 for anyone of the Cs-molecules collected in Fig. 10. The term 8H6X2 (for 41) etc. are used

to apply this result to chemical combinatorics, where the coefficient 8 designates the number of

fixed points.

It should be added here that 45 and 46 in Fig. 10 exhibit a kind of pseudoasymmetry, because

the replacement of p/p by X/Y generates a pair of enantiomers of the molecular formula H6XY.

On the same line. 47 and 48 also exhibit a kind of pseudoasymmetry.
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Figure 10: Cs-Molecules with various molecular formulas. The symbols H and X represent

achiral proligands and the symbols p and p represent a pair of enantiomeric proligands.

With Segmentation The Cs-assembled mandala shown in Fig. 9 is further modified by Cs-

segmentation, as shown in Fig. 11. Thus, the Cs-segmentation pattern (2) shown in Fig. 3 is su-

perposed onto each subduced regular body shown in Fig. 9. Thereby, we obtain a Cs-assembled

mandala (57) with Cs-segmentation, where the Cs-assemblage is spontaneously accompanied

with the subduction into Cs, as shown in Fig. 11.

The same simplified mandala (57) can be generated alternatively, where the Cs-subduction

pattern (3) shown in Fig. 4 is superposed onto each Cs-segmented regular body shown in Fig.

7. In spite of the different orders of superposition, the resulting mandala 57 is symmetrically

equivalent to the mandala 40 under D2d .

By comparing between Fig. 9 and Fig. 11, we find that the Cs-segmentation does not in-

fluence the apparent symmetrical feature of mandalas in the simplified level (i.e., 40 vs. 57).

Hence, we obtain the following Cs-assemblies: A∗
1 = { f1, f2} = {49, 50}, A∗

2 = { f7, f4} = {51,

52}, A∗
3 = { f5, f6} = {53, 54}, and A∗

4 = { f3, f8} = {55, 56}. The orbit of Cs-assemblies in 40,

i.e., A∗ = {A∗
1,A∗

2,A∗
3,A∗

4}, remains undisturbed to give the orbit of Cs-assemblies in 57. This

means that the total number of fixed points is calculated by means of eq. 24.

On the other hand, the Cs-assemblage (in 57) influences intramolecular stereochemistry to

cause the division of the orbit of segments A = {A1,A2,A3,A4} in each transformula (e.g., 49).

The division in the transformula 49 is diagrammatically interpreted as follows: the segment A1

(or A3) is isolated by the action of the subduction pattern (3) so as to generate a one-membered

orbit, while the two segments A2 and A4 are regarded as remaining equivalent because the sub-

duction pattern (3) ties the two segments. As a result, there emerge one-membered orbit {A1},

two-membered orbit {A2,A4}, and one-membered orbit {A4}, as found in each transformula

(e.g., 49). Obviously, each of the one-membered orbits ({A1} and {A3}) is homospheric in

terms of the criterion discussed in Part 1 so as to be characterized by the sphericity index a1.

The two-membered orbit {A2,A4} is enantiospheric and characterized by the sphericity index

c2. The assignment of the sphericity indices is in accord with the subduction of the RCR:

(Cs\)D2d ↓ Cs = 2(Cs\)Cs +(C1\)Cs, (25)
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Figure 11: Cs-Assembled mandala with Cs-segmentation and Cs-subduction. The full expres-

sion of the mandala is simplified into 57.

where the sphericity index a1 corresponding to the RCR (Cs\)Cs and the sphericity index c2

corresponds to the RCR (C1\)Cs.

The sphericity index a1 permits H or X for the one-membered orbit {A1} (or {A4}), while

the sphericity index c2 permits H2, X2, or pp for the two-membered orbit {A2,A4}. Hence,

several Cs-molecules are generated, as shown in Fig. 12. Anyone of the Cs-molecules shown

Fig. 12 can be used in place of the reference (49) so that the same simplified mandala (57) can

be adopted to evaluate the corresponding number of fixed points.

For example, Fig. 13 shows such a reduced mandala for characterizing the behavior of

the mono-X-allene (58) of Cs-symmetry. The symmetrical nature of the resulting simplified

mandala (69) is common to that of the simplified mandala (57), where 69 is also assembled to

generate four Cs-assemblies: A∗
1 = { f1, f2} = {58, 62}, A∗

2 = { f7, f4} = {63, 64}, A∗
3 = { f5, f6}

= {65, 66}, and A∗
4 = { f3, f8} = {67, 68}. This means that the number of fixed points (i.e., the

number of fixed assemblies) is calculated by eq. 24 for 58. On the same line, eq. 24 holds true

for anyone of the Cs-molecules collected in Fig. 12. It follows that the terms 8H3X (for 58),

8H2pp (for 59) and 8HXpp (for each of 60 and 61) are used to apply these results to chemical

combinatorics, where the coefficient 8 designates the number of fixed points (assemblies).
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Figure 12: Cs-Molecules with various molecular formulas. The symbols H and X represent

achiral proligands and the symbols p and p represent a pair of enantiomeric proligands.

To show that any segmentation does not influence the apparent symmetrical feature of man-

dalas in the simplified level, Fig. 14 shows a C′
2-segmentation, where the corresponding C′

2-

segmentation pattern is superposed onto each transformula shown in Fig. 9. Thereby, we obtain

the following Cs-assemblies: A∗
1 = { f1, f2} = {70, 71}, A∗

2 = { f7, f4} = {72, 73}, A∗
3 = { f5, f6}

= {74, 75}, and A∗
4 = { f3, f8} = {76, 77}. By comparing Fig. 14 with Fig. 9 (and Fig. 11), we

find that the C′
2-segmentation does not influence the apparent symmetrical feature of mandalas

in the simplified level (cf. 40, 57, and 78). In other words, the orbit of Cs-assemblies in 78, i.e.,

A∗ = {A∗
1,A∗

2,A∗
3,A∗

4}, remains undisturbed so that the total number of fixed points (assem-

blies) is calculated by means of eq. 24.

Chemically speaking, however, the C′
2-segmentation shown in Fig. 14 does not give concrete

molecules so long as the regular body (1) is selected. A chemically meaningful example of the

C′
2-segmentation has been once discussed by selecting adamantane-2,6-dione as another regular

body of D2d in Chapter 8 of Fujita’s book [4], although the concept of mandala was not been

involved. Eight hydrogen atoms in the four methylenes of adamantane-2,6-dione construct an

orbit governed by the RRR (C1\)D2d , where each of the four methylenes is regarded as a C′
2-

segment. The four-membered orbit of the four methylenes is governed by the RCR (C′
2\)D2d .

It is worthwhile again to compare the methodology described in Part 3 [3] with the present

one. By following the methodology of the USCI approach described in Part 3 [3], the four-

membered orbit A∗ (= {A∗
1,A∗

2,A∗
3,A∗

4}) in the simplified mandala (e.g., 40, 57, 69, or 78) is

characterized by an FPV = (4,0,0,0,2,0,0,0,0), which corresponds to the LCR D2d(/Cs). The

FPV allows us to classify enumerated stereoisomers into respective point-group symmetries.

Because the present methodology aims at obtaining the gross number of stereoisomers, the

number of fixed points (assemblies) is evaluated by operating all of the symmetry operations of

D2d so as to be equal to the order of the group D2d , i.e., |D2d| = 8.

3.2.2 Chiral Assemblage

Without Segmentation A mandala with chiral assemblage gives a different mode of fixation,

in which a pair of enantiomers participates. For example, Fig. 15 shows that eight transformulas

( f1– f8) at the vertices of a C′
2-assembled mandala (87) are assembled into four assemblies, i.e.,

B∗
1 = { f1, f4} = {79, 82}, B∗

2 = { f7, f6} = {81, 84}, B∗
3 = { f5, f8} = {83, 86}, and B∗

4 = { f2, f3}
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Figure 13: Reduced mandala for mono-X-allene of Cs-symmetry. The full expression of the

mandala is simplified into 69.

= {80, 81}. Although these four assemblies are equivalent on the action of D2d , they become

non-equivalent under D2 so as to be divided into two sets, {B∗
1, B∗

3} and {B∗
2, B∗

4}, which

indicate the appearance of a pair of enantiomers (79 and 80). According to this assemblage, the

subduction occurs spontaneously so that the eight positions of each regular body are partitioned

into four sets, i.e., {2,3}, {1,4}, {5,8}, and {6,7}, as found in 79. To show the effect of this

partition explicitly, solid circles are placed on the set of positions {2,3} in Fig. 15.

Even if all of the operations of D2d are applied to the assembled mandala (87), the C′
2-

assembly B∗
1 (or B∗

3) is fixed only under the action of the C′
2-subgroup. Thus, B∗

1 is fixed by I
and C2(1), giving |C′

2| (= 2) as the number of fixed points (assemblies). On the other hand, the

C′
2-assembly B∗

2 (or B∗
4) is fixed only under the action of the C′′

2-subgroup so that B∗
2 is fixed by I

and C2(2) (∈C′′
2), giving |C2|′′ (= 2) as the number of fixed points. Note that the C′′

2 is conjugate

to C′
2 under the group D2d . Because the orbit B∗ contains four (= |D2d|/|C′

2| = 8/2 = 4)

assemblies, the total number of fixed points (assemblies) is calculated as follows

|C′
2|×

|D2d|
|C′

2|
= |D2d| = 8. (26)

It should be noted that one half of the number of fixed points (assemblies) is concerned with

a chiral stereoisomer represented by B∗
1 (plus B∗

3), while the other half is concerned with its

enantiomer represented by B∗
2 (plus B∗

4).
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Figure 14: Cs-Assembled mandala with C′
2-segmentation and Cs-subduction. The full expres-

sion of the mandala is simplified into 78.

To generate C′
2-molecules, a selected set of achiral proligands (H and X) and a pair of enan-

tiomeric proligands (p and p) is placed on the eight positions in accord with the division of

the positions due to the subduction (Fig. 15). Because the four (C1\)C′
2-orbits are all hemi-

spheric, the corresponding sphericity index b2 permits H2, X2, or p2 (or p2) for each of the

(C1\)Cs-orbits. Thereby, the corresponding USCI-CF b4
2 indicates that several C′

2-molecule

can be generated as shown in Fig. 16, where an arbitrary enantiomer is depicted for each enan-

tiomeric pair.

Anyone of the C′
2-molecules can be used in place of the reference (79) so as to give the same

simplified mandala (87). Hence, the corresponding number of fixed points (assemblies) can be

evaluated in terms of the simplified mandala (87). In other words, the number is calculated

by eq. 26 for anyone of the C′
2-molecules collected in Fig. 16. The term 8H6X2 (for 88),

8× 1
2(H6p2 +H6p2) (for 92), and so on are used to apply this result to chemical combinatorics,

where the coefficient 8 designates the number of fixed points. Note that one half of the number

of fixed points for 92 is concerned with a chiral stereoisomer represented by H6p2 while the

other half is concerned with its enantiomer represented by H6p2. This means that fixed points

(assemblies) should be counted by using the term 1
2(H6p2 +H6p2) as a unit. Strictly speaking,
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Figure 15: C′
2-Assembled mandala. The eight transformulas ( f1– f8) at its vertices are assem-

bled into four assemblies, i.e., B∗
1 = { f1, f4}, B∗

2 = { f6, f7}, B∗
3 = { f5, f8}, and B∗

4 = { f2, f3}.

Solid circles are added to show the C′
2-symmetry explicitly. The full expression of the mandala

is simplified into 87.

even the term H6X2 for 88 and 89 should be regarded as 1
2(H6X2 +H6X2). Because of H = H

and X = X for atoms (or achiral ligands), the term 1
2(H6X2 +H6X2) is equal to H6X2.

The molecules (96, 97, 98, and 99) collected in the bottom row of Fig. 16 can be derived

from Fig. 15 by an alternative mode of placement. They are depicted in connection with the

corresponding diastereomeric molecules (92, 93, 94, and 95) shown in the middle row.

With Segmentation Suppose that the Cs-segmentation pattern (2) shown in Fig. 3 is super-

posed onto each subduced regular body shown in Fig. 16. Thereby, the C′
2-assembled mandala

(Fig. 16) is further modified by the Cs-segmentation to give another C′
2-assembled mandala

(108) as shown in Fig. 17.

The same mandala (108) can be generated alternatively, where the Cs-subduction pattern

is superposed onto each Cs-segmented regular body shown in Fig. 7. In spite of the different

orders of superposition, the resulting mandala 108 is symmetrically equivalent to the mandala

87 under D2d .

The Cs-segmentation does not influence the apparent symmetrical feature of mandalas in the

simplified level (i.e., 87 vs. 108). This means that the four C′
2-assemblies remain undisturbed in

108, i.e., B∗
1 = { f1, f4} = {100, 103}, B∗

2 = { f7, f6} = {102, 105}, B∗
3 = { f5, f8} = {104, 107},

and B∗
4 = { f2, f3} = {101, 106}, The total number of fixed points (assemblies) is calculated by
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Figure 16: C′
2-Molecules with various molecular formulas. The symbols H and X represent

achiral proligands and the symbols p and p represent a pair of enantiomeric proligands.

means of eq. 26.

As a result of the C′
2-assemblage (in 108), the orbit of Cs-segments A = {A1,A2,A3,A4}

in each transformula (e.g., 100) is divided into two two-membered orbits, i.e., {A1,A2} and

{A3,A4}. Note that the subduction pattern ties the two segments (A1 and A2) as well as

the other two segments (A3 and A4). Each of the two-membered orbit is hemispheric and

characterized by the sphericity index b2.

The sphericity index b2 permits H2, X2, p2 (p2), or q2 (q2) for each of the two-membered

orbits ({A1,A2} and {A3,A4}). It follows that several C′
2-molecules are generated, as shown

in Fig. 18. The molecules (110 and 111) collected in the bottom row of Fig. 18 can be derived

from 100 by the initial placement of p (or q) on A1 and A2. They are depicted in connection

with the corresponding diastereomeric molecules (112 and 113) in the middle row.

Anyone of the C′
2-molecules shown in Fig. 18 can be used in place of the reference (100)

so that the same simplified mandala (108) can be used to evaluate the corresponding number

of fixed points (assemblies). Hence, the number of fixed points (assemblies) is calculated by

eq. 26 for anyone of the C′
2-molecules collected in Fig. 18. The terms 8H2X2 (for 109), 8×

1
2(H2p2 +H2p2) (for 110 and 112), 8× 1

2(p2q2 +p2q2) (for 111 and 113) are used to apply these
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Figure 17: C′
2-assembled mandala with Cs-segmentation. The eight transformulas ( f1– f8) at its

vertices are assembled into four assemblies, i.e., B∗
1 = { f1, f4}, B∗

2 = { f6, f7}, B∗
3 = { f5, f8},

and B∗
4 = { f2, f3}. Solid circles are added to show the C′

2-symmetry explicitly. The full expres-

sion of the mandala is simplified into 108.

results to chemical combinatorics, where the coefficient 8 designates the number of fixed points

(assemblies).

Although Fig. 17 aims at exhibiting the effect of segmentation, the diagrams in Fig. 17 are

too complicated to understand the effect at a glance because they involve a subduction pattern

along with a segmentation pattern. Note that the effect of subduction can be fully expressed by

solid circles without such a subduction pattern. Hence, it is informative to compare Fig. 17 with

Fig. 15 after the subduction pattern for C′
2 is deleted.

By deleting the C′
2-subduction pattern, the reference transformula 79 shown in Fig. 15 is

converted into 114 as shown in Fig. 19, where the solid circles assure the C′
2-symmetry of

114. The resulting transformula 114 can be used as a reference in place of 79 so as to generate

another mandala which is characterized also by the simplified mandala 87 (Fig. 15). Then, the

solid circles of 114 are replaced by X and the open circles are replaced by H so as to generate

the C′
2-molecule (88) as one enantiomer.

On the other hand, the reference transformula 100 shown in Fig. 17 is converted into 115
shown in Fig. 19 by deleting the C′

2-subduction pattern. Even with the Cs-segmentation, the

solid circles also assure the C′
2-symmetry of 115. The resulting transformula 115 can be used as

a reference in place of 100 so as to generate another mandala which is characterized also by the

simplified mandala 108 (Fig. 17). The four segments (i.e., A1,A2,A3,A4, cf. 100), however,
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2-Molecules with various molecular formulas. The symbols H and X represent
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Figure 19: Relationship between C′
2-molecules based on different skeletons.

are not equivalent so as to be divided into two categories, i.e., {A1,A2} and {A3,A4}. Among

them, the two segments (A1 and A2) containing a solid circle in 115 are replaced by p and the

remaining two segments (A3 and A4) are replaced by H. Thereby, we obtain the C′
2-molecule

(110) as one enantiomer.

As shown in Fig. 19, 115 is alternatively obtained by the direct Cs-segmentation of 114. Lit-

erally speaking, the process of converting 114 into 115 cannot be realized by chemical reactions

so that this segmentation process tends to be regarded as having a mathematical or symmetrical

meaning only. However, there are many examples in which segmentation processes have chem-

ical meanings. For example, suppose that the proligands p in 110 are replaced by chiral ligands
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R-CXYZ and the scheme shown in Fig. 19 is redrawn in accord with this replacement. Then,

an example of more chemical meaning can be obtained (this problem is left as an exercise for

readers). Even if the scheme is regarded as mathematical, it is reasonable to say that the scheme

shown in Fig. 19 provides a succinct model in which organic chemists regard a set of atoms

(i.e., a segment in the present terminology) as a ligand.

3.3 Characterization of Mandalas
As discussed in detail in the preceding subsections (Subsections 3.2.1 and 3.2.2), a stereoiso-

mer of K-symmetry corresponds to a K-assembled mandala, in which each of the |G|/|K|
assemblies is fixed on the action of the operators of K or its conjugate subgroups. Because

the number of fixed points (assemblies) is equal to |K| for each of the |G|/|K| assemblies, the

total number of fixed points (assemblies) for the K-assembled mandala (and the stereoisomer

of K-symmetry) is calculated to be

|K|× |G|
|K| = |G|. (27)

This equation is a general expression of eq. 24 (for K = Cs) and eq. 26 (for K = C′
2) for

G = D2d . The results described for mandalas without assemblage (e.g., Figs. 5, 7, 8) represent

a special case in which K is equal to D2d for G = D2d .

Equation 27 holds true for any subgroup K, whether the K is achiral (cf. Subsection 3.2.1)

or chiral (cf. Subsection 3.2.2). This is summarized for further discussions as a theorem:

Theorem 1 (Number of Fixed Assemblies) Suppose that a given skeleton of G-symmetry has

|G|/|H| of H-segments which construct an orbit governed by the RCR (H\)G and that the

H-segments accommodate achiral or chiral proligands to give a stereoisomer of K-symmetry.

Then, the corresponding K-assembled mandala is generated so as to exhibit the following fea-

tures:

1. The action of all the operations of G on the |G|/|K| assemblies of the K-assembled man-

dala gives the number of fixed points (the number of fixed assemblies) to be equal to

|G|.
2. The H-segmentation does not disturb the number of fixed points (assemblies) calculated

above.

It should be noted that the group K and H may be any subgroups of G. This means that

Theorem 1 holds true for any molecular formula and any symmetry of the stereoisomer at issue.

Moreover, the |G|/|H|-membered set of H-segments can multiply participates in the process

of derivation of the stereoisomer (Theorem 1) where H runs over the non-redundant set of

subgroups of G. When the multiplicity is represented by αH, we can say generally that the

skeleton of Theorem 1 has orbits of segments governed by the sum of such RCRs as:

∑
H

αH(H\)G, (28)

where the summation is concerned with H, which moves over the non-redundant set of sub-

groups of G. Thus, the second proposition of Theorem 1 can be more generally regarded as

being based on eq. 28 in place of the simple H-segmentation.
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It should be added here that the first proposition of Theorem 1 describes the context which

is essentially equivalent to the proof of the Cauthy-Frobenius Lemma (so-called Burnside’s

Lemma, cf. Theorem 5.2 in Chapter 5 of Ref. [22] and Theorem 13.1 in Chapter 13 of Fujita’s

book [4]). A new matter of the present theorem is the discussions on the chirality/achirality of

(pro)ligands by using the concept of mandalas.

4 Combinatorial Enumeration

4.1 The Number of Fixed Assemblies per Stereoisomer
To generalize the discussions described in Section 3, suppose that a G-skeleton having r sub-

stitution positions accommodates r of achiral or chiral proligands, which are selected from the

following set:

X = {X1,X2, . . . ,Xt ;p1,p2, . . . ,pu;p1,p2, . . . ,pu}, (29)

where the symbols t and u represent non-negative integers (tu 	= 0); each Xi is achiral; and

a pair of pi and pi represents an enantiomeric pair. Note that the term proligands is used to

designate a hypothetical ligand which is structureless but has chirality/achirality in accord with

Fujita’s proligand method [15, 16, 17] and with Fujita’s USCI approach [4]. For the sake of

convenience, we will use the term “ligands” in place of the term “proligands” so long as this

usage would cause no confusion.

Suppose that a stereoisomer of K-symmetry is generated by the substitution of θ1 of X1,

θ2 of X2, . . . , θt of Xt ; θ′1 of p1, θ′2 of p2, . . . , θ′u of pu; and θ′′1 of p1, θ′′2 of p2, . . . , θ′′u of pu,

where the symbols, θi, θ′i, and θ′′i , represent non-negative integers which satisfy the following

partition:

[θ] : θ1 +θ2 + · · ·+θt +
θ′1 +θ′2 + · · ·+θ′u +
θ′′1 +θ′′2 + · · ·+θ′′u = r. (30)

Whether K is achiral or chiral, the molecular formula Wθ is represented by the following equa-

tion:

Wθ = X
θ1
1 X

θ2
2 · · ·Xθt

t p
θ′1
1 p

θ′2
2 · · ·pθ′u

u p
θ′′1
1 p

θ′′2
2 · · ·pθ′′u

u (31)

It should be noted that a chiral stereoisomer of K-symmetry corresponds to a mandala hav-

ing |G|/2|K| assemblies of one chirality and |G|/2|K| assemblies of the opposite chirality, as

shown in Subsection 3.2.2. Hence, a pair of such enantiomeric stereoisomers must be taken into

consideration so as to have the following molecular formula:

Wθ =
1

2

{
X

θ1
1 X

θ2
2 · · ·Xθt

t p
θ′1
1 p

θ′2
2 · · ·pθ′u

u p
θ′′1
1 p

θ′′2
2 · · ·pθ′′u

u +

X
θ1
1 X

θ2
2 · · ·Xθt

t p
θ′′1
1 p

θ′′2
2 · · ·pθ′′u

u p
θ′1
1 p

θ′2
2 · · ·pθ′u

u

}
. (32)

If we use eq. 32 as a molecular formula Wθ in place of eq. 31, two modes of partitions among

[θ] (eq. 30), i.e., [θ′1 · · · (for p), θ′′1 · · · (for p)] and [θ′′1 · · · (for p), θ′1 · · · (for p)], gives the same

molecular formula. This duplication should be omitted by modifying the partition [θ] (eq. 30).
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Obviously, we can derive a molecular formula for an achiral stereoisomer by placing θ′i = θ′′i
(i = 1,2, . . . ,u) in eq. 31 or eq. 32, i.e.,

Wθ = X
θ1
1 X

θ2
2 · · ·Xθt

t p
θ′1
1 p

θ′2
2 · · ·pθ′u

u p
θ′1
1 p

θ′2
2 · · ·pθ′u

u . (33)

Theorem 1 indicates that the stereoisomer of the molecular formula Wθ (eq. 31) is character-

ized by |G| (the number of fixed points), even when its symmetry K is anyone of the subgroups

of G.

The K-symmetry described in Theorem 1 moves over the subgroups of G so as to result

in the occurrence of one or more stereoisomers of various subsymmetries of G, even though a

given partition [θ] is tentatively fixed. Let the symbol Bθ denote the number of such stereoiso-

mers as assigned to the partition [θ] (eq. 30). Then, the generating function for Bθ is expressed

as follows:

∑
[θ]

BθWθ (34)

where the summation is concerned with all of the partitions ([θ]) shown in eq. 30 and the molec-

ular formula is represented by Wθ (eq. 31). Because each stereoisomer (or each pair of enan-

tiomers) appearing in eq. 34 has |G| fixed points as summarized in Theorem 1, the numbers

of fixed points (assemblies) appear as the coefficients of the terms in the following generating

function:

|G|∑
[θ]

BθWθ. (35)

4.2 Number of Fixed Assemblies per Permutation
4.2.1 Sphericities of Cycles

When |G|/|H| of H-segments in the skeleton of G-symmetry (Theorem 1) accommodate achiral

or chiral proligands according to the partition shown in eq. 30, two alternative viewpoints for

evaluating fixed points (assemblies) emerge:

1. The resulting stereoisomer is characterized by the molecular formula Wθ (eq. 31) and

the symmetry K. Each K-stereoisomer (i.e., each K-assembled mandala) is moved by

all of the operations of G so as to give |G| as the number of fixed points (assemblies),

regardless of the K. This procedure has provided us with a method for evaluating the

number of fixed points (assemblies) per stereoisomer, as described in the preceding sub-

sections (Subsections 3.2.1, 3.2.2, and 4.1). When the partition [θ] of Wθ runs to cover all

stereoisomers, the total numbers of fixed points (assemblies) are obtained (cf. eq. 35).

2. On the other hand, the permutation p[R]
g corresponding to each g(∈ G) fixes zero or more

K-assemblies of every K-assembled mandala, where the K runs over the subgroups of

G. This procedure gives a basis to a method for evaluating the number of fixed points

(assemblies) per permutation. When g runs over G, the total numbers of fixed points

(assemblies) are obtained alternatively.

In this subsection, the latter viewpoint shall be examined in detail. Let a permutation p[R]
g

(for g ∈ G) is selected from the permutations of the RCR (H\)G, which has been described in
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Theorem 1. Suppose that the permutation p[R]
g is represented by a cycle decomposition involving

the number νd(p[R]
g ) of d-cycles, where we place

r

∑
d=1

dνd(p[R]
g ) = r = |G|/|H|. (36)

Thus, the permutation p[R]
g possesses a cycle structure represented as follows:

1ν1(p[R]
g )2ν2(p[R]

g ) · · ·dνd(p[R]
g ) · · ·rνr(p[R]

g ). (37)

Let us consider the action of the permutation (eq. 37) on the H-segments (accommodating

the proligands) in the stereoisomer. The action of the d-cycle of the permutation (eq. 37) varies

in accord with the sphericity indices, which are originally determined on the sphericities of

the orbits (cf. eqs. 22 and 25). To clarify this action, the concept “sphericities of orbits” into

conceptually transformed into the concept “sphericities of cycles”. This has been accomplished

by using an intermediate concept “sphericities of the orbits of cyclic subgroups” in the original

formulation of the proligand method [15, 16, 17]. In this paper, a more intuitive treatment will

be developed as follows.

According to Fujita’s proligand method [15, 16, 17], each d-cycle contained in the permu-

tation p[R]
g is defined as follows:

1. Hemispheric cycle: When g is a proper rotation each d-cycle contained in the permuta-

tion p[R]
g (d is odd or even) is called a hemispheric cycle, to which a sphericity index ad

is assigned.

2. Homospheric cycle: When g is an improper rotation and the size d of a cycle contained

in the permutation p[R]
g is odd, the d-cycle is called a homospheric cycle, to which a

sphericity index ad is assigned.

3. Enantiospheric cycle: When g is an improper rotation and the size d of a cycle contained

in the permutation p[R]
g is even, the d-cycle is called an enantiospheric cycle, to which a

sphericity index cd is assigned.

4.2.2 Ligand Inventories of Three Kinds

The sphericities of cycles described above allow us to assign a product of sphericity indices to

each permutation p[R]
g in accord with eqs. 36 and 37, i.e.,

$
ν1(p[R]

g )
1 $

ν2(p[R]
g )

2 · · ·$νd(p[R]
g )

d · · ·$νr(p[R]
g )

r , (38)

where the symbol $d indicates bd for a hemispheric cycle, ad for a homospheric cycle, or cd for

an enantiospheric cycle.

1. When a hemispheric d-cycle (characterized by bd) acts on a set of d proligands, they

should be of the same kind so as to be transitive under the action. In addition, the proli-

gands can be achiral or chiral without any restriction, because the d-cycle is contained in

a proper rotation. In other word, any set of achiral proligands, Xd
1, Xd

2, · · ·, or Xd
t ; any set
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of chiral proligands, pd
1, pd

2, · · ·, or pd
u; or any set of enantiomeric proligands, pd

1, pd
2, · · ·,

or pd
u can be permuted by the hemispheric d-cycle. The action on each d-membered set

can be expressed by the following equation:

bd = Xd
1 +Xd

2 + · · ·+Xd
t +pd

1 +pd
2 + · · ·+pd

u +pd
1 +pd

2 + · · ·+pd
u, (39)

which is called a ligand inventory for the hemispheric cycle.

2. When a homospheric d-cycle (characterized by ad) acts on a set of d proligands, they

should be of the same kind so as to be transitive under the action. Because the d-cycle

is contained in an improper rotation, the total achirality should be maintained during

this action. If the proligands are chiral, the chirality of each of the proligands is altered

into the opposite one. To maintain the total achirality, the pairwise compensation of the

opposite chiralities should occur. However, such pairwise compensation is impossible

because d is odd. Hence, only a set of achiral proligands, Xd
1, Xd

2, · · ·, or Xd
t is permitted

by the homospheric d-cycle. The action on each d-membered set can be expressed by the

following equation:

ad = Xd
1 +Xd

2 + · · ·+Xd
t , (40)

which is called a ligand inventory for the homospheric cycle.

3. When an enantiospheric d-cycle (characterized by cd) acts on a set of d proligands, the ac-

tion should be concerned with a set of achiral ligands of the same kind or with a pairwise

set which contains d/2 of chiral ligands of the same kind and d/2 of their enantiomeric

ligands. It is easy to find that such a set of achiral ligands of the same kind is transitive

under the action. As a result, a set of achiral proligands, Xd
1, Xd

2, · · ·, or Xd
t is permitted so

as to maintain the total achirality, On the other hand, the pairwise set also maintains the

total achirality, even if the chirality of each of the proligands is altered into the opposite

one. Hence, a set of enantiomeric proligands, p
d/2
1 p

d/2
1 , p

d/2
2 p

d/2
2 , . . ., or p

d/2
u p

d/2
u can be

permuted by the enantiospheric d-cycle, where each set exhibits two modes of pairwise

packing. The action on each d-membered set can be expressed by the following equation:

cd = Xd
1 +Xd

2 + · · ·+Xd
t +2p

d/2
1 p

d/2
1 +2p

d/2
2 p

d/2
2 + · · ·+2p

d/2
u p

d/2
u , (41)

which is called a ligand inventory for the enantiospheric cycle.

The present ligand inventories are the same contents as defined otherwise in Fujita’s proligand

method [15, 16, 17].

4.2.3 Total Number of Fixed Assemblies

The inventory of each cycle described above is a generating function for giving the number

of fixed points (assemblies) as the coefficient of the term Wθ (i.e., 1×Xd etc.) if the cycle is

isolated. Because a set of relevant cycles is contained in the permutation p[R]
g shown in eq. 38,

the ligand inventories of three kinds should be introduced into every cycles contained in the

permutation (p[R]
g ). Thus, after the introduction of the ligand inventories (eqs. 39, 40, and 41)

into the product of sphericity indices (eq. 38), the resulting equation is expanded to produce a

generating function. Thereby, the numbers of fixed points (assemblies) on the action of each p[R]
g

are obtained as the coefficients of the terms Wθ (eq. 31) appearing in the generating function.

- 30 -



When g runs over G in the form of the right coset representation (H\)G (or more generally

eq. 28), the respective products (eq. 38) are summed up after the introduction of the ligand

inventories so as to give the generating function:

∑
g∈G

$
ν1(p[R]

g )
1 $

ν2(p[R]
g )

2 · · ·$νd(p[R]
g )

d · · ·$νr(p[R]
g )

r , (42)

where each sphericity index $d (ad , bd , or cd) is replaced by the ligand inventories shown in eq.

39, 40, or 41. The expansion of eq. 42 produces a generating function, in which the total number

of fixed assemblies for each molecular formula appears as the coefficient of the corresponding

term Wθ (eq. 31).

4.3 Fujita’s Proligand Method
4.3.1 Enumeration of Achiral plus Chiral Stereoisomers

The total number of fixed assemblies calculated from the numbers of fixed assemblies per
stereoisomer (eq. 35) is equal to the total number of fixed assemblies calculated from the num-

bers of fixed assemblies per permutation (eq. 42), because they are simply different in the orders

of summation. Hence, the equalization of eq. 35 with eq. 42 and the subsequent division by |G|
give the following generating function:

∑
[θ]

BθWθ =
1

|G| ∑
g∈G

$
ν1(p[R]

g )
1 $

ν2(p[R]
g )

2 · · ·$νd(p[R]
g )

d · · ·$νr(p[R]
g )

r , (43)

where the term Wθ is represented by eq. 31, the sum in the left-hand side is concerned with the

partition [θ] (eq. 30), and each sphericity index $d (= ad , bd , or cd) in the right-hand side is

replaced by the ligand inventories shown in eq. 39, 40, or 41.

The result shown in eq. 43 can be written in a more succinct manner by defining a cycle

index with chirality fittingness (CI-CF) as follows:

CI-CF(G,$d) =
1

|G| ∑
g∈G

$
ν1(p[R]

g )
1 $

ν2(p[R]
g )

2 · · ·$νd(p[R]
g )

d · · ·$νr(p[R]
g )

r (44)

which has the same form as the right-hand side of eq. 43 but has not been substituted by the

ligand inventories. For cases in which H of the (H\)G moves on the subgroups of G so as to

construct two or more orbits, the CI-CF (eq. 44) should be expressed on the basis of eq. 28.

The discussions described above are summarized as a theorem:

Theorem 2 (Enumeration of Achiral Plus Chiral Stereoisomers) Suppose that the positions

of a given skeleton of G-symmetry accommodate achiral and chiral proligands selected from X
(eq. 29), where each operation of G acting on the positions is represented by the cycle structure

shown in eq. 37 and the product of sphericity indices shown in eq. 38. Let Bθ be the number

of non-equivalent stereoisomers having the molecular formula Wθ (eq. 31), where the partition

[θ] is represented by eq. 30. The numbers Bθ appear as the coefficients in a generating function

represented as follows:

∑
[θ]

BθWθ = CI-CF(G,$d), (45)

where the sphericity indices $d (ad , bd , or cd) in the CI-CF (eq. 44) are replaced by the ligand

inventories shown in eqs. 39, 40, and 41.
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Table 1: Right Coset Representation (Cs\)D2d and Products of Sphericity Indices.a

symmetry RCR (Cs\)D2d product of product of

operation as product of cycles sphericity indices dummy variables

I ∼ (1)(2)(3)(4) b4
1 s4

1

C2(1) ∼ (1 2)(3 4) b2
2 s2

2

C2(2) ∼ (1 4)(2 3) b2
2 s2

2

C2(3) ∼ (1 3)(2 4) b2
2 s2

2

σd(1) ∼ (1)(2 4)(3) a2
1c2 s2

1s2

S4 ∼ (1 2 3 4) c4 s4

S3
4 ∼ (1 4 3 2) c4 s4

σd(2) ∼ (1 3)(2)(4) a2
1c2 s2

1s2

a Each cycle appearing in an improper rotation is designated by an overbar, which

represents the inversion of ligand chirality.

Although the product of sphericity indices (eq. 38) is concerned with the RCR (H\)G, it

is easy to obtain the product of sphericity indices for general cases, where the product (eq. 38)

corresponds to the sum of RCRs shown in eq. 28. Moreover, the set X (eq. 29) is allowed to be

different according to each of the RCRs (eq. 28). Thereby, Theorem 2 can be easily extended

to satisfy such general cases.

Example 1. Let us now examine stereoisomer enumeration based on an allene skeleton (cf.

Figs. 8 and 13) by means of Theorem 2. The four positions of the allene skeleton are governed

by the RCR (Cs\)D2d shown in eqs. 4–11. According to the cycle structure of each permutation,

the corresponding product of sphericity indices is calculated, as shown in Table 1. Hence, the

CI-CF for this case is obtained by means of eq. 44 as follows:

CI-CF(D2d,$d) =
1

8

(
b4

1 +3b2
2 +2a2

1c2 +2c2
2

)
. (46)

Obviously, eq. 46 is identical with eq. 75 of Part 3 [3], which has been alternatively obtained by

the CI (cycle-index) method of Fujita’s USCI approach.

Suppose that a set of four proligands selected from the set:

X = {H,X,p,p} (47)

is placed on the allene skeleton. In accord with the set X for this case, the partition [θ] (eq. 30)

is calculated to be

[θ] : h+ x+ p+ p = 4, (48)

where the letters in the right-hand side represent non-negative integers. The molecular formula

Wθ (eq. 31) is calculated as follows:

Wθ = HhXxpppp (49)

For chiral stereoisomers, a molecular formula Wθ due to eq. 32 should be used as follows:

Wθ =
1

2

(
HhXxpppp +HhXxpppp

)
. (50)
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According to Theorem 2, the ligand inventories (eqs. 39, 40, and 41) are obtained for this case

as follows:

bd = Hd +Xd +pd +pd (51)

ad = Hd +Xd (52)

cd = Hd +Xd +2pd/2pd/2. (53)

These inventories (eqs. 51–53) are introduced into the CI-CF (eq. 46) to give the following

generating function:

∑
[θ]

BθWθ = (H4 +X4)+(H3X+HX3)+2H2X2

+
1

2
(H3p+H3p)+

1

2
(X3p+X3p)

+3× 1

2
(H2Xp+H2Xp)+3× 1

2
(HX2p+HX2p)

+3× 1

2
(H2p2 +H2p2)+3× 1

2
(X2p2 +X2p2)+3× 1

2
(HXp2 +HXp2)

+(2H2pp+2X2pp)+4HXpp

+3× 1

2
(Hp2p+Hpp2)+3× 1

2
(Xp2p+Xpp2)

+
1

2
(Hp3 +Hp3)+

1

2
(Xp3 +Xp3)

+2p2p2 +
1

2
(p3p+pp3)+

1

2
(p4 +p4). (54)

The coefficient of each term (or each combined term) represents the total number of stereoiso-

mers with the corresponding weight (molecular formula). This generating function is identical

with eq. 76 of Part 3 [3], which has been alternatively obtained by the CI (cycle-index) method

of the diagrammatical version (Part 3) of Fujita’s USCI approach [4].

To verify the results shown in the generating function (eq. 54), let us examine the coefficient

4 of the term HXpp, which means the existence of four stereoisomers of the molecular formula

HXpp. Among them, two achiral stereoisomers have been already depicted in Fig. 12, i.e.,

60 and 61. In addition, there exist two pairs of enantiomers, i.e., 116/116 and 117/117, as

shown in Fig. 20. Thus, the existence of the two achiral stereoisomers and the two pairs of the

enantiomers is in agreement with the coefficient 4 of the term HXpp in the generating function

(eq. 54).

Strictly speaking, eq. 50 should be used to represent the molecular formula of the pair

116/116 (or 117/117). Because H (or X) is achiral, the H (or X) is identical with its hypothetical

enantiomeric form H (or X), i.e., H = H (or X = X). For the chiral ligands p and p, we can place

p = p. Hence, eq. 50 for this case is calculated as follows:

1

2

(
HXpp+HXpp

)
= HXpp, (55)

where the right-hand side apparently belongs to the form of eq. 49.

4.3.2 Enumeration of Achiral Stereoisomers

By means of Theorem 2, stereoisomer enumeration due to an achiral skeleton of G can be con-

ducted to count the number of achiral stereoisomers plus the number of pairs of enantiomers.
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Figure 20: Two achiral stereoisomers and two pairs of enantiomers which have the molecular

formula HXpp.

Let us now consider the maximum chiral subgroup G′ of the group G in accord with the treat-

ment described in Ref. [16]. Under the group G′, each chiral stereoisomer and its enantiomer

are counted separately as distinct two stereoisomers, where they are counted pairwise as one

stereoisomer under G as described above.

Let B′
θ be the number of stereoisomers where an achiral stereoisomer is counted once, while

a chiral stereoisomer and its enantiomer are counted separately. To evaluate B′
θ, the terms

corresponding to the subgroup G′ are selected from eq. 44 to give the following CI-CF:

CI-CF(G′,bd) =
1

|G′| ∑
g∈G′

bν1(p[R]
g )

1 bν2(p[R]
g )

2 · · ·bνd(p[R]
g )

d · · ·bνr(p[R]
g )

r , (56)

where only hemispheric indices remain and |G′|= |G|/2. Let us replace the CI-CF in eq. 44 by

the CI-CF in eq. 56 so as to give the following equation:

∑
[θ]

B′
θWθ = CI-CF(G′,bd). (57)

On the same line as Theorem 2, a generating function for calculating the number of stereoiso-

mers B′
θ is obtained by introducing the ligand inventory (shown in eq. 39) into the sphericity

index bd of eq. 57.

Let the symbols NA and NC represent generating functions for calculating the numbers of

achiral stereoisomers and the numbers of enantiomeric pairs of chiral stereoisomers. Then, the

left-hand side of eq. 57 means that

∑
[θ]

B′
θWθ = NA +2NC, (58)

while the left-hand side of eq. 45 means that

∑
[θ]

BθWθ = NA +NC. (59)
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Hence, NA and NC are calculated as follows:

NA = 2∑
[θ]

BθWθ −∑
[θ]

B′
θWθ = 2CI-CF(G,$d)−CI-CF(G′,bd) (60)

NC = ∑
[θ]

B′
θWθ −∑

[θ]
BθWθ = CI-CF(G′,bd)−CI-CF(G,$d), (61)

where eq. 45 and eq. 57 are used. The sphericity indices $d (i.e., ad , bd , or cd) in the CI-CFs

(eqs. 60 and 61) are replaced by the ligand inventories shown in eqs. 39, 40, and 41.

When the terms 2Bθ (cf. eqs. 43 and 44) and B′
θ (cf. eqs. 56 and 57) are concerned with

an enantiomeric pair of chiral stereoisomers characterized by the partition [θ], the term 2Bθ
corresponds to the term:

2Bθ × 1

2

{
[Xθ1

1 · · ·pθ′1
1 · · ·pθ′′1

1 · · ·]+ [Xθ1
1 · · ·pθ′′1

1 · · ·pθ′1
1 · · ·]

}
(62)

by means of eq. 32, while the term B′
θ corresponds to the term:

B′
θ ×

{
[Xθ1

1 · · ·pθ′1
1 · · ·pθ′′1

1 · · ·]+ [Xθ1
1 · · ·pθ′′1

1 · · ·pθ′1
1 · · ·]

}
, (63)

because two stereoisomers of the enantiomeric pair are counted separately under G′. They

are equal to each other so that we obtain 2BθWθ − B′
θWθ = 0 for each pair of enantiomeric

stereoisomers. This means that the remaining terms in the NA (eq. 60) are concerned with

improper rotations only. On condition that the molecular formulas Wθ for chiral stereoisomers

(in eqs. 60 and 61) are treated as above to adjust the summation in ∑[θ] BθWθ to be consistent

to the summation in ∑[θ] B′
θWθ, the coefficient 2Bθ −B′

θ (= Aθ) appears in eq. 60 for counting

achiral stereoisomers, while the coefficient B′
θ −Bθ (= Cθ) appears eq. 61.

As a result of the discussion in the preceding paragraph on the summations in eq. 60,

the right-hand side of eq. 60 can be transformed into a more concrete format. Because of

the relationship |G′| = |G|/2, the twice of the CI-CF(G,$d) (eq. 44) contains the whole of

CI-CF(G′,bd) (eq. 56) once so that all of the terms for proper rotations are deleted from the

twice of CI-CF(G,bd). By placing G = G−G′, we can define the CI-CFA as follows:

NA = CI-CFA(G,$d) =
1

|G| ∑
g∈G

$
ν1(p[R]

g )
1 $

ν2(p[R]
g )

2 · · ·$νd(p[R]
g )

d · · ·$νr(p[R]
g )

r , (64)

where the sphericity indices $d are ad or cd and all of the terms bearing bd disappear. Note that

the summation is concerned with improper rotations g ∈ G (= G−G′) and the divisor is equal

to |G| = |G|/2.

By employing eq. 64, the numbers of achiral stereoisomers Aθ are calculated according to

the following theorem:

Theorem 3 (Enumeration of Achiral Stereoisomers) Let the symbol Aθ be the number of

non-equivalent achiral stereoisomers having the molecular formula Wθ, where the same condi-

tions of Theorem 2 are postulated. Then, the numbers of non-equivalent achiral stereoisomers

Aθ appear as the coefficients in a generating function represented as follows:

∑
[θ]

AθWθ = CI-CFA(G,$d) (65)

where the sphericity indices $d (ad and cd) in the CI-CFA (eq. 64) are replaced by the ligand

inventories shown in eqs. 40 and 41.

- 35 -



Example 2. As a continuation of Example 1, let us obtain the numbers (Aθ) of achiral stereoiso-

mers among the total numbers of achiral plus chiral stereoisomers. The CI-CFA(D2d,$d) is

obtained by applying eq. 64 to this case:

CI-CFA(D2d,$d) =
1

4
(2a2

1c2 +2c4) =
1

2
a2

1c2 +
1

2
c4, (66)

where the products of sphericity indices for the improper rotations are collected from Table 1.

By following Theorem 2, the ligand inventories (eqs. 52 and 53) are introduced to eq. 66. The

resulting equation is expanded to give a generating function:

∑
[θ]

AθWθ = (H4 +X4)+(H3X+HX3)+H2X2

+(H2pp+X2pp)+2HXpp+p2p2 (67)

The coefficient 2 of the term HXpp in eq. 67 indicates the existence of two achiral stereoiso-

mers of the molecular formula HXpp. The two achiral stereoisomers have been already exam-

ined in Fig. 20, i.e., 60 and 61.

4.3.3 Enumeration of Chiral Stereoisomers

The term CI-CF(G,$d) is deleted from eq. 60 and eq. 61 to give

NA +2NC = CI-CFA(G′,bd), (68)

which is essentially equivalent to eq. 58. By introducing NA (eq. 64) into eq. 68, we can derive

the generating function NC for calculating the numbers of chiral stereoisomers (enantiomeric

pairs), i.e.,

NC =
1

2

(
CI-CF(G′,bd)−NA

)
=

1

2
CI-CF(G′,bd)− 1

2
CI-CFA(G,$d) (69)

By introducing eqs. 56 and 64 into eq. 69 (note that |G′| = |G| = |G|/2), we can define the

CI-CFC as follows:

NC = CI-CFC(G,$d)

=
1

|G|

⎧⎨
⎩ ∑

g∈G′
bν1(p[R]

g )
1 bν2(p[R]

g )
2 · · ·bνd(p[R]

g )
d · · ·bνr(p[R]

g )
r

− ∑
g∈G

$
ν1(p[R]

g )
1 $

ν2(p[R]
g )

2 · · ·$νd(p[R]
g )

d · · ·$νr(p[R]
g )

r

⎫⎬
⎭ , (70)

where the sphericity indices $d in the latter summation are ad or cd . It should be noted that

the first summation is concerned with proper rotations g ∈ G′; and that the second summation

is concerned with improper rotations g ∈ G (= G−G′). The comparison of the CI-CFC (eq.

70) with the CI-CF (eq. 44) reveals that the plus signs of the terms for the improper rotations

appearing in eq. 44 are simply changed into minus signs so as to generate eq. 70. By using eq.

70, the numbers of achiral stereoisomers Cθ are calculated according to the following theorem:
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Theorem 4 (Enumeration of Chiral Stereoisomers as Pairs of Enantiomers) Let the sym-

bol Cθ be the number of non-equivalent pairs of enantiomers having the molecular formula Wθ,

where the same conditions of Theorem 2 are postulated. The numbers of chiral stereoisomers

Cθ appear as the coefficients in a generating function represented as follows:

∑
[θ]

CθWθ = CI-CFC(G,$d) (71)

where the sphericity indices $d (bd , ad , or cd) in the CI-CFC (eq. 70) are replaced by the ligand

inventories shown in eqs. 39, 40 and 41.

Example 3. As a continuation of Examples 1 and 2, let us obtain the numbers (Cθ) of enan-

tiomeric pairs of chiral stereoisomers among the total numbers of achiral plus chiral stereoiso-

mers. The CI-CFC(D2d,$d) is obtained by applying eq. 70 to this case:

CI-CFC(D2d,$d) =
1

8

(
b4

1 +3b2
2 −2a2

1c2 −2c2
2

)
. (72)

where the plus sign of the term for each improper rotation in eq. 46 is changed into minus.

By following Theorem 4, the ligand inventories (eqs. 51–53) are introduced into eq. 72. The

resulting equation is expanded to give a generating function:

∑
[θ]

CθWθ = H2X2

+
1

2
(H3p+H3p)+

1

2
(X3p+X3p)

+3× 1

2
(H2Xp+H2Xp)+3× 1

2
(HX2p+HX2p)

+3× 1

2
(H2p2 +H2p2)+3× 1

2
(X2p2 +X2p2)+3× 1

2
(HXp2 +HXp2)

+(H2pp+X2pp)+2HXpp

+3× 1

2
(Hp2p+Hpp2)+3× 1

2
(Xp2p+Xpp2)

+
1

2
(Hp3 +Hp3)+

1

2
(Xp3 +Xp3)

+p2p2 +
1

2
(p3p+pp3)+

1

2
(p4 +p4). (73)

The coefficient 2 of the term HXpp in eq. 73 indicates that there exist two pairs of enantiomers

of the molecular formula HXpp. The two pairs of enantiomers have been already depicted in

Fig. 20, i.e., 116/116 and 117/117.

5 Comparison of Theorem 2 with Pólya’s Theorem

5.1 Deficiency of Pólya’s Theorem in Stereoisomer Enumeration
Pólya’s Theorem has presumed that objects placed on a skeleton are structureless [12], as dis-

cussed in Introduction. This presumption causes the deficiency of Pólya’s theorem in stereoiso-

mer enumeration, where pseudoasymmetric cases cannot be treated properly. This type of defi-

ciency shall be examined by using the same subject as discussed Examples 1 to 3.
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Example 4. A conventional way of stereoisomer enumeration according to Pólya’s Theorem

is based on the usage of the maximum chiral subgroup, as shown in several textbooks [23, 12].

By starting from the data shown in Table 1, we obtain Pólya’s cycle index as follows:

CI(D,sd) =
1

4

(
s4

1 +3s2
2

)
, (74)

which contains dummy variables in place of sphericity indices. The set X (eq. 47) and the

partition [θ] (eq. 48 are also used. However, eq. 50 for a pair of enantiomers is not used, and

the molecular formula Wθ (eq. 49) is used separately to characterize the two enantiomers of the

pair. As a result, the following ligand inventory of one kind is used:

sd = Hd +Xd +pd +pd. (75)

This inventory (eqs. 75) is introduced into the Pólya’s CI (eq. 74). The resulting equation is

expanded to give the following generating function:

fD2
= (H4 +X4)+(H3X+HX3)+3H2X2

+(H3p+H3p)+(X3p+X3p)
+(3H2Xp+3H2Xp)+(3HX2p+3HX2p)
+(3H2p2 +3H2p2)+(3X2p2 +3X2p2)+(3HXp2 +3HXp2)
+(3H2pp+3X2pp)+6HXpp

+(3Hp2p+3Hpp2)+(3Xp2p+3Xpp2)
+(Hp3 +Hp3)+(Xp3 +Xp3)
+3p2p2 +(p3p+pp3)+(p4 +p4). (76)

The coefficient 6 of the term HXpp in eq. 76 indicates that there exist six stereoisomers of

the molecular formula HXpp under the enumeration based on Pólya’s theorem. Thus, the six

stereoisomers listed in Fig. 20, i.e., 60, 61, 116, 116, 117, and 117, are counted separately

so that the achirality of 60 (or 61), the chirality of the remaining four stereoisomers, and the

enantiomeric relationship between 116 and 116 (or between 117 and 117) are disregarded thor-

oughly.

To characterize such achirality as disregarded in Example 4, the conventional way due to

Pólya’s Theorem uses the full operations of D2d , where objects placed on a skeleton are regarded

as being structureless. This methodology has been described in the textbook written by Pólya

et al. [12]. In the next example, let us demonstrate that the methodology is permitted only to

treat such structureless objects.

Example 5. By starting from the data shown in Table 1, the use of D2d gives Pólya’s cycle

index as follows:

CI(D2d,sd) =
1

8

(
s4

1 +3s2
2 +2s2

1s2 +2s2
2

)
. (77)

The inventory (eqs. 75) is introduced into the Pólya’s CI (eq. 77). The resulting equation is

expanded to give the following generating function:

fD2d
= (H4 +X4)+(H3X+HX3)+2H2X2

+(H3p+H3p)+(X3p+X3p)
+(2H2Xp+2H2Xp)+(2HX2p+2HX2p)
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+(2H2p2 +2H2p2)+(2X2p2 +2X2p2)+(2HXp2 +2HXp2)
+(2H2pp+2X2pp)+3HXpp

+(2Hp2p+2Hpp2)+(2Xp2p+2Xpp2)
+(Hp3 +Hp3)+(Xp3 +Xp3)
+2p2p2 +(p3p+pp3)+(p4 +p4). (78)

The coefficient 3 of the term HXpp in eq. 78 indicates that there exist three stereoisomers

of the molecular formula HXpp under the enumeration based on Pólya’s theorem. Thus, the

six stereoisomers listed in Fig. 20 are categorized into three pairs: a pair of 60/61, a pair of

116/116, and a pair of 117/117, each of which is counted once under the Pólya’s theorem using

D2d . Obviously, the two stereoisomers (60 and 61) of the first pair are diastereomeric, while the

two of the second or third pair are enantiomeric. It follows that the diastereomeric relationship

is not discriminated from the enantiomeric relationship. Moreover, the two stereoisomers (60
and 61) should be counted as distinct stereoisomers because they are diastereomeric from the

stereochemical point of view. Note that, if the proligand p and p in 60 and 61 are replaced

by achiral proligands Y and Z, the resulting stereoisomers of HXYZ are enantiomeric to each

other. Hence the diastereomeric pair can be regarded as a kind of pseudoasymmetric case.

The enumeration procedure due to Pólya’s theorem has failed in characterization of such a

pseudoasymmetry case.

5.2 Prismane Derivatives
In connection with the number of derivatives of benzene (C6H6), Pólya et al. have once enumer-

ated isomeric derivatives based on a prismane skeleton (C6H6) in Chapter 6 of their textbook

[12]. Because their purpose was to prove the hexagonal structure of the benzene nucleus, it was

natural to limit substituents to atoms (or achiral ligands). In fact, Pólya’s theorem worked well

under this limitation only, even though enumeration of stereoisomers was claimed to be fulfilled

without mentioning such limitation [24].

Stereochemistry, however, has taken account of chiral ligands as well as achiral ones (or

atoms) from its beginning by van’t Hoff [25, 26], where meso-compounds and pseudoasymme-

try in stereoisomerism have been concerned with the presence of chiral ligands in molecules. It

is permitted to say that chemical applications of Pólya’s theorem have still remained in the stage

before the beginning of stereochemistry, because there have been no attempts to apply Pólya’s

theorem to cases in which chiral ligands as well as achiral ones (or atoms) are considered as

substituents.

In this subsection, the same problem as discussed in the Pólya’s textbook [12] will be ex-

amined by means of Fujita’s proligand method described in the present paper. Then, the results

will be compared with those by Pólya et al. [12] in order to clarify merits of Fujita’s proligand

method.

5.2.1 Enumeration by Fujita’s Proligand Method

Let us apply Theorems 2 to 4 to stereoisomer enumeration based on a prismane skeleton (118).

Example 6. The six positions of a prismane skeleton (118) are sequentially numbered as shown

in Fig. 21. They construct a six-membered orbit governed by the RCR (Cs\)D3h, which can

be obtained algebraically or diagrammatically, as shown in Table 2. According to the cycle
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Figure 21: Prismane skeleton of D3h-symmetry.

Table 2: Right Coset Representation (Cs\)D3h and Products of Sphericity Indices.a

symmetry RCR (Cs\)D3h product of product of

operation as product of cycles sphericity indices dummy variables

I ∼ (1)(2)(3)(4)(5)(6) b6
1 s6

1

C3 ∼ (1 2 3)(4 5 6) b2
3 s2

3

C2
3 ∼ (1 3 2)(4 6 5) b2

3 s2
3

C2(1) ∼ (1 4)(2 6)(3 5) b3
2 s3

2

C2(2) ∼ (1 6)(2 5)(3 4) b3
2 s3

2

C2(3) ∼ (1 5)(2 4)(3 6) b3
2 s3

2

σd(1) ∼ (1)(2 3)(3)(4)(5 6) a2
1c2

2 s2
1s2

2

σd(2) ∼ (1 3)(2)(4 6)(5) a2
1c2

2 s2
1s2

2

σd(3) ∼ (1 2)(3)(4 5)(6) a2
1c2

2 s2
1s2

2

σh ∼ (1 4)(2 5)(3 6) c3
2 s3

2

S3 ∼ (1 5 3 4 2 6) c6 s6

S2
3 ∼ (1 6 2 4 3 5) c6 s6

a Each cycle appearing in an improper rotation is designated by an overbar, which

represents the inversion of ligand chirality.

structure of each permutation, the corresponding product of sphericity indices is calculated, as

shown in Table 2. Hence, the CI-CF for this case is obtained by means of eq. 44 as follows:

CI-CF(D3h,$d) =
1

12

(
b6

1 +2b2
3 +3b3

2 +3a2
1c2

2 + c3
2 +2c6

)
. (79)

A set of six proligands is selected from X shown in eq. 47 (Example 1). The partition [θ]
(eq. 30) for this case is calculated to be

[θ] : h+ x+ p+ p = 6, (80)

where the letters in the right-hand side represent non-negative integers. The molecular formula

Wθ (eq. 49 or eq. 50) calculated by eq. 31 or eq. 32 is used on condition that the partition [θ]
shown in eq. 80 is employed.
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As for the ligand inventories (eqs. 39, 40, and 41), the same ligand inventories as eqs. 51–

53 can be also used in this case. According to Theorem 2, the inventories (eqs. 51–53) are

introduced into the CI-CF (eq. 79) to give the following generating function:

∑
[θ]

BθWθ = (H6 +X6)+(H5X+HX5)+(3H4X2 +3H2X4)+3H3X3

+
1

2
(H5p+H5p)+

1

2
(X5p+X5p)

+5× 1

2
(H4Xp+H4Xp)+5× 1

2
(HX4p+HX4p)

+10× 1

2
(H3X2p+H3X2p)+10× 1

2
(H2X3p+H2X3p)

+4× 1

2
(H4p2 +H4p2)+4× 1

2
(X4p2 +X4p2)+

+10× 1

2
(H3Xp2 +H3Xp2)+10× 1

2
(HX3p2 +HX3p2)

+9× 1

2
(H2X2p2 +H2X2p2)

+(4H4pp+4X4pp)+(12H3Xpp+12HX3pp)+18H2X2pp

+4× 1

2
(H3p3 +H3p3)+4× 1

2
(X3p3 +X 3p3)

+10× 1

2
(H2Xp3 +H2Xp3)+10× 1

2
(HX2p3 +HX2p3)

+10× 1

2
(H3p2p+H3pp2)+10× 1

2
(X3p2p+X3pp2)

+30× 1

2
(H2Xp2p+H2Xpp2)+30× 1

2
(HX2p2p+HX2pp2)

+10× 1

2
(H2p3p+H2pp3)+10× 1

2
(X2p3p+X2pp3)+

+20× 1

2
(HXp3p+HXpp3)

+4× 1

2
(H2p4 +H2p4)+4× 1

2
(X2p4 +X2p4)

+5× 1

2
(HXp4 +HXp4)

+(11H2p2p2 +11X2p2p2)+17HXp2p2

+
1

2
(Hp5 +Hp5)+

1

2
(Xp5 +Xp5)

+5× 1

2
(Hp4p+Hpp4)+5× 1

2
(Xp4p+Xpp4)

+10× 1

2
(Hp3p2 +Hp2p3)+10× 1

2
(Xp3p2 +Xp2p3)

+
1

2
(p6 +p6)+

1

2
(p5p+pp5)+4× 1

2
(p4p2 +p2p4)+3p3p3. (81)

The coefficient of each term (or each combined term) represents the total number of stereoiso-

mers with the corresponding weight (molecular formula).

To apply eq. 64 to the enumeration of achiral prismane derivatives, we start from the data

for the improper rotations collected in Table 2. Thereby, the CI-CFA for this case is obtained as
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follows:

CI-CFA(D3h,$d) =
1

6

(
3a2

1c2
2 + c3

2 +2c6

)
. (82)

According to Theorem 3, the inventories (eqs. 51–53) are introduced into the CI-CFA (eq.

82) to give the following generating function:

∑
[θ]

AθWθ = (H6 +X6)+(H5X+HX5)+(2H4X2 +2H2X4)+2H3X3

+(3H4pp+3X4pp)+(4H3Xpp+4HX3pp)+6H2X2pp

+(4H2p2p2 +4X2p2p2)+4HXp2p2

+2p3p3. (83)

By starting from the data collected in Table 2, eq. 70 is applied to the enumeration of enan-

tiomeric pairs for chiral prismane derivatives. Thereby, the CI-CFC for this case is obtained as

follows:

CI-CFC(D3h,$d) =
1

12

(
b6

1 +2b2
3 +3b3

2 −3a2
1c2

2 − c3
2 −2c6

)
. (84)

where the plus sign of the term for each improper rotation in eq. 79 is changed into minus.

According to Theorem 4, the inventories (eqs. 51–53) are introduced into the CI-CFC (eq.

84) to give the following generating function:

∑
[θ]

CθWθ = (H4X2 +H2X4)+H3X3

+
1

2
(H5p+H5p)+

1

2
(X5p+X5p)

+5× 1

2
(H4Xp+H4Xp)+5× 1

2
(HX4p+HX4p)

+10× 1

2
(H3X2p+H3X2p)+10× 1

2
(H2X3p+H2X3p)

+4× 1

2
(H4p2 +H4p2)+4× 1

2
(X4p2 +X4p2)+

+10× 1

2
(H3Xp2 +H3Xp2)+10× 1

2
(HX3p2 +HX3p2)

+9× 1

2
(H2X2p2 +H2X2p2)

+(H4pp+X4pp)+(8H3Xpp+8HX3pp)+12H2X2pp

+4× 1

2
(H3p3 +H3p3)+4× 1

2
(X3p3 +X 3p3)

+10× 1

2
(H2Xp3 +H2Xp3)+10× 1

2
(HX2p3 +HX2p3)

+10× 1

2
(H3p2p+H3pp2)+10× 1

2
(X3p2p+X3pp2)

+30× 1

2
(H2Xp2p+H2Xpp2)+30× 1

2
(HX2p2p+HX2pp2)

+10× 1

2
(H2p3p+H2pp3)+10× 1

2
(X2p3p+X2pp3)+

+20× 1

2
(HXp3p+HXpp3)
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+4× 1

2
(H2p4 +H2p4)+4× 1

2
(X2p4 +X2p4)

+5× 1

2
(HXp4 +HXp4)

+(7H2p2p2 +7X2p2p2)+13HXp2p2

+
1

2
(Hp5 +Hp5)+

1

2
(Xp5 +Xp5)

+5× 1

2
(Hp4p+Hpp4)+5× 1

2
(Xp4p+Xpp4)

+10× 1

2
(Hp3p2 +Hp2p3)+10× 1

2
(Xp3p2 +Xp2p3)

+
1

2
(p6 +p6)+

1

2
(p5p+pp5)+4× 1

2
(p4p2 +p2p4)+p3p3. (85)

To testify the validity of the results shown in the generating functions (eqs. 81, 83, and

85), let us examine the coefficients of the term H4pp. The coefficient 4 of the term H4pp in

eq. 81 shows the existence of four stereoisomers, as shown in Fig. 22. Among them, three

stereoisomers, i.e., 119, 120, and 121, are achiral because of the coefficient 3 of the term H4pp

in eq. 83. The coefficient 1 of the term H4pp in eq. 85 indicates one pair of enantiomers, i.e.,

122/122.
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Figure 22: Three achiral stereoisomers and one pair of enantiomers which have the molecular

formula H2pp.

The relationship between 119 and 120 is similar to a pseudoasymmetric case based on a

tetrahedral skeleton (e.g., two achiral diastereomers of HXpp). On the other hand, the achirality

of 121 can be explained by regarding 121 as a kind of meso-compound.
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5.2.2 Enumeration by Pólya’s Theorem

The enumeration of prismane derivatives by Pólya et al. [12] employed Pólya’s theorem on

condition that substituents were implicitly limited to atoms (or achiral ligands). Let us here

examine whether Pólya’s theorem works well or not if chiral ligands are permitted along with

achiral ones (or atoms).

Example 7. The enumeration problem discussed in Example 6 is here solved by using Pólya’s

theorem. A Pólya’s CI for enumerating prismane derivatives is cited from Chapter 6 of the

Pólya’s textbook [12]:

CI(D3,sd) =
1

6

(
s6

1 +2s2
3 +3s3

2

)
, (86)

which is obtained by collecting the dummy variables for the proper rotations (D3) from the data

shown in Table 2. Because the inventory (eq. 75) can be also used in this case, it is introduced

into the CI (eq. 86) to give the following generating function:

fD3
= (H6 +X6)+(H5X+HX5)+(4H4X2 +4H2X4)+4H3X3

+(H5p+H5p)+(X5p+X5p)
+(5H4Xp+5H4Xp)+(5HX4p+5HX4p)
+(10H3X2p+10H3X2p)+(10H2X3p+10H2X3p)
+(4H4p2 +4H4p2)+(4X4p2 +4X4p2)+
+(10H3Xp2 +10H3Xp2)+(10HX3p2 +10HX3p2)
+(18H2X2p2 +18H2X2p2)
+(5H4pp+5X4pp)+(20H3Xpp+20HX3pp)+30H2X2pp

+(4H3p3 +4H3p3)+(4X3p3 +4X 3p3)
+(10H2Xp3 +10H2Xp3)+(10HX2p3 +10HX2p3)
+(10H3p2p+10H3pp2)+(10X3p2p+10X3pp2)
+(30H2Xp2p+30H2Xpp2)+(30HX2p2p+30HX2pp2)
+(10H2p3p+10H2pp3)+(10X2p3p+10X2pp3)+
+(20HXp3p+20HXpp3)
+(4H2p4 +4H2p4)+(4X2p4 +4X2p4)
+(5HXp4 +5HXp4)
+(18H2p2p2 +18X2p2p2)+30HXp2p2

+(Hp5 +Hp5)+(Xp5 +Xp5)
+(5Hp4p+5Hpp4)+(5Xp4p+5Xpp4)
+(10Hp3p2 +10Hp2p3)+(10Xp3p2 +10Xp2p3)
+(p6 +p6)+(p5p+pp5)+(4p4p2 +4p2p4)+4p3p3. (87)

The coefficient of each term (or each combined term) represents the total number of stereoiso-

mers with the corresponding weight (molecular formula).

Because this enumeration uses D3, each achiral stereoisomer is counted once and two enan-

tiomers of each enantiomeric pair are counted separately. For example, the coefficient 5 of the

term H2pp recognized that the five stereoisomers shown in Fig. 22 are counted separately. In

other words, the achiralities of 119, 120, and 121 are not discriminated from the chiralities of

122 and 122.
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Example 8. Another Pólya’s CI for enumerating prismane derivatives is cited from Chapter 6

of the Pólya’s textbook [12]:

CI(D3h,sd) =
1

12

(
s6

1 +2s2
3 +4s3

2 +3s2
1c2

2 +2s6

)
, (88)

which is obtained by collecting all of the dummy variables for D3h from the data shown in Table

2.

The inventory (eq. 75) is introduced into the CI (eq. 88) to give the following generating

function:

fD3h
= (H6 +X6)+(H5X+HX5)+(3H4X2 +3H2X4)+3H3X3

+(H5p+H5p)+(X5p+X5p)
+(3H4Xp+3H4Xp)+(3HX4p+3HX4p)
+(6H3X2p+6H3X2p)+(6H2X3p+6H2X3p)
+(3H4p2 +3H4p2)+(3X4p2 +3X4p2)+
+(6H3Xp2 +6H3Xp2)+(6HX3p2 +6HX3p2)
+(11H2X2p2 +11H2X2p2)
+(3H4pp+3X4pp)+(10H3Xpp+10HX3pp)+16H2X2pp

+(3H3p3 +3H3p3)+(3X3p3 +3X 3p3)
+(6H2Xp3 +6H2Xp3)+(6HX2p3 +6HX2p3)
+(6H3p2p+6H3pp2)+(6X3p2p+6X3pp2)
+(16H2Xp2p+16H2Xpp2)+(16HX2p2p+16HX2pp2)
+(6H2p3p+6H2pp3)+(6X2p3p+6X2pp3)+
+(10HXp3p+10HXpp3)
+(3H2p4 +3H2p4)+(3X2p4 +3X2p4)
+(4HXp4 +4HXp4)
+(11H2p2p2 +11X2p2p2)+16HXp2p2

+(Hp5 +Hp5)+(Xp5 +Xp5)
+(3Hp4p+3Hpp4)+(3Xp4p+3Xpp4)
+(6Hp3p2 +6Hp2p3)+(6Xp3p2 +6Xp2p3)
+(p6 +p6)+(p5p+pp5)+(3p4p2 +3p2p4)+3p3p3. (89)

Let us examine the coefficient 3 of the term H4pp in eq. 89. In the condition of this enu-

meration under D3h, the five stereoisomers shown in Fig. 22 are categorized into three types,

i.e., one pair of diastereomers 119/120, one achiral stereoisomer 121, and one pair of enan-

tiomers 122/122, which are distinctly counted to give 3 as the number of stereoisomers. This

means that the diastereomeric relationship (119/120) is not discriminated from the enantiomeric

relationship (122/122).

5.3 Pólya’s Theorem as a Special Case
As found easily, Pólya’s Theorem is a special case of Theorem 2, where the sphericity indices

ad , bd , and cd are not discriminated so as to coalesce into the dummy variable sd of one kind.

- 45 -



For example, the Pólya’s CI shown in eq. 77 can be derived from the CI-CF shown in eq. 46 and

the Pólya’s CI shown in eq. 88 can be derived from eq. 79. Obviously, such Pólya’s CIs lose the

information on sphericities, which is carried by the corresponding CI-CFs.

Examples 4, 5, 7, and 8 have exhibited the scope and limitations of Pólya’s theorem, which

can be generalized as guiding principles for the usage of Pólya’s theorem in stereoisomer enu-

meration. In order to obtain results consistent to stereochemistry, Pólya’s theorem should be

used under either one of the following conditions:

1. If both chiral ligands and achiral ligands are taken into consideration in stereoisomer

enumeration based on a given skeleton of G-symmetry, a maximum chiral group of the

G should be used in Pólya’s theorem, even though the skeleton of G-symmetry is achiral.

For example, the CIs shown in eq. 74 for allene derivatives and in eq. 86 for prismane

derivatives should be used in place of eq. 77 and eq. 88. It should be noted however

that the enumeration results disregard the chirality/achirality of each derivative and any

enantiomeric relationships.

2. If the achiral group G of the given skeleton is adopted in Pólya’s theorem, only achiral

ligands (or atoms) should be taken into consideration. When the CIs shown in eq. 77 for

allene derivatives and in eq. 88 for prismane derivatives are adopted, for example, only

achiral ligands (or atoms) should be adopted as substituents. Otherwise, pseudoasymme-

try cannot be treated properly, as exemplified in Examples 5 and 8.

These two restrictive conditions have never been pointed out, because stereochemical effects

of inner structure (i.e., the chirality/achirality of ligands) have not been fully comprehended in

chemical combinatorics based on Pólya’s theorem. In fact, the conventional way for enumerat-

ing stereoisomers by Pólya’s theorem (e.g., [12]) has implicitly adopted a narrower condition

that substituents are limited to atoms (or achiral ligands) even whether the group G to be se-

lected is regarded as being achiral or chiral.

5.4 Merits of Fujita’s Proligand Method
Fujita’s proligand method formulated newly by Theorem 2 has a merit of getting rid of the

restrictive conditions due to Pólya’s theorem. The stereochemical effects of inner structure

(i.e., the chirality/achirality of ligands) are introduced into chemical combinatorics in terms of

the sphericities of cycles. Thereby, enumeration results consistent to stereochemistry can be

obtained even when both chiral ligands and achiral ligands are taken into consideration.

Moreover, Theorem 3 allows us to enumerate achiral stereoisomers; and Theorem 4 provides

us with a tool for giving the number of enantiomeric pairs of chiral stereoisomers. As found in

Examples 1–3, enumerated stereoisomers are categorized in terms of chirality/achirality, where

pairs of enantiomers are recognized clearly. By combining results obtained by Theorems 2–3,

troublesome situations due to meso-compounds and pseudoasymmetry can be solved succinctly.

Stereochemically speaking, Pólya’s theorem may claim its validity and versatility by adopt-

ing the restrictive conditions described in Subsection 5.3. However, Pólya’s corona [5, 6] as an

extension of Pólya’s theorem cannot remain within the restrictive conditions, because Pólya’s

corona inevitably treats inner structure in a nested fashion. In fact, Pólya’s corona is inca-

pable of treating cases in which chiral ligands appear as inner structure in a nested fashion, as

pointed out recently [16]. Such problems as rejecting solution by Pólya’s corona can be solved
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by Fujita’s proligand method, which has been provided in terms of the original formulation

[15, 16, 17] as well as the present alternative formulation based on the concept of mandalas.

It should be emphasized that the concept of mandalas provides us with diagrammatical tools

for realizing systematic approaches to Fujita’s USCI approach (Parts 1 to 3) as well as to Fujita’s

proligand method (the present Part 4).

6 Conclusions
The concept of mandalas proposed in Part 2 of this series [2] has been used to give an alternative

formulation of Fujita’s proligand method, which was originally formulated by using the sym-

metrical properties of cyclic subgroups [15, 16, 17]. Thus, right and left coset decompositions

have been formulated to give reference numbering and its inverse to the vertices of a regular

body of G-symmetry (Part 1). After discussions on segmentation and subduction of regular

bodies, the concept of mandalas proposed in Part 2 has been developed in terms of achiral as-

semblage and chiral assemblage, where a set of assemblies of K-symmetry is governed by the

left coset representation G(/K). Each K-assembled mandala has been clarified to correspond to

one stereoisomer of K-symmetry, i.e., an achiral molecule or a pair of enantiomers. The num-

ber of fixed assemblies per stereoisomer and the number of fixed assemblies per permutation

have been compared to formulate Fujita’s proligand method in an alternative way other than

original formulation reported elsewhere [15, 16, 17]. Thereby, the number of achiral plus chiral

stereoisomers, that of achiral stereoisomers, and that of chiral stereoisomers can be obtained

distinctly. Deficiency of Pólya’s theorem in stereoisomer enumeration and merits of Fujita’s

proligand method have been demonstrated by using allenes and prismanes as examples.
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[5] Pólya, G. (1937) Acta Math. 68, 145–254.
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