Some Graphs with Minimum Hosoya Index and Maximum Merrifield-Simmons Index

Xiang-Feng Pana*, Jun-Ming Xub, Chao Yangb, Min-Jie Zhoub

aSchool of Mathematics and Computation Science, Anhui University, Hefei 230039, China
bDepartment of Mathematics, University of Science and Technology of China, Hefei 230026, China

(Received March 29, 2006)

Abstract

The Hosoya index of a graph is defined as the total number of the matchings of the graph and the Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph. In this paper, we obtain the graphs with minimum Hosoya index among the trees with \(n \) vertices and diameter \(d \). The extremal graphs is the same as ones given by X. Li \textit{et al} with maximum Merrifield-Simmons index among such a class of graphs. Also, we give the graphs with both minimum Hosoya index and maximum Merrifield-Simmons index among the trees with \(n \) vertices and \(r \) pendant vertices.

1 Introduction and Results

It is well known that a topological index is a map from the set of chemical compounds represented by molecular graphs to the set of real numbers. There are more than hundred topological indices available in the literature [1]. Many topological indices are closely correlated with some physico-chemical characteristics of the underlying compounds [2]. The Hosoya index is one of the topological indices. It was introduced by Hosoya in 1971 [3] and

*Partially supported by the Innovation Group Foundation of Anhui University; E-mail: xfpan@ustc.edu
was applied to correlations with boiling points, entropies, calculated bond orders, as well as for coding of chemical structures (see [4,5]). Since 1971, many authors have investigated the Hosoya index and many results are obtained (see [5-13]). Similar to the Hosoya index, the Merrifield and Simmons index is also a topological index whose correlation with the boiling points is shown in [4]. Its mathematical properties were studied in some details [2,13–26]. In particular, Li, Zhao and Gutman [2] gave the graphs with maximum Merrifield-Simmons index among the trees with order \(n \) and diameter \(d \).

Recently, finding the graphs with both minimum Hosoya index and maximum Merrifield-Simmons index attracted the attention of a few researchers and some results are achieved. Among these results, Gutman [27] pointed out the linear hexagonal chain is the unique hexagonal chain with minimum Hosoya index and maximum Merrifield-Simmons index among all the hexagonal chains with \(n \) hexagons. Zhang [13] noticed that the graph with minimum Hosoya index is also the graph with maximum Merrifield-Simmons index in some classes of graphs, such as hexagonal chains and catacondensed systems. Yu and Tian [28] characterized the graphs with minimum Hosoya index and maximum Merrifield-Simmons index among the connected graphs with the given cyclomatic number and edge-independence number.

In this paper, we give two classes of graphs, i.e. trees of \(n \) vertices with diameter \(d \) and trees of \(n \) vertices with \(r \) pendant vertices, in each of which the graph with minimum Hosoya index is also the graph with maximum Merrifield-Simmons index.

All graphs considered here are finite and simple. Undefined terminology and notation may refer to [29]. Let \(G = (V, E) \) be a graph of \(n \) vertices. Two edges of \(G \) are said to be independent if they are not adjacent in \(G \). A \(k \)-matching of \(G \) is a set of \(k \) mutually independent edges. Denote by \(z(G, k) \) the number of the \(k \)-matchings of \(G \). For convenience, let \(z(G, 0) = 1 \) for any graph \(G \). Hosoya index of \(G \), denoted by \(z(G) \), is defined as

\[
z(G) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} z(G, k).
\]

Obviously, \(z(G) \) is equal to the total number of the matchings of the graph \(G \). Similarly, two vertices of \(G \) are said to be independent if they are not adjacent in \(G \). A \(k \)-independent set of \(G \) is a set of \(k \) mutually independent vertices. Denote by \(\sigma(G, k) \) the number of the \(k \)-independent sets of \(G \). For convenience, let \(\sigma(G, 0) = 1 \) for any graph \(G \). Merrifield-Simmons index of \(G \), denoted by \(\sigma(G) \), is defined as

\[
\sigma(G) = \sum_{k=0}^{n} \sigma(G, k).
\]

So \(\sigma(G) \) is equal to the total number of the independent sets of the graph \(G \).
Denoted by $n(G)$ and $D(G)$ the total number of vertices in G and the diameter of G, respectively. For a vertex v of G, we denote the degree of v by $d(v)$, and define $N_v = \{ v \} \cup \{ u|uv \in E(G) \}$. Let $V' \subset V$, we will use $G - V'$ to denote the graph obtained from G by deleting the vertices in V' together with their incident edges. If $V' = \{ v \}$, we write $G - v$ for $G - \{ v \}$. A pendant vertex is a vertex of degree 1 and a pendant edge is an edge incident to a pendant vertex. Denoted by $PV(G)$ the total number of pendant vertices in G. Let $T_{n,d} = \{ T: T$ is a tree with n vertices and diameter $d \}$ and $T^n_{r} = \{ T: T$ is a tree with n vertices and r pendant vertices $\}$. Let $S_{p,q}$ (See Fig 1.) denote the tree obtained from stars S_{p+1} and S_q by identifying a pendant vertex of S_{p+1} with the center of S_q. Let $P_{n-d,d}$ (see Fig. 1) denote the tree created from path P_d by adding $n - d$ pendant edges to an end vertex of P_d.

Our main results are stated in the following three theorems.

Theorem 1. If $T \in T_{n,d}$, then

$$z(T) \geq (n - d + 1)F_{d-1} + F_{d-2}$$

and the equality holds if and only if $T \cong P_{n-d,d}$.

Theorem 2. If $T \in T^n_{r}$, then

$$z(T) \geq rF_{n-r} + F_{n-r-1}$$

and the equality holds if and only if $T \cong P_{r-1,n-r+1}$.

Theorem 3. If $T \in T^n_{r}$, then

$$\sigma(T) \leq 2^{r-1}F_{n-r+1} + F_{n-r}$$

and the equality holds if and only if $T \cong P_{r-1,n-r+1}$.

Here, F_n is the n-th Fibonacci number which satisfies $F_n = F_{n-1} + F_{n-2}$ with initial conditions $F_0 = 1$ and $F_1 = 1$.

The proofs of the above theorems are given in section 2.
2 Proofs

We only give the proof of Theorem 2. Proofs of Theorems 1 and 3 are similar to that of Theorem 2, so we omitted them here. We use some techniques in [2]. First we give some lemmas.

Lemma 1 [10]. Let \(v \) be a vertex of \(G \). Then

(i) \(z(G) = z(G - v) + \sum_u z(G - \{u, v\}) \), where the summation extends over all vertices adjacent to \(v \).

(ii) \(\sigma(G) = \sigma(G - v) + \sigma(G - N_v) \).

Lemma 2 [10]. If \(G_1, G_2, \ldots, G_t \) are the components of a graph \(G \), then

(i) \(z(G) = \prod_{i=1}^t z(G_i) \).

(ii) \(\sigma(G) = \prod_{i=1}^t \sigma(G_i) \).

Proof of Theorem 2. It is not difficult to check that \(z(P_{r-1,n-r+1}) = rF_{n-r} + F_{n-r-1} \) by Lemma 1 and \(z(P_n) = F_n \). Now we prove if \(T \in \mathcal{T}_r^n \), then \(z(T) \geq rF_{n-r} + F_{n-r-1} \) with equality only if \(T \cong P_{r-1,n-r+1} \).

Since \(T \in \mathcal{T}_r^n \), we have that \(PV(T) = r \) and \(n \geq r + 1 \). We prove the theorem by double induction on \(r \) and \(n \).

If \(r = 2 \), then \(T \cong P_n \cong P_{1,n-1} \) and the theorem holds obviously for \(r = 2 \).

If \(T \) is a tree with \(PV(T) = r \) and \(n(T) = r + 1 \), then \(T \cong S_{r+1} \cong P_{n-1,2} \) and hence there is nothing to prove. If \(T \) is a tree with \(PV(T) = r \) and \(n(T) = r + 2 \), then \(T \cong S_{p,q} \) with \(p + q = r + 2 \), and \(z(S_{p,q}) = pq + 1 \geq 2r + 1 \) with equality only if \(T \cong P_{r-1,3} \). Thus the theorem holds for \(PV(T) = r \) and \(n(T) = r + 2 \).

In the following, we assume \(r \geq 3 \) and \(n \geq r + 3 \). Suppose that the theorem holds for \(PV(T) \leq r - 1 \) and \(n(T) \geq r + 1 \), and for \(PV(T) = r \) and \(r + 2 \leq n(T) \leq n - 1 \). When \(PV(T) = r \) and \(n(T) = n \), we distinguish the following two cases.

Case 1. There is at least one maximal path \(u_1 u_2 u_3 \ldots u_d u_{d+1} \) in \(T \), such that \(d(u_2) = 2 \) or \(d(u_d) = 2 \). Without loss of generality, assume \(d(u_2) = 2 \). From Lemma 1, we have

\[
z(T) = z(T - u_1) + z(T - \{u_1, u_2\}).
\]

(1)

Now, \(n(T - u_1) = n - 1 \) and \(n(T - \{u_1, u_2\}) = n - 2 \). In addition, \(PV(T - u_1) = r \) and
\[r - 1 \leq PV(T - \{u_1, u_2\}) \leq r. \]

By the induction hypothesis, we have
\[z(T - u_1) \geq z(P_{r-1,n-r}) = rF_{n-r-1} + F_{n-r-2} \] (2)
with equality only if \(T - u_1 \cong P_{r-1,n-r} \).

If \(T - \{u_1, u_2\} \in \mathcal{T}_{r-1}^{n-2} \), by the induction hypothesis and \(n \geq r + 3 \), we have
\[z(T - \{u_1, u_2\}) \geq z(P_{r-2,n-r}) = (r - 1)F_{n-r-1} + F_{n-r-2} \]
\[> rF_{n-r-2} + F_{n-r-3} = z(P_{r-1,n-r-1}). \] (3)

If \(T - \{u_1, u_2\} \in \mathcal{T}_r^{n-2} \), by the induction hypothesis, we have
\[z(T - \{u_1, u_2\}) \geq z(P_{r-1,n-r-1}) = rF_{n-r-2} + F_{n-r-3}. \] (4)

Hence, by (1)~(4), we have
\[
z(T) = z(T - u_1) + z(T - \{u_1, u_2\}) \]
\[\geq z(P_{r-1,n-r}) + z(P_{r-1,n-r-1}) \]
\[= rF_{n-r-1} + F_{n-r-2} + rF_{n-r-2} + F_{n-r-3} \]
\[= rF_{n-r} + F_{n-r-1} \]
with equality only if \(T \cong P_{r-1,n-r+1} \).

Case 2. \(d(u_2) \geq 3 \) and \(d(u_d) \geq 3 \) for each longest path \(u_1u_2u_3 \ldots u_d u_{d+1} \) in \(T \). Suppose that \(d(u_2) = t + 1 \geq 3 \). From Lemma 1, we have
\[z(T) = z(T - u_1) + z(T - \{u_1, u_2\}). \] (5)

Now, \(T - u_1 \) is an \((n - 1)\)-vertex tree with \(r - 1 \) pendant vertices. Then, by the induction hypothesis,
\[z(T - u_1) \geq z(P_{r-2,n-r+1}) = (r - 1)F_{n-r} + F_{n-r-1} \] (6)
with equality only if \(T - u_1 \cong P_{r-2,n-r+1} \). On the other hand, there is a tree \(H \) such that \(T - \{u_1, u_2\} = (t - 1)K_1 \cup H \) (otherwise, we can obtain a contradiction to that \(u_1u_2u_3 \ldots u_d u_{d+1} \) is a longest path in \(T \)). Obviously, \(2 \leq t \leq r - 2 \), \(n(H) = n - t - 1 < n \) and \(r - t \leq PV(H) \leq r - t + 1 \).
If $PV(H) = r - t$, by the induction hypothesis, $t \leq r - 2$ and $n \geq r + 3$, then
\[
 z(H) \geq z(P_{r-t-1,n-r}) = (r-t)F_{n-r-1} + F_{n-r-2} \\
> (r-t+1)F_{n-r-2} + F_{n-r-3}.
\] (7)

If $PV(H) = r - t + 1$, by the induction hypothesis, then
\[
 z(H) \geq z(P_{r-t,n-r-1}) = (r-t+1)F_{n-r-2} + F_{n-r-3}
\] (8)
with equality only if $H \cong P_{r-t,n-r-1}$.

By (5)~(8), Lemma 2, $t \leq r - 2$ and $n \geq r + 3$, we have
\[
z(T) = z(T - u_1) + z(T - \{u_1, u_2\}) \\
= z(T - u_1) + z(H) \\
\geq (r-1)F_{n-r} + F_{n-r-1} + (r-t+1)F_{n-r-2} + F_{n-r-3} \\
\geq (r-1)F_{n-r} + F_{n-r-1} + 3F_{n-r-2} + F_{n-r-3} \\
= (r+1)F_{n-r} \\
> rF_{n-r} + F_{n-r-1}.
\]

This completes the proof of Theorem 2.

3 Conclusion

By Theorem 1 in this paper and Theorem 1 in [2], $P_{n-d,d}$ has both minimum Hosoya index and maximum Merrifield-Simmons index among the trees of n vertices and diameter d. Similarly, by Theorems 2 and 3, $P_{r-1,n-r+1}$ has the two extremal indices just mentioned among the trees of n vertices with r pendant vertices.

Acknowledgements. The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

