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Abstract

 The energy of a graph G is the sum of the absolute values of its eigenvalues. 
Two non-isomorphic graphs of same order are said to be equienergetic if their 
energies are equal. In this paper we construct pairs of connected, noncospectral, 
equienergetic graphs of order n for all n  9.

Introduction:

 Let G be a simple undirected graph on n vertices and m edges. The 

characteristic polynomial of the adjacency matrix of G is the characteristic 

polynomial of G, denoted by (G : ). The roots of the equation (G : ) = 0, 

denoted by 1, 2, … , n are said to be eigenvalues of G and their collection is the 

spectrum of G [6]. Two non-isomorphic graphs are said to be cospectral if they have 

same spectra. 
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 The energy of a graph G is defined as 

E(G) = 
n

i
i

1
.

It was introduced by I. Gutman long time ago [9]. In chemistry the energy of a graph 

is intensively studied since it can be used to approximate the total -electron energy 

of a molecule [5, 9, 10, 14]. For recent mathematical and chemical work on the 

energy of a graph, see [1 – 4, 7, 8, 10 – 13, 15 – 28, 30 – 38]. 

 Two non-isomorphic graphs G1 and G2 of same order are said to be 

equienergetic if E(G1) = E(G2). Certainly, cospectral graphs are equienergetic. Such 

case is of no interest. Recently classes of non-cospectral equienergetic graphs were 

designed. R. Balakrishnan [1] proved that for any positive integer n  3, there exists 

non-cospectral, equienergetic graphs of order 4n. H. S. Ramane et al. [26, 27] 

proved that if G is regular graph of order n and of degree r  3 then E(L2(G)) = 2nr(r

– 2) and E( )(2 GL ) = (nr – 4)(2r – 3) – 2, where L2(G) is the second line graph of G

and G is the complement of G. Thus they constructed large families of non-

cospectral, equienergetic graphs of order nr(r – 1)/2. Pairs of equienergetic chemical 

trees were first time designed by V. Brankov, D. Stevanovic, I. Gutman [3]. For 

other results on equienergetic graphs see [21, 28, 30]. In the following we construct 

pairs of connected, non-cospectral, equienergetic graphs for all n  9. 

Energy of complete product of regular graphs: 

Definition [6]: The complete product G1 G2 of two graphs G1 and G2 is the graph 

obtained by joining every vertex of G1 with every vertex of G2.

G1: G2:                          G1 G2:

Fig. 1 
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Lemma 1: If Gi is a regular graph of degree ri with ni vertices, i = 1, 2 then

E(G1 G2) = E(G1) + E(G2) + )(4)( 2121
2

21 rrnnrr  – (r1 + r2).

Proof: If Gi is a regular graph of degree ri with ni vertices, i = 1, 2 then [6] 

(G1 G2 : ) = ]))([(
))((

):():(
2121

21

21 nnrr
rr

GG ,

  which gives

            (  – r1)(  – r2) (G1 G2 : ) = (G1 : ) (G2 : )[(  – r1)(  – r2) – n1n2].

Let P1 = (  – r1)(  – r2) (G1 G2 : )

 and P2 = (G1 : ) (G2 : )[(  – r1)(  – r2) – n1n2].

 The roots of P1 = 0 are r1, r2 and the eigenvalues of G1 G2. Therefore the 

sum of the absolute values of the roots of P1 = 0 is

E(G1 G2) + r1 + r2.                                                                (1) 

 The roots of P2 = 0 are the eigenvalues of G1 and G2 and

2
)(4)( 2121

2
2121 rrnnrrrr

.

 Therefore the sum of the absolute values of the roots of P2 = 0 is

E(G1) + E(G2) + 
2

)(4)( 2121
2

2121 rrnnrrrr

                                    +
2

)(4)( 2121
2

2121 rrnnrrrr

             = E(G1) + E(G2) + )(4)( 2121
2

21 rrnnrr .                                          (2) 

Since P1 = P2, equating (1) and (2) we get 

     E(G1 G2) = E(G1) + E(G2) + )(4)( 2121
2

21 rrnnrr  – (r1 + r2).

Corollary 2: If G1, G2, … , Gk, k  3 be the equienergetic regular graphs of same 

order and of same degree then E(Ga Gb) = E(Gc Gd) for all 1  a, b, c, d  k.
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Constructing equienergetic graphs:

 Consider the graphs H1 and H2 as shown in Fig. 2. 

H1: H2:

Fig. 2 

The characteristic polynomials of H1 and H2 are 

(H1 : ) = (  – 3) 4(  + 3) and (H2 : ) = (  – 3)(  – 1) 2(  + 2)2.

Let G1 = L(H1) and G2 = L(H2) (See Fig. 3). 

G1: G2:

Fig. 3 

According to the theorem by H. Sachs [6, 29], the characteristic polynomial of 

regular graph G and its line graph L(G) are related as 

(L(G) : ) = (  + 2)n(r – 2)/2 (G :  – r + 2) 

where n is the order and r is the degree of G. Using this result we get characteristic 

polynomials of G1 and G2 as 

(G1 : ) = 9 – 18 7 – 12 6 + 81 5 – 156 4 + 600 3 + 144  – 64

                              = (  – 4)(  – 1)4(  + 2)4.                                                            (3) 
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          and (G2 : ) = 9 – 18 7 – 16 6 + 81 5 + 96 4 – 112 3 – 144 2 + 48  + 64 

                                    = (  – 4)(  – 2)(  – 1)2(  + 1)2(  + 2)3.                                (4) 

Theorem 3: There exists a pair of connected non-cospectral, equienergetic graphs 

with n vertices for all n 9.

Proof: Consider the graphs G1 and G2 as shown in Fig. 3. Both G1 and G2 are 

connected regular graphs on nine vertices and of degree four. From equations (3) 

and (4), E(G1) = E(G2) = 16. A complete graph Kp is regular graph on p vertices and 

of degree p – 1. 

Knowing (Kp : ) = (  – p + 1)(  + 1)p – 1, E(Kp) = 2(p – 1). 

From Lemma 1, we have 

E(G1 Kp) = E(G2 Kp) = 16 + 2(p – 1)+ ))1(49(4)14( 2 ppp  – (4 + p –1) 

                                       = 11 + p + )45(4)3( 2 pp .

 Thus G1 Kp and G2 Kp are equienergetic. By equations (3) and (4) G1 and 

G2 are non-cospectral, so G1 Kp and G2 Kp. Further G1 Kp and G2 Kp are 

connected and possess equal number of vertices n = 9 + p, p = 0, 1, 2, …

Conclusion: Corollary 2 and Theorem 3 shows that there exist pairs of connected, 

non-cospectral, equienergetic graphs with n vertices for all n  9. Further this 

method leads to construction of pairs of connected, nonregular, non-cospectral, 

equienergetic graphs of order n for n  10. 

Acknowledgement: Authors are thankful to Dr. Ivan Gutman for encouraging to 

write this paper and also to referee for suggestions. 
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