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Abstract

The energy E(G) of a graph G is defined as the sum of the absolute values of

eigenvalues of G and the Hosoya index of a graph G is defined as the number of

matchings of G. Let Tn,p be the set of trees of order n ≥ p + 1 ≥ 3 with at most

p pendent vertices. We characterize the tree with the minimal energy or Hosoya

index in Tn,p.

1 Introduction

Let T be a tree with the vertex set V (T ) = {1, 2, · · · , n}. The adjacency matrix of T ,

denoted by A(T ), is the square matrix A(T ) = (aij) of order n, where aij = 1 if i and j are

adjacent and 0 otherwise. The characteristic polynomial of T , denoted here by φ(T, x), is
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defined as φ(T, x) = det(xI − A(T )), where I is the identity matrix of order n. It is well

known [3] that if T is a tree with n vertices then

φ(T, x) =

�n
2
�∑

k=0

(−1)km(T, k)xn−2k, (1)

where m(T, k) equals the number of matchings with k edges in T , and �n
2
� denotes the

largest integer not greater than n
2
.

Gutman [4, 6] defined the energy of a graph G with n vertices, denoted by E(G), as

E(G) =

�n
2
�∑

i=1

|λi(G)|,

where λi(G) are the eigenvalues of the adjacency matrix of G, and λ1(G) ≥ λ2(G) ≥ . . . ≥
λn(G). The Hosoya index of a graph G with n vertices, denoted by Z(G), is defined as

Z(G) =

�n
2
�∑

r=0

m(G, r),

where m(G, r) denotes the number of matchings with r edges in G.

Historically chemists used the model in which the experimental heats of formation of

conjugated hydrocarbons are closely related to the total π−electron energy. Today such

a model is over simplistic, but nevertheless HMO has some value as it points to that part

of the experimental heats of formation of conjugated hydrocarbons that can be viewed

as due to molecular connectivity (molecular topology). The calculation of the total π-

electron energy in a conjugated hydrocarbon can be reduced (within the framework of

the HMO approximation [7]) to E(G) of the corresponding graph G.

For a tree T with n vertices, this energy is also expressible in terms of the Coulson

integral [7] as

E(T ) =
2

π

∫ +∞

0

x−2 ln[1 +

�n
2
�∑

k=1

m(T, k)x2k]dx. (2)

The fact that E(T ) is a strictly monotonously increasing function of all matching

numbers m(T, k), k = 0, 1, 2, · · · , �n
2
�, provides us a way of comparing the energies of a

pair of trees. Gutman [5] introduced a quasi-ordering relation “�” (i.e. reflexive and

transitive relation) on the set of all forests (acyclic graphs) with n vertices: if T1 and T2

are two forests with n vertices and with characteristic polynomials in the form (1), then

T1 � T2 ⇔ m(T1, k) ≥ m(T2, k) for all k = 0, 1, · · · , �n

2
�.
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Fig. 1 The trees X9, Y9, Z9 and W9.

If T1 � T2 and there exists a j such that m(T1, j) > m(T2, j) then we write T1 � T2.

Hence, by (2), we have

T1 � T2 =⇒ E(T1) ≥ E(T2), (3)

T1 � T2 =⇒ E(T1) > E(T2). (4)

This increasing property of E has been successfully applied in the study of the extremal

values of energy over a significant class of graphs (see [8-25]). In [6], Gutman determined

the tree with the maximal energy, namely, the path. Furthermore, he proved that

E(Xn) < E(Yn) < E(Zn) < E(Wn) < E(T ) (5)

for any tree T 	= Xn, Yn, Zn,Wn with n vertices, where Xn is the star K1,n−1, Yn is

the graph obtained by attaching a pendent edge to a pendent vertex of K1,n−2, Zn by

attaching two pendent edges to a pendent vertex of K1,n−3, Wn by attaching a P3 (here

Pm denotes the path with m vertices) to a pendent vertex of K1,n−3. Fig.1 shows the trees

X9, Y9, Z9 and W9. On the other hand, Zhang et al [22] characterized the trees with a

perfect matching having the minimal and the second minimal energies (which solved two

conjectures proposed by Gutman [5], that is, they proved that E(T ) > E(Bn) > E(Fn)

for any tree T 	= Fn, Bn with n vertices having a perfect matching, where Fn is the tree

with n vertices obtained by adding a pendent edge to each vertex of the star K1, n
2
−1, and

Bn is the tree obtained from Fn−2 by attaching a P2 to the 2-degree vertex of a pendent

edge. Fig.2(a) and (b) show the two trees Fn and Bn. Some of recent results on the

energy can be found in [2, 13, 15, 16, 18, 19, 20, 21, 25].

In order to formulate our results, we need to introduce some notation as follows.

Suppose n and p are two positive integers and n ≥ p + 1 ≥ 3. Let Tn,p be the set of trees

with n vertices and with at most p pendent vertices. Define the tree Tn,p (n > p ≥ 2)

with n vertices as follows:
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Fig.2 (a) The tree Fn; (b) the tree Bn; (c) the broom Tn,p.

Tn,p is obtained from the path Pn−p+1 with n−p+1 vertices by attaching p−1 pendent

edges to an end vertex of Pn−p+1. Tn,p is called a broom (see Brualdi et al [1]). Fig.2(c)

shows the broom Tn,p. Obviously, Tn,p is a tree with n vertices and with exactly p pendent

vertices.

In this paper, we prove the following

Theorem 1.1 Let n and p be two positive integers, n ≥ p + 1 ≥ 3, and let T be a

tree with n vertices and with at most p pendent vertices. Then

E(T ) ≥ E(Tn,p)

with equality if and only if T is the broom Tn,p.

Corollary 1.2 Let n and p be two positive integers, n ≥ p + 1 ≥ 3, and let T be a

tree with n vertices and with at most p pendent vertices. Then

Z(T ) ≥ Z(Tn,p)

with equality if and only if T is the broom Tn,p, where Z(T ) denotes the Hosoya index of

T.

2. Proofs of the main results

Given a graph G and an edge st, we denote by G − st (resp. G − s) the graph obtained

from G by deleting the edge st (resp. the vertex s and the edges adjacent to it).

Lemma 2.1 [21] Let T and T ′ be two trees of order n. Suppose that uv (resp. u′v′)

is a pendent edge of T (resp. T ′) and u (resp. u′) is a pendent vertex of T (resp. T ′). Let

T1 = T − u, T2 = T − u − v, T ′
1 = T ′ − u′ and T ′

2 = T ′ − u′ − v′. If T1 � T ′
1 and T2 � T ′

2;

or T1 � T ′
1 and T2 � T ′

2, then T � T ′.
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The following lemma is obvious but useful.

Lemma 2.2 Let T be an acyclic graph with n vertices (n > 1) and T ′ a spanning

subgraph (resp. a proper spanning subgraph) of T . Then T � T ′ (resp. T � T ′).

Now we are in the position to prove the main results.

Proof of Theorem 1.1 If n = p + 1, then Tn,p = K1,n−1. By Gutman [6], then

T � K1,n−1 with equality if and only if T = Tn,p = K1,n−1.

If n = p + 2, then Tn,p = Yn, where Yn is the tree with n vertices obtained from a star

K1,n−2 by attaching one pendent edge to one of pendent vertices of K1,n−2. Since T is a

tree with p + 2 vertices and with at most p pendent vertices, we have T 	= K1,n−1. By

Gutman [6], then T � Tn,p with equality if and only if T = Tn,p = Yn.

Hence in the following we may assume that n ≥ p + 3. We prove the theorem by

induction on n. By (3) and (4), it suffices to prove that T � Tn,p for any tree T (T 	= Tn,p)

with n vertices and with at most p pendent vertices.

Suppose the diameter of T is d. Note that n ≥ p+3. Hence d ≥ 3. Let v0−v1−. . .−vd

be a path in T . Then both v0 and vd are pendent vertices in T . We consider the following

two cases:

Case (i) The degree of v1 in T equals two, i.e., dT (v1) = 2.

Then T − v0 is a tree with n − 1 vertices and with at most p pendent vertices. By

Lemma 2.1, we only need to prove the following:⎧⎨
⎩ T − v0 � Tn−1,p

T − v0 − v1 � Tn−2,p

, or

⎧⎨
⎩ T − v0 � Tn−1,p

T − v0 − v1 � Tn−2,p

.

Note that both T −v0 and Tn−1,p are trees with n−1 vertices and with at most p pendent

vertices, and both T − v0 − v1 and Tn−2,p are trees with n − 2 vertices and with at most

p pendent vertices. By induction, we have the following:

T − v0 � Tn−1,p, T − v0 − v1 � Tn−2,p. (6)

Subcase 1 T − v0 = Tn−1,p.
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Fig. 3 The tree T .

Since T 	= Tn,p, T has the form of the tree illustrated in Fig. 3. Hence T − v0 − v1 =

Tn−2,p−1. By induction, we have

T − v0 − v1 = Tn−2,p−1 � Tn−2,p.

Hence we have T − v0 = Tn−1,p and T − v0 − v1 � Tn−2,p, which implies that T � Tn,p.

Subcase 2 T − v0 	= Tn−1,p.

By induction, we have the following:

T − v0 � Tn−1,p.

By (6) we have T � Tn,p.

By Subcases 1 and 2, we have proved that if dT (v1) = 2 then T � Tn,p.

Case (ii) The degree of v1 in T is more than two, i.e., dT (v1) > 2.

Suppose dT (v1) = t ≥ 3. Since v0 − v1 − . . . − vd is one of the longest paths in T ,

T − v1 has a unique component T0 with at least two vertices. Hence T has the form of

the tree showed in Fig. 4. Obviously, T0 is a tree with n − t vertices and the number of

pendent vertices of T0 is no more than p − (t − 1) + 1 = p − t + 2 (otherwise, T has a

path of length more than d, a contradiction). Particularly, t ≤ p, since if t > p then T

has at least t (> p) pendent vertices, a contradiction. Furthermore, t 	= p (since if t = p

then T = Tn,p, a contradiction with T 	= Tn,p). By Lemma 2.1, we only need to prove the

following: ⎧⎨
⎩ T − v0 � Tn−1,p−1

T − v0 − v1 � (p − 2)P1 ∪ Pn−p

, or

⎧⎨
⎩ T − v0 � Tn−1,p−1

T − v0 − v1 � (p − 2)P1 ∪ Pn−p

.
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Fig. 4 The tree T .

Note that both T − v0 and Tn−1,p−1 are trees with n − 1 vertices and with at most p − 1

pendent vertices, and T0 is a tree with n − t vertices and with at most p − t + 2 pendent

vertices. By induction, we have T − v0 � Tn−1,p and T0 � Tn−t,p−t+2. Again note that

(p − t)P1 ∪ Pn−p is a proper subgraph of Tn−t,p−t+2. Hence, by Lemma 2.2. we have

Tn−t,p−t+2 � (p − t)P1 ∪ Pn−p. Thus, we have

(t− 2)P1 ∪ T0 � (t− 2)P1 ∪ Tn−t,p−t+2 � (t− 2)P1 ∪ (p− t)P1 ∪ Pn−p = (p− 2)P1 ∪ Pn−p,

that is,

T − v0 − v1 = (p − 2)P1 ∪ T0 � (p − 2)P1 ∪ Pn−p.

Hence we have proved that if dT (v1) > 2 then T � Tn,p.

The theorem follows immediately from Cases (i) and (ii). �

Proof of Corollary 1.2 Note that, for any tree T with n vertices, the Hosoya index

Z(T ) =
�n

2
�∑

i=0

m(T, i). Hence, if T1 and T2 are two trees with n vertices such that T1 � T2

then Z(T1) > Z(T2). It is obvious that the corollary follows from Theorem 1.1. �
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