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Abstract: Using elementary results from the statistics literature, the exact distributions are
derived for the experimental signal–to–noise ratio (SNR) and its variants. These distributions
together with well established computer programs can be used to derive various properties (e.g.
critical values) of quotients of experimental SNRs.

1 Introduction

The experimental signal–to–noise ratio (SNR) and its variants play a pivotal role in analytical
chemistry and related areas. Often, in the chemistry literature, tables of critical values of quotients
of experimental SNRs are obtained by Monte Carlo simulation, see e.g. Voigtman (1997). We feel
that this is unnecessary because, as explained below, a better treatment could be provided by what
is known in the statistics literature.

2 Exact Distributions of SNRs

Suppose x1, x2, . . . , xN is a random sample from a Gaussian population with mean μ and standard
deviation σ. The true SNR is μ/σ and the experimental SNR is defined as

SNR =
x̄

s
(1)

(see equation (1) in Voigtman (1997)), where x̄ is the sample mean defined by

x̄ =
x1 + x2 + · · · + xN

N
(2)

and s is the sample standard deviation defined by

s =

√√√√√√
N∑

i=1

(xi − x̄)2

N − 1
. (3)
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Consider also the following variations of (1):

SNR
′

=
x̄

s
′ (4)

and

SNRe =
x̄

se
(5)

as well as the relative standard deviation defined by

RSD =
s

x̄
, (6)

where s
′
= s

√
(N − 1)/N and se = s/

√
N . Finally, consider the quotients of SNRs defined by

R =
x̄2/s2

x̄1/s1
, (7)

Re = R
√

ν2 + 1
ν1 + 1

(8)

and

Rr =
1
R

(9)

(see equations (13)–(15) in Voigtman (1997)), where (x̄1, x̄2) are the sample means and (s1, s2) are
the sample standard deviations for two independent random samples of size (ν1 + 1, ν2 + 1) from
a Gaussian population with mean μ and standard deviation σ.

The probability distributions of the quantities defined in (1)–(9) can be determined by elemen-
tary results in mathematical statistics. Using the sampling theory for the Gaussian distribution,
one can determine that x̄ has the Gaussian distribution with mean μ and standard deviation σ/

√
N

independently of s. We write

x̄ ∼ N

(
μ,

σ√
N

)
, (10)

where “∼” has the meaning “has the same distribution as.” Using the fact that

N∑
i=1

(xi − x̄)2 ∼ σ2χ2
N−1,

where χ2
ν denotes the well–known chi–square distribution with degrees of freedom ν, one see that

s ∼
√

σ2χ2
N−1

N − 1

∼ σχN−1√
N − 1

, (11)

s
′ ∼

√
N − 1s√

N

∼ σχN−1√
N

, (12)
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and

se ∼ s√
N

∼ σχN−1√
N(N − 1)

. (13)

The exact distributions of the SNRs given by (1) and (4)–(6) can be determined by using the
definition of the non–central t distribution. If X is a Gaussian random variable with mean δ and
unit standard deviation and Y ∼ χ2

ν is independent of X then

T =
X√
Y/ν

∼ tν,δ (14)

is said to have the well–known non–central t distribution with degrees of freedom ν and non–
centrality parameter δ. The probability density function (pdf) of T is given by

fT (t) =
exp

(−δ2/2
)
Γ ((1 + ν)/2)√

πνΓ (ν/2)

(
ν

ν + t2

)(1+ν)/2 ∞∑
j=0

Γ ((1 + ν + j)/2)
j!Γ ((1 + ν)/2)

(
tδ
√

2√
ν + t2

)j

(15)

for t > 0 (see Johnson et al. (1995)). Using (10)–(13) and (14), one can determine that

SNR ∼
N

(
μ, σ/

√
N

)
(σ/

√
N − 1)χN−1

∼
(σ/

√
N)N

(
(
√

N/σ)μ, 1
)

(σ/
√

N − 1)χN−1

∼ 1√
N

N
(
(
√

N/σ)μ, 1
)

(1/
√

N − 1)χN−1

∼ 1√
N

tN−1,
√

Nμ/σ, (16)

SNR
′ ∼

N
(
μ, σ/

√
N

)
(σ/

√
N)χN−1

∼
(σ/

√
N)N

(
(
√

N/σ)μ, 1
)

(σ/
√

N)χN−1

∼ 1√
N − 1

N
(
(
√

N/σ)μ, 1
)

(1/
√

N − 1)χN−1

∼ 1√
N − 1

tN−1,
√

Nμ/σ, (17)

SNRe ∼
N

(
μ, σ/

√
N

)
(σ/

√
N(N − 1))χN−1
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∼
(σ/

√
N)N

(
(
√

N/σ)μ, 1
)

(σ/
√

N(N − 1))χN−1

∼
N

(
(
√

N/σ)μ, 1
)

(1/
√

N − 1)χN−1

∼ tN−1,
√

Nμ/σ, (18)

and

1/RSD ∼ 1√
N

tN−1,
√

Nμ/σ. (19)

The corresponding pdfs can be expressed in the form of fT (·) given by (15). The pdfs of SNR, SNR
′
,

SNRe and RSD are
√

NfT (
√

Nt),
√

N − 1fT (
√

N − 1t), fT (t) and (
√

N/t2)fT (
√

N/t), respectively,
with ν = N − 1 and δ =

√
Nμ/σ.
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Figure 1. Histograms of simulated data on SNR, SNR
′
, SNRe and RSD superimposed with the

exact pdfs given by (16)–(19). We have chosen μ = 1, σ = 1 and N = 100.

We now provide a graphical illustration of the exactness of the results in (16)–(19). We simulated
100 samples of x1, x2, . . . , xN each with μ = 1, σ = 1 and N = 100. For each sample, we computed
x̄ and s and hence SNR, SNR

′
, SNRe and RSD. So, we end up with 100 values of SNR, 100 values of

SNR
′
, 100 values of SNRe and 100 values of RSD. Then, we compared the histograms of these 100

values with the corresponding exact pdfs, i.e. compare the histogram for SNR with
√

NfT (
√

Nt),
the histogram for SNR

′
with

√
N − 1fT (

√
N − 1t), the histogram for SNRe with fT (t) and the

histogram for RSD with (
√

N/t2)fT (
√

N/t). The results are shown in Figure 1. Clearly, the non–
central t distribution describes the data remarkably well. The non–central t distribution arises also
in other areas of chemistry. See Malcolm (1984) and Li et al. (2001).

Finally, consider the quotients of SNRs defined by (7)–(9). It follows immediately from (16)–(19)
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that

R ∼
√

ν1 + 1
ν2 + 1

tν2,
√

ν2+1μ/σ

tν1,
√

ν1+1μ/σ

,

Re ∼ tν2,
√

ν2+1μ/σ

tν1,
√

ν1+1μ/σ

,

and

1/Rr ∼
√

ν1 + 1
ν2 + 1

tν2,
√

ν2+1μ/σ

tν1,
√

ν1+1μ/σ

.

The corresponding pdfs require the study of the ratio of non–central t random variables. Suppose
X ∼ ta1,δ1 and Y ∼ ta2,δ2 are independent non–central t random variables and let Z = X/Y . Using
(15), the pdf of Z can be written as

fZ(z) =
∫ ∞

0
tfX(t)fY (zt)dt

=
a

a1/2
1 a

a2/2
2 exp

(−δ2
1/2 − δ2

2/2
)

πΓ (a1/2) Γ (a2/2)

×
∫ ∞

0

∞∑
j=0

∞∑
k=0

Γ ((1 + a1 + j)/2) Γ ((1 + a2 + k)/2)
(
δ1

√
2
)j (

δ2

√
2
)k

tj+k+1

j!k!
(
a1 + t2

)j+(a1+1)/2 (
a2 + z2t2

)k+(a2+1)/2
dt

=
a

a1/2
1 a

a2/2
2 exp

(−δ2
1/2 − δ2

2/2
)

πΓ (a1/2) Γ (a2/2)

×
∞∑

j=0

∞∑
k=0

Γ ((1 + a1 + j)/2) Γ ((1 + a2 + k)/2)
(
δ1

√
2
)j (

δ2

√
2
)k

j!k!

×
∫ ∞

0

tj+k+1(
a1 + t2

)j+(a1+1)/2 (
a2 + z2t2

)k+(a2+1)/2
dt

=
a

a1/2
1 a

a2/2
2 exp

(−δ2
1/2 − δ2

2/2
)

2πΓ (a1/2) Γ (a2/2)

×
∞∑

j=0

∞∑
k=0

Γ ((1 + a1 + j)/2) Γ ((1 + a2 + k)/2)
(
δ1

√
2
)j (

δ2

√
2
)k

j!k!

×
∫ ∞

0

w(j+k)/2

(a1 + w)j+(a1+1)/2 (
a2 + z2w

)k+(a2+1)/2
dw

=
a

a1/2
1 a

a2/2
2 exp

(−δ2
1/2 − δ2

2/2
)

2πΓ (a1/2) Γ (a2/2)

×
∞∑

j=0

∞∑
k=0

Γ ((1 + a1 + j)/2) Γ ((1 + a2 + k)/2)
(
δ1

√
2
)j (

δ2

√
2
)k

j!k!
I(j, k). (20)

By equation (2.2.6.24) in Prudnikov et al. (1986), the integral I(j, k) can be calculated as

I(j, k) = a
(1−j+k−a1)/2
1 a

−k−(a2+1)/2
2 B

(
1 +

j + k

2
,
j + k + a1 + a2

2

)
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× 2F1

(
1 +

j + k

2
, k +

a2 + 1
2

; j + k + 1 +
a1 + a2

2
; 1 − a1z

2

a2

)
,

where

B(a, b) =
∫ 1

0
wa−1(1 − w)b−1dw

is the beta function and

2F1 (a, b; c;x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
,

is the Gauss hypergeometric function, where (z)k = z(z+1) · · · (z+k−1) denotes the ascending fac-
torial. Using the result in (20), the pdfs of R, Re and 1/Rr can be expressed as

√
(ν2 + 1)/(ν1 + 1)

fZ(
√

(ν2 + 1)/(ν1 + 1)z), fZ(z) and (1/z2)
√

(ν2 + 1)/(ν1 + 1) fZ(
√

(ν2 + 1)/(ν1 + 1)(1/z)), re-
spectively, with a1 = ν2, a2 = ν1, δ1 =

√
ν2 + 1μ/σ and δ2 =

√
ν1 + 1μ/σ.

3 Conclusions

We have derived the exact distributions of the SNRs and their quotients (equations (1) and (4)–
(9)) by using the established properties of the non–central t distribution. The exactness of the
distributions has been verified by simulation. The non–central t distributions have been known
since the early 1900s and their properties have been studied extensively in the statistics literature.
The reader is referred to Chapter 31 of Johnson et al (1995) for the most up–to–date details on the
distributions. Computer programs for evaluating the non–central t distributions are also widely
available (e.g. in R, a freely downloadable statistical software) and these programs can be used to
produce e.g. accurate tables of critical values without the need for Monte Carlo simulation.
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