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Abstract

A special type of covering of polyhexes introduced by Gutman [1] is investigated. It is
proved that for a primitive coronoid system the number of covers is equal to the number

of Kekulé structures minus three.

1. Introduction

A benzenoid system can be defined as follows. Let C be a cycle on the hexagonal lattice. Then
the vertices and edges lying on C and in the interior of C form a benzenoid system [2]. A coro-
noid system can be regarded as a sort of benzenoid system with holes. The precise definition
is given below. Let Cj be a cycle on the hexagonal lattice, Cy,Ca,---,Ci(t > 1) be pairwise
disjoint eycles within Cp. Then the vertices and edges lying on Cp,C1, - -+, Cy and in the interior

of Cy but not in the interior of any Cj(i = 1,2,---,t) form a coronoid system(3].
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The term polyhexes|3] is here used for benzenoid systems and coronoid systems taken together.
Polyhexes correspond in a nature way to benzenoid hydrocarbons and coronoid hydrocarbons.
A Kekulé structure of a polyhex with n vertices is a selection of n/2 edges such that no two of
them are incident.

Let G be a polyhex. The concept "cover” was introduced by Gutman [1]. Let K = {s,---,s,}(p>
1) be a collection of pairwise disjoint hexagons of G. G — K denotes the subgraph obtained by
deleting from G all the vertices of hexagons in K and all the incident edges. If G — K has a
Kekulé structure, or G — K is an empty graph, K is said to be a cover of G. Note that the
above terminology "cover” is a graph-theoretical reformation of a concept occurring in chemistry,

within Clar aromatic sextet theory.

2. A property of covers of polyhexes

It was observed by Hosoya and Yamaguchi [4] that for a cata-condensed benzenoid system, the
number of covers equals the number of Kekulé structures minus one. This result was proved by
Gutman et al. [5]. But this property does not hold for peri-condensed benzenoid systems in
general. Zhang and Chen [6] characterized the peri-condensed benzenoid systems that possess
the above property. In the following we give the relation between the number of covers and the
number of Kekulé structures for polyhexes.

Let G be a polyhex. For convenience, we assume that G has been placed on a plane so that two
edges of each hexagon are parallel to the vertical line. Let P be a Kekulé structure of G. An
edge e is said be a P-double bond if e € P. The six vertices of a hexagon of G can be matched
by three P-double bonds in two ways. They are called P-proper and P-improper hexagons,
respectively (see Fig.1, where P-double bonds are bold). If P is a Kekulé structure of G and

there is no P-proper hexagon, then P is said to be a root Kekulé structure.
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Fig.1 A polyhex G with a Kekulé structure P (the edges in P are bold), a P-proper

hexagon A and a P-improper hexagon B.

By M and N we denote the set of Kekulé structures and the set of covers of G, respectively.
Now we define a mapping f from M to N U {¢}. For any Kekulé structure P € M, denote-by

K(P) = {s1,"++,5,} the set of P-proper hexagons. We define the image of P under mapping f
to be K(P) ie. , f(P)=K(P).

Lemma 2.1 Let P be a Kekulé structure of G, K(P) be the set of P-proper hexagons. Then for
any s* € K(P), there exists a Kekulé structure P* of G such that the set of P*-proper hexagons
is K(P)— {s*}.

Proof. Starting from the center of s* we divide the plane into three areas Z;, Z» and Z3 (cf.
Fig.2). Let G; be the subgraph of G with maximum number of hexagons satisfying:

1. Gy is a benzenoid system containing s* ;

2. the vertices of G lying in areas Z;, Z; and Z3 are matched by edges of P parallel to the
P-double bonds a, b and ¢ of s*, respectively;

3. PNGy is a Kekulé structure of Gy, the boundary C) of Gy is a (PN G )-alternating cycle (i.e.,
a cycle whose edges are alternately in P0G, and not in PNGh)(cf. Fig.2(1), where G| is shaded).
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Fig.2 Illustrations for the proof of lemma 2.1.
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The symmetric difference Py = PAC, is another Kekulé structure of G. We claim that the set
K(Py) of Pi-proper hexagons satisfies K (P;) C K(P). Otherwise, there is a Pj-proper hexagon
s’ ¢ K. Then s’ must have an edge lying on C (cf. Fig 2(1)). This contradicts the maximality
of Gy. If CyNs* # ¢, then s* is not a Py-proper hexagon, and K(Py) = K(P) — {s*}. Let
P* = Py, the lemma is proved. Otherwise C) N s* = ¢, let Gy = G} — €. One can check that
the boundary C; of G is a Pj-alternating cycle. By the same argument as above, if CoNs* # ¢,
then s* is not a Pp-proper hexagon, where P = Cy APy, and the set £ (P,) of P;-proper hexagon
is just K(P) — {s*} (cf. Fig 2(2)). If C3 Ns* = ¢, we can continue the discussion as above.
Since G is finite, we eventually reach a subgraph G, of G such that the boundary C; of G; and
s* have some edges in common, and the set K(P;) of P,-proper hexagons is K(P) — {s*}, where
P, = C4AP;_;. Lemma 2.1 follows.

lemma 2.2 With the above notation, for any member K in N U {¢}, there exists a Kekulé
structure P in M such that f(P) = K.

Proof By using lemma 2.1 repeatedly, we have a Kekulé structure P such that the set of P-
proper hexagons is an empty set ¢, i.e., f(P) = ¢.

Let K = {1,892, ++,sk}(k > 1) be a cover in N. By the definition of a cover, there is a Kekulé
structure P of G such that the set of P-proper hexagons is {sy, -, sk }U{sk41," -, Skaq}{(g 2 0),
where sg4e(t = 1,2,---,q) is a P-proper hexagon in G — K. Also by using lemma 2.1 repeat-
edly, we obtain a Kekulé structure P* of G such that the set of P*-proper hexagons is just
K = {sy,s2, --,s}, i.e., f(P*) = K. The lemma is thus proved.

By lemma 2.2 we have the following theorem immediately:

Theorem 2.3 For a polyhex the number of covers is less than or equal to the number of Kekulé

structures minus one.

3. Primitive Coronoid Systems

We now concentrate ourselves to a special class of polyhexes——primitive coronoid systems{7].
A primitive coronoid system consists of an even number of segments in a circular arrangement.

In other words, the dualist[10] of a primitive coronoid system is a single cycle (cf. Fig.3).
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Fig.3 A primitive coronoid system and its dualist.

Property 3.1 Let P be a root Kekulé structure of a primitive coronoid system G. Then both
the outer perimeter Cp and the inner perimeter Cy of G are P-alternating cycles.

Proof Note that each vertex of a primitive coronoid system G lies either on the outer perime-
ter Cp or on the inner perimeter ;. For a Kekulé structure P of G, if one of Cy or C} is a
P-alternating cycle, then the other is also a P-alternating cycle. Now suppose that none of Cy
and € is a P-alternating cycle. Then there is a P-double bond ab with one end vertex a on Cy
and the other end vertex b on C;. Without loss of generality, we may assume that ab is vertical
(cf. Fig.4(1)). If edge h is a P-double bond, then no matter s; or s2 belongs to G, there is a
P-proper hexagon, contradicting that P is a root Kekulé structure (cf. Fig.d(1)). Hence h is
a P-single bond and both p and ¢ are P-double bonds. We also find a P-proper hexagon (cf.

Fig.4(2)), again a contradiction . Therefore, both Cy and Cj are P-alternating cycles.
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Fig.4 Illustrations for the proof of lemma 3.1

Remark 3.2 Let P be a Kekulé structure of a primitive coronoid system G such that both Co
and C are P-alternating cycles. There are only three possible positions for a hexagon to be a
P-proper hexagon (cf. Fig.5). We call the hexagons in these positions as special hexagons. Let
s1,52,- -+, 5 be all the special hex&gons of G in circular arrangement. One can check that if s;
(no matter s; is of position I, I or III) is a P-proper hexagon, then s;4; (no matter s;y; is of

position I, Il or III) is also a P-proper hexagon, where 1 < < ¢, i+1 is taken modulo ¢ (cf. Fig.6).
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Fig.5 Special hexagons (cycled) in three positions.
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Fig.6 Nine possible combinations of s; and s;,;.

Property 3.3. For a primitive coronoid system G, there are exactly three root Kekulé structures

Proof. Let P be a root Kekulé structure of G. By Property 3.1 both Cy and C; are P-
alternating cycles. By Remark 3.2, among the four Kekulé structures for each of which both
Cp and C) are alternating cycles, only one Kekulé structure P* is not a root Kekulé structure.

Therefore, there are exactly three root Kekulé structures.

Lemma 3.4 Let Py, P, P; and Py be the four Kekulé structures of a primitive coronoid system
G such that both Cy and C) are P;-alternating cycles for i = 1,2,3,4. Then three of them are
root Kekulé structures.

Proof. This is a direct corollary of Remark 3.2 and Property 3.3.

Theorem 3.5 Let G be a primitive coronoid system. Then the number of covers of G is equal
to the number of Kekulé structures minus three.

Proof. Let P, and P, be two Kekulé structures such that f(P;) = f(P). The symmetric



-677-

difference P; APy constitutes some P (P;)-alternating cycles. Let D) be such a P;(P,)-alternating
cycle. If D # Cp, D # Cy, then D must contain an edge e = ab with a on Cy and b on Cy.
Without loss of generality, we may assume that e is a Py-double bond and is not a Ps-double
bond. Then there is a Py-proper hexagon corresponding to e (cf. Fig.4 and the proof of Property
3.1) which is not a Ps-proper hexagon, contradicting that f(P,) = f(FP). Therefore D must be
Cp or Cy. This means that both Cy and C} are P (P,)— alternating cycles. Since f(Py) = f(P),
now by lemma 3.4, both P, and P, are root Kekulé structures. The theorem follows from
Property 3.3..

Remark 3.6 For non-primitive coronoid systems it remains a open problem to find the relation
between the number of covers and the number of Kekulé structures. Even for cata-condensed
multiple coronoid systems (i.e. coronoid systems in which each vertex lies on some perimeter,

cf. Fig.7) the lower bond of the difference |M| — |N| is still unknown.
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Fig.7 Illustrations for Remark 3.6.

The main difficulty lies in the fact that the number of root Kekulé structures are uncertain (the
cata-condensed coronoid system depicted in Fig.7(1) has four root Kekulé structures), and that

f(P1) = f(P») does not mean P; and P, are root Kekulé structures (cf. Fig.7(2)).
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Remark 3.7 In [8] XF Guo and FIJ Zhang introduced for the first time a series of explicit
definitions such as g-sextet, g-root Kekulé structure, super sextet, and established a one-to-one
correspondence between the set of Kekulé structures and the set of covers (sextet patterns).
Our paper deals with the difference between the number of Kekulé structures and the number

of covers. This difference is actually the number of super rings.
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