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Abstract

Using the transfer matrix method, we compute the Merrifield-Simmons index (the number of
independent sets) of the generalized Aztec diamonds and a type of related graphs which are obtained from
the weak directed product (tensor product) of paths. In our approach two transfer matrices need to be
introduced, each of which is the transpose of the other. Some numerical results obtained by using Matlab
are tabulated, which suggest the statement that the generalized Aztec diamonds and a type of related
graphs have equal entropy constant. Then we prove the statement.

1. Introduction

Merrifield and Simmons defined a topological space for the chemical graphs which had been used in
structural chemistry [1]; the cardinality of the topological space is called the Merrifield- Simmons index.
For a graph G the Merrificld-Simmons index is the number of independent scts of G. The properties of the
Merrifield-Simmons index of some type of benzenoids and polyominocs have been studied in [2,3,4,5].
The enumeration of the perfect matchings of Aztec diamonds has been studied by several authors. An
elegant formula was given in [6] and four proofs were given. Some recurrent relations were given in
[7,8,9], which in turn imply the results in [6]. The weighted Aztec diamonds were also considered in [7].
The enumeration of spanning trees of Aztec diamonds was considered in [11] in which the spanning trees
of Aztec diamonds were tabulated for n<6. Based on the numerical result Stanley conjectured that Aztec
diamonds contain cxactly 4 times as many spanning trees as a type of related graphs. This conjecture was
proved in [12,13,14] by using the spectral theory of graphs.
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In this paper, we consider the generalized Aztec diamonds as in [11], which are a type of chemical
graphs including Aztce diamonds as a special case. An interesting problem is to compute the Merrificld-
Simmons index of such graphs. We will deal with this problem by using the transfer matrix method.

Let Libe the path with i vertices 1, 2,..., i. The tensor product of two paths L. * 1., isthegraphon
nxm vertices {(x, y): 1 £x<n, | £y <m}, with (x, y) adjacent to (x’, y") if and only if
|x— x'\ = ‘y —y'| =L.  Obviously this graph consists of two connected components;
one denoted O( f, * [, ) has the vertices {(x, y)| x+ y is 0dd}, and the other denoted E( [, * [ ) has
the vertices {(x, y)| x+ y is even}.

The graph O( L2m| *Lzm ) is called the Aztec diamond of order n. The more general

O(LGﬂ *LZmH) is called the generalized Aztec diamond of order #Xm . We attcropt to - cnumerate

). Asan

the independent sets of O( [, * [ ) as well as the independent sets of E(J,,  * [
illustrative example, [ * I is depicted in Fig 1 and the two components of [ | * [, are shown in Fig
2 where an independent set is indicated by bigger dots.
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To enumcrate the independent scts of generalized Aztec diamonds we need to introduce two transfer

matrices T, and T, , cach of which is the transposc of the othcr. The matrices T,, T, can also be

employed to enumerate the independent sets of E( /. * [ . ) in a similar way.  The numerical results

2n+1

for n <6 and m< 10 arc tabulated. The data shows that the number of independent sets 0”)(L~m| % LZW1 )
and that of E( [, *LZ,M) are not proportional, which is different from the case on the numbers of
spanning trees. However, the numerical results supports my conjecture that OC [, * [ ) and

* "
E(Lzm lel ) have the same entropy constant.

2. Transfer matrices

The transfer matrices used to enumerate the independent sets of O( [, *[J . ) and

E([ 0™ L) canbe introduced similarly.

Given an independent sct S of the graph under our consideration. For each column of vertices of the
graph there is a corresponding veetor of 0°s and 1°s where 1 indicates the corresponding vertex is in S and

0 indicates that the corresponding vertex is not in S. Let V, denote the vector corresponding to the i-th

column of vertices. Note that for O( Lzm * L ) the vector V, is of dimension n when i is odd and

2m+l

V, is of dimension n+1 when i is even, while for E(J,, * 7~ )the V, is of dimension n+1 when i

is odd and it is of dimension n when i is even. This can be illustrated by using the example in Fig.2, where

O( [ *[andECL, * [ )areshown witha given independent set S. For O( [, * [ ) with the
given 8, we have the following corresponding 9 vectors { V, }: (0, 1,0, 0), (1,0, 0, 1, 1), (0, 1, 0, 0),

(0,0,0,1,0),(1, 1,0,0),(0,0,0,0,0,), (L, 0,0, 1),(0,0,0,0,0), (1,0,0,0). ForE( [ * [ ) with the

given S, the corresponding 9 vectors are: (1,0, 0, 1, 1), (0, 1,0, 0), (0, 0,0, 1, 0),
(1,1,0,0),(0,0,0,0,0),(0,0,0,1),(0, 1, 1,0,0),(0,0,0, 1), (1,1, 1,0,0).

Note that each independent sct S of the graph O( [, o DR 8 Lg) can be obtained by

assembling the columns of S one by one in the natural order. During the process of assembling, when an
additional column is asscmbled to the right hand side of existed structure, we only need to make sure that
the new column docs not clash with the rightmost column. No matter what the new column is, its addition
never clashes with the other existed columns. This is the so called Markov property.

Now we consider the graph O( Lzm*Lzml ). For simplicity, the assembling of the (i+1)th
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column yj,, to the 7 th column v, is simply called Step i. It is clear that the gencration of each

independent set of the graph O( % ) involves 2m assembling Steps after the first column y,is
P 24l !

2mil
established.  Step | is to assemble v, to the right side of y,. The transfer matrix representing Step 1,
denoted T, | can be constructed as follows. Let R, be the set of all possible vectors v, . Clearly R,
consists of all n-dimensional vectors of 0's and I's , so R, has 2" vectors. Similarly, the sct of all
ntl

possible vy, is the set R, of all (n+1)-dimensional vectors of 0’s and 1's, and R,,, has 2" vectors.

Then the transfer matrix T, = [Ty,y,]0582" X 2™ matrix whose rows are indexed by vectors of
rv2
R, and columns are indexed by vectors of R,,, (Note that for any n> 0, R, can be casily ordered ),

where va2= 1 if v, and vy, represent possible consecutive pair of columns in an independent sct of
O(Lz.m*Lzml ), and TV:'Vz: 0 otherwise. That is, Tv.-v;= 1 if and only if each sclected vertex
(according to v, ) in the first column of O( LM ¥ LZ”“') is not adjacent to any selected vertex
(according to vy, ) in the sccond column of O( LZM*LM” ). In other words, if we let vy, =
(V11> Vi25--vin) and Va=(v21,v23 .., Vaaa ), then TVszzl ifand only if v ;. v, ;=0and v,; . v,;,=
0 for i=1,2,..., n.  Similarly, the transfer matrix for Step 2 is a 2" % 2" matrix Pr= [TVQ'V]}
For Va=( vy, Vi oeeer Vaau) @804 vy = (V35 Vi sees Vi, s Ty v, =1 if and only if y;;. va;= 0 and
vi;- Vo= 0fori=1,2,...,n. Itis easily seen that T, is the transfer matrix for every Step i where i is odd
and that T, is the transfer matrix for every Step i where i is even. It is also obvious that T, is the
transpose of T, , i.e., T, =T|l . 80, T= TJT2 isa 9" X 9" symmetric matrix and T = TZT, isa 2'”'
>4 2"*' symmetric matrix.
Let f(m,n) (F(rn,n) , tesp.) denote the number of independent sets [lfO('Lz“l *Lzmq )

( E(LZM“ LM‘,)‘ resp.) . It is not difficult to sce that f{m,n) cquals the sum of the entries of the

t
matrix T™. So f(m,n)=1 T™ 1 where 1 denotes the 2"-dimensional column vector whose

n+

) ~ o .
entries arc all 1's. Similarly, f(m,n)=1 T"1 where 1 denotes the 2**'-dimensional column vector
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whose entries arc all s,
Now we will describe the technical details to gencrate a transfer matrix. All subscts of a given set N
with n elements 0,1,2,..,n-1 can be generated with an algorithm given in [10]. For any given subset PC N,

the  characteristic  vector of P is the n-tuple ¥(P)=[p,» p,» - . .+ p, 1. where p;=1if
n—i &P and p,= 0 otherwise. W can use the characteristic vectors to index the rows and columns of
the transfer matrix. Let @y5@35-+-,8,041 denote all  (ntI)-dimensional characteristic vectors. Let
bl ,b2 gueey bln denote all n-dimensional characteristic vectors, where by is the zero vector of
dimension n and b2 5 b3 ,...,bn +1 are the n unit vectors of dimension n. Then it is easily seen that
the first row of T indexed by b is the 2" !dimensional vector v, of all 1’s. Starting from the second

row, the n rows of T, U2+ Uss-s Up 4 | are indexed by bZ’bB’“"bn + 1 respectively. It is not

difficult to see that 11y, \5es Uy 4] Are 2"!_dimensional vectors and that they can be gencrated by the

following algorithm.
forj<2ton+l

do { fori¢=1to 9o

do { if the jth and the (j+1)¢h entrics of @; are O then the ith entry of y; is 1

clsc the ith entry of y; is 0.}
Note that for all other bj , n+2< j<2" each can be obtained by combining some of the unit

vectors b2 ) b3 sevey bn 41 so that the correspending rows of the transfer matrix T, can be obtained

by logical operations. The details are illustrated below with n=3.

The 3-dimensional vectors are

(0,0, 0),(1,0,0),(0, 1, 0),(0, 0, 1), (1, 1, 0),(1, 0, 1,(0, 1, 1),(1, 1, 1).

The 4-dimensional vectors are

(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1),(1,1,0,0), (1,0,1,0),
(1,0,0,1), (0,1,1,0), (0,1,0, 1), (0,0,1, 1), (1,1,1,0), (1,1,0,1),(1,0,1, 1),
o1nLL1, (1,1,1,1).

The transfer matrix T, is an 8x 16 matrix with y, =(1,1,L,1,1,1,1,1,1,1,1,1,1,1,1,1).
By the algorithm the rows of T, correspond to (1, 0, 0), (0, 1, 0), (0, 0, 1) are

1 =(1,0,0,1,10,0,0,0,0,1,0,00,00), u,=(1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0),
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u,= ( 1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0).
For vi=(vi+ Viz re-s Via b V2=(Vay s Viasees Vi ) We define
Vi* V2= (Vi X Vais Vir X Vs ooy Vi XV, )- Then

Us=U2* Uss Ue = U2* Ud> W:=Use U4y Uyg= W* Uh* U

Thus we get

H

TI:

(— B — A~ B A -
o000 — 0O O —
o0 00 0 Q m o=
000 — O = = =
o 00 o = O O =
S OO0 C O O O -
OO0 0 Q0 O - O =
o o000 o O Qo -
S Oo OO0 O O O -
OO0 00 Do —~
oo o0 o o o =
C QOO0 O 0 Q -
[~ — BN - -~
o oo o o o -
o o e o D o -

3. Numerical results
By MATLAB we can calculate the Merrifield - Simmons indices of the graphs considered in this paper.

Now we tabulate the results for 2 <n < 6 and 1 < m< 10 below.

The Merrifield - Simmons index of O (Lzm S PWEY

f(m, n)
n=2
m=1 29
m=2 257
m=3 2408
m=4 22873
m=5 217969
m=6 2078716
m=7 19827701
m=8 189133073
m=9 1804125632
m=10 17209452337

n=3

m=1 124

m=2 2408
m=3 50128



m=4
m=3
m=6
m=7
m=8
m=9

1064576
22734496
486248000
10404289216
222647030144
4764694602112

m=10 101966374503680

n=4

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

533

22873

1064576

50796983
2441987149
117656540512
5672528575545
273541357254277
13191518965300160

m=10 636171495829068288

n=5

m=I
m=

m=3
m=4
m=

m=6
m=7
m=8
m=9

n=6

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

2293

217969

22734496
2441987149
264719566561
28778500622048
3131382012183077
340819280011906496

37097936406550224896
m=10 4038192819517828628480

9866

2078716

486248000
117656540512
28778500622048
7063448084710944
1735575086258267136

426602245391808593920
104870171042459653505024
m=10 25780811901305521409359872
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The Merrifield - Simmons index of E ( LZM * b

n=2

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

F(m,n)

73

689

6556

62501
596113
5686112
54239137
517383521
4935293524

m=10 47077513469

n=3

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

314

6556

139344
2976416
63663808
1362242592
29151501760
623849225024
13350628082560

m=10 285709494797952

n=4

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

1351

62501

2976416

142999897
6888568813
332097693792
16014193762579
772279980131297
37243762479698920

m=10 1796118644459454976

n=5
m=1
m=2

m=3

5813
596113
63663808
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m=4 6888568813

m=5 748437606081

m=6 §1422265300608

m=7 8861477326934565

m=8 964548039869458048

m=9 104992603396454170624
m=10 11428754133439767117824

n=6

m=1 25012

m=2 5686112

m=3 1362242592

m=4 332097693792

m=5 81422265300608

m=6 19999400591072512

m=7 4915269393662666752

m=8 1208259557742388969472
m=9 297029594411422458052608
m=10 73020996395192320903872512

4. Theorem on entropy constants

The entropy constant has been of interest to many physicists and combinatorialists (see {14] and the
references cited therein). In statistical mechanics the following similar problem has been considered: in
how many ways can we put particles on an mXn rectangular latticc so that no two share the same vertex
and at most one particle on every edge? Based on this problem the entropy constant is defined.  The
lattices we arc considering here are the generalized Aztec diamonds

O(LLHI *LZm*l ) and E (LZrul*LZJnl!)' Note that O(Llrnl* LZH‘N]) has

(nH{n+1))m+n=2mn+m-n verticesand E (J , * L2m+i ) has (n+n+1)m+n+1=2mn+m+n+1 vertices. Let

f (m,n) denote the number of independent sets of O (Lzm L] Lzml) and hf(m,n) denote the number of

independent sets of E ( Lzml » L2y )- The entropy constants of these graphs are defined to be:

C= hrn f(mn)lfflnnﬂvun)-
n-3m,m-n
and
i > - i 2marmens))
C= lim f(m,n)
n—o,m—rm

1A42mnemanse’

Although there is no obvious relation between f(m'n)“‘z'“"‘"”“’ and T(m,n) " in the first glance,
we observe that they are near.

£(20,6)"%% =1.53251705211
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1(20,6)' " ~1.53604652356
Furthermore, the following numbers are nearer,

£(125,6)"" ~1.52806707348,
£(125,6)'""" =1.5286449987.

Thus it suggests that C =E’. This equality is established in the theorem below. In the proof we use a
method of Wilfetal [16] to show the existence of a double limit.

Theorem.  The generalized Aztec diamonds O ([, | *Lzm,l) and E (sz *LZ”M) have equal
entropy constants.

Proof. Let C and E denote the entropy constants of O(LZM*LMH) and

E([,,.* L,,.) tespectively. We need to show that C=C .
We now explicitly exhibit the size n by the subscript of the transfer matrix.

Since T, is a real symmetric 2"x2" matrix, there is an orthogonal matrix p = (p,;) whose

Aa(m) 0
columns are eigenvectors of T, and P' T, P = , where
0 Ap(n)

A(n) 2 A, (n) 2 -2 %,.(n) are the eigenvalues of T,.

Since f(m,n)=1"Tr1,

Ym
AT () 0
lim f(m,n) " =1im | 1'P Pl1| -
0 A ()

= lim (AR () + AT M)+ + A ) "=, )

where (x, # 0 because the dominant eigenvector of nonnegative matrix T, can not be orthogonal to 1.

Thus,
liminf A" (n) < liminf /(m,7)""™ < limsup f(m,n)""™ < limsup )" (n) )

Let 1T%1 /1'1 be the Rayleigh quotient (see [17] p.54) of the 2" X 2° real symmetric matrix T, .
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Then A;(n)= 1'"Ti1 /11 . Clearly, 1'T%1 =1"T"] since both sides count the independent sets in

the same generalized Aztee diamond.
Thus

ool a1l i o™,
Then
(liminf Am)) 2 A(r)/2, where ), (r) is the dominant eigenvalue of T, .

Taking the rth root, and the limsup as r—> o, we get
liminf A,"(n) = limsup A, (r).

nox ro®

Since the reversc of this inequality is obvious, we see that |im 7\,:'" (n) exists. By (1) we have

n=rm
tim /(m,m)""™ = lim A" (n).
v e
e

Thus

C=1lim f(m,n)" ™ ™" =(lim Li“‘ (n))'?, where () is the dominanteigenvalue of T, .
m-sco e
now

Similarly, ‘f(m,n)=1' ’T‘: 1 , and we can show that

Mo
n—soe

C =lim £ (m,n)"™ ™ = lim (z:[“(n))”, where %, (n) is the dominant cigenvalue of T, .

Since T,=T,T, and T, =T,T,, wehave Xl(n) = ), (n), which implies C =C.

This completes the proof.
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