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Abstract

Let G be a (molecular) graph G. The Merrifield and Simmons index of G, denoted by
(@), is defined as the number of subsets of the vertex set V(G) in which no two vertices
are adjacent in G, i.e., the number of independent sets of G. In this paper, we determine all
connected graphs G with 2°~2 < ¢(G) < 2™, for n > 10. As a byproduct, the graphs of n
vertices and m edges with the largest, the second largest Merrifield and Simmons index are
obtained, for n < m < 2n 3.

1 Introduction

All graphs considered here are finite and simple. Undefined notations and terminology will
conform to those in [2].

For a molecular graph &, the Merrifield and Simmons index ¢{G), or simply o-index, is
defined as the number of subsets of V(G) in which no two vertices are adjacent in G, i.e., in
graph-theoretical terminology, the number of independent sets of G, including the empty set.
For example, for the circle of 4 vertices Cy = vyvav3vy, all such subsets of V(Cy) are as follows:
¢, {u1}, {v2}, {va}, {va}, {v1,va}, {v2,7v4}, and so o(C4) = 7. In monograph [11], Merrifield
and Simmons showed that the o-index of a molecular graph is correlated with its boiling points.
The o-index of a molecular graph was extensively studied in [3-15].

For a graph G, we denote by V(G) the vertex set of G and by E(G) the edge set of G. Let
u€ V(G), by Ne(u) we denote the set of all neighbors of u in G. For two graphs G and H, we
denote by G U H the disjoint union of G and H and by mH the disjoint union of m copies of H.
We denote by P,, S, and C, the path, the star, the circle of n vertices, respectively. Denote by
K., the complete graph of n vertices. For a graph G, G denotes the complement of G.
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For the path P,, o(P,) is exactly the famous Fibonacci number F, 4o such that F,, = Fj,_1+
K, _2 with initial conditions Fy = 0 and F| = 1. In 1984, Prodinger and Tichy [13] proved that
every tree T on n vertices satisfies 42 < o(T) < 2"7' + 1. In [9], the authors characterized all
trees T with 22 < o(T) < 21, Very recently, Pedersen and Vestergaard [12] gave the lower
bound and the upper bound of o(G) for unicyclic graphs.

In this paper, we shall investigate the o-index for all connected graphs. We characterize all
connected graphs with o-index between 2772 and 277! for n > 10. As a byproduct, we also
give the graphs of n vertices and m edges with the largest, the second largest o-index, where
n<m<2n—3.

2 Some Lemmas
Let T be a tree with n vertices. Denote by T(n) the set of trees with n vertices. From
(1, 8, 12, 13], we can find the following results.

Lemma 1.([8, 13]) Let T be a tree with n vertices. Then Fj 4o < o(T) < 2*' + 1 and
o(T) = Foyz2 if and only if T P, and o(T) = 2"! + 1 if and only if T = S,..

Lemma 2. ([8, 13]) Let G be a graph with k components G}, Gs, - -+, Gx. Then

a(G) = Ha(G,—).
i=1
Lemma 3. ([8]) For a graph G with v € V(G), we have
o(G) = o(G —v) +o(G - [v]),
where [v] = Ng(v) U {v}.
Lemma 4. ([12]) For a graph G with vu € V(G), we have
o(G) = o(G — wv) — ¢(G — N{wv)),

where N[uv] = Ng(v) U Ng(u).
Lemma 5. ([1]) Let G; and G2 be two graphs. If V(G,) = V(G3) and E(G,) C E(G3), then

o(G1) > o(Ga).
3 Graphs G of n vertices with 2"? < ¢(G) < 2™!

The graphs shown in Figures 1 and 2 are frequently used throughout the paper. The graphs
used in Theorems 2 and 3 are shown in Figures 3, 4 and 5.
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Figure 1. Graphs U(sy, s2) and S(n;,ng) with sy + s =n-3and ny + ng =n -2,
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Figure 2. Graphs A, B, and Q,

In [9], the authors determined the all trees T with 2°~2 < o(T) < 2! as follows:

Theorem 1. ([9])) If T' € T(n) and n > 10, then 2"72 < o(T) < 2"7! if and only if
T € {An. By, Qn, U(s1,52), 8(n1,na){ny +ng =n—2,1<n; <ng,sy+sp =n~3,1<s; < sa}.
In addition, ¢(Ap) = 2°~2 45, 0(B,) = 272 46, 0(Q,) = 22 + 2" 4 4, o(U(s1,52)) =
P24 20 42 41, o(S(ny,ng)) = 22 4 2 2™,

In this paper, we get the following theorem.

Theorem 2. Let n > 10 and let G be a connected graph of n vertices with G ¢ T(n).
Then 272 < o(G) < 2* ! if and only if G € {A,,li = 1,2,3,4,5,6,7,8,9} U{B, ;i = 1,2,3} U
{U(ti,t2,t3)[0 < ¢y < 3,1 <o, ty+ta+t3 = n=3JU{S(h, o, 3)I0 < Iy <3, 1 <D, li+h+ly =
n—2}. In addition, 0(4,,1) = 0(Au3) = 0(Bay) = 2" 2 +3, 0(An2) = 0(Anz) = 272 + 4,
{Ana) = 0(Ans) = 0(Bn2) = 27242, 0(Ang) = 0(Bng) = 2" 2+1, oA, ) = 2724277542,
o(Ang) = 224275 41, o (Ut by, £)) = 272420 425 41, 0(S(ly, Lo, ly)) = 272421 4205,

From Theorem 2, it follows that

Theorem 3. Let 2 > 10 and let G be a connected graph of n vertices with & ¢ T(n). Then
we have

(i) for m = 2n—3, the unique graph with the largest Merrifield-Simmons index is S(0,n—2,0),
where o(S(0,n — 2,0)) = 2772 4 2,

(ii) for m = 2n — 4, the graphs with the largest Merrificld-Simmons index are S(0,n — 3,1)
and U(0,n — 3,0), where a(S(0,n — 3,1)) = a(U(0,n — 3,0)) = 2% +- 3,

(iii) for tn = 2n — k — 3, where 2 < k < n — 3, the unique graph with the largest Merrifield-
Simmons index is S(0,n— k—2, k) and the graphs with second largest Merrifield-Simmons index
are S(1,n - k—2,k—1) and U(0,n — k — 2,k — 1), where o(S(0,n =k — 2, k)) =272 4 28 41
and o(S(L,n —k =2,k - 1)) =a(UO,n—k—-2,k~1)) =272+ 281 42 O

4 The Proof of Theorem 2

Lemma 6. Let n > 10 and let G be a graph of n vertices with u € V(G) and ¢(G — [u}) < 23,
Then 2" 2 < o(G) < 2" Vifand only if G —u € {C3 U (n - 4)K|, PyU(n— 5)K}, S, U(n—7 —
1K), 2P U (n = 5)Ky|r > 2}.

Proof. f G—u € {C3U(n—4)K, LU(n—-5)K},S,U(n—7—-1)K},2P,U(n—5)K,|r > 2}, by
Lemma 2 it is easy to see that 22 < o(G ~u) < 2"~ 2+ 2" "1 for n > 10. From Lemma 3,
22 < ¢(G) < 2", Otherwise, G — u must contain one of the following graphs as its spanning
subgraphs:

G'e {PsU(n—6)K,,CqU(n-5K;,D4U(n— 5){(1,
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PoUPyU(n—6)K,3P, U (n—T)K1},

where Dy denotes the graph obtained from Cy by adding a pendant edge. For n > 10, it is easy
to verify that o(G’) + 23 < 2"°2 for cach graph & above. By Lemmas 3 and 5, we have that

o(G) = o(G — u) 4+ o(C — [u]) < o(G") + 22 < 22
The proof is completed. O

Lemma 7. For n > 10, let G be the graph of n vertices obtained from ¥ by adding
some edges of Y to YV, where Y € {A,,B,,Q,}. Then 2" < ¢(¢F) < 2*" if and only if
G € {An1, An2, An3, An g, Ans, Ang, An7, Ans, Ao}, where A, (1 < i < 9) are as shown in
Figure 3. In addition, o(Ap ) = 0(A,3) = 272 + 3, a(An2) = o(An7) = 22 + 4, 0(Ana) =
O(Ans) = 27242, 0(Ang) = 272 4 1, 0(Ang) = 22 + 2975 4 2 (A ) = 22 42541,

Ana A Ang
i 1 1
: 6 uf 2 u/e2 4/t 2
n—5 9<’n -5 @< n-5
Ang Ans Ang
12 n-5 12 n-5
An 8 An 9

Figure 3. Graphs A,,,i=1,2,3,4,5,6,7,8,9.

Proof. Suppose that G is the graph obtained from Y by adding some edges of Y to Y, where
Y € {A,, Ba,Qy}. For each Y, there exists the vertex u such that o(Y — [u]) < 23, see Figure 2.
By Lemma 5, o(G — [u]) < 2°, for each G. Tt follows, from Lemma 6, that 2"~2 < ¢(G) < 2*!
if and only if G —u € {C3U(n—-4)K1, PyU(n—5)K, 5, U(n—r-1)K,2P,U(n—5)K,|r > 2}.
So, G is one of the graphs A,, ; as shown in Figure 3, where i = 1,2,3,4,5,6,7,8,9. By Leminas
2 and 3, it is easy to get their a-indices. This completes the proof, O

Lemma 8. Let n > 10 and |V(G)| = n. Let G be the graph obtained from Uf(s;, s2) by
adding some edges of U(s,s2) to U(sy,s2), where s; + 52 = n — 3. Then 2°~2 < o(G) < 2*!
if and only if @ € {Ap 1, Ans, Ana, Ans, Anss Bua, Bazy Bua} U {U(G L2, 13)[0 < 8y < t3,1 €
ta,ty +ty+ty =n — 3 U{S(h,l2,3)|0 < iy <l3,1 <o,y + 13413 = n— 2}, where A, ; are
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the graphs shown in Figure 3, B, ; are graphs shown in Figure 4, U(ty,13,t3) and S(1), 1. 13)
are the graphs shown in Figure 5. In addition, o(B,,) = 272 + 3, o(Bp2) = 22 4+ 2,
0(Bn3) = 2" + 1, a(U(ty,t2,15)) = 22 + 210 £ 2% 1 1, a(S(h, 12, ly)) = 22 4 2h 4 2,

1 1 1
: <32 E> ff? Z; /<.2
n—d4 n—4 n—4
B By By

Figure 4. Graphs B, i, i =1,2,3.
12 4 1 Zmlz 1 2.“'13 12 4 1 2___1.'2 1 2_“13

Ult.ta, ta) Sl Iz, 13)
Figure 5. Graphs U(iy,12,t3) and S(ly, Iy, l3).

Proof. Denote by (2 the set of some edges in U(s;, s2) such that the graph G obtained from
U(sy,s2) by adding all edges in the set Q satisfy 272 < ¢(G) < 2"~!. Write G = U(s;,s3) +
By Lemma. 5, it is not hard to see that if ® C  and o(U (s, s2)+Q) > 2772, then o(U(s1, sa) +
D) > o(U(s1,82)+0) > 272 According the construction of U(s1, s2)(see Figure 1), we consider
the following cases:

Case 1. Suppose v1vg € Q. By Lemmas 4 and 5, we have

o(G) < a(U(sy, 82)) — o((s1 — 2)K1 U Sgyp2).
Note that s; + sy =n — 3 and sy > 2. It follows, by Theorem 1 and Lemma 2, that
o(G) L2429 £ 22 1 - 0 7R,

Since n > 10 and = — 5 > s1, we have o(G) < 2°72,
Case 2. Suppose wyws € . It follows from Theorem 1, Lemmas 2, 4 and 5 that

o(G) < o(U(s1,s2)) — a((s2 — 2)K1 U S, 42)
= on=24 951 L9824 | gn-4 _ 9sa-2

Note that s; + 82 = n—3and 1 < 8 < 89 < n—-4. If sy = 1 and 53 = n — 4, then
a(@) <272 43 -27"6 < 2"=2 Otherwise 2 < 5; < sp <n—5and n—5 > sy, for n > 10, and
so o(G) < 272,

Case 3. Suppose vju € 2. By Lemmas 2, 4 and 5, we have

(@) 22 420 4922 4 — 94

Note that s; + so=n -3 and 1 < 5y < 59 < n—4. We have s; = 1 and s3 = n — 4. (Otherwise
2< s <sp<n—5and n—5> s, for n > 10, and then ¢(G) < 2"2) If Q = {v u}, then
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o(G) =2""24 3 and G = B, 1. Since B, contains a vertex x such that o(B, ) — [#]) < 2% by
a argument similar with that of Lemma 7 we have that if vju € Q, then G € {B, 1, Bp2, Buj}
Case 4. Suppose wju € 2. By Lemmas 2, 4 and 5,

o(G) < 2" P42 4 a4l -2t

Note that s) +sx =n—3 and 1 < s; < 89 <n—4. We have sy = 1 and s9 = n - 4. (Otherwise
2<s<sp<n—>5andn—5> sy, for n > 10, and then o(G) < 2"72) If Q = {wu}, then
o(G)=2""?4+3and G = Ap1. For A, 1, by a argument similar with that of Lemma 7 we know
that if wju € €, then G € {Ay 1, Ang, Ans Angl

Case 5. Suppose vyw; € 2. By Lemmas 2, 4 and 5, we have

o(G) <224 am 2% 41 - 904

Note that s) + s =n—3 and 1 < 81 < 3 <n—4. We have 51 = 1 and s3 = n— 4. (Otherwise
2< s <85 <n—5n—>5>s5 whenn > 10, and then ¢(G) < 2"~2)If @ = {vyi}. then
a(G) =27+ 3 and G = A, 3. For A, 3, by a argument similar with that of Lemma 7 we have
that if vy € €, then G € {Anyg, An’5,Anyﬁ};

Case 6. z € {u),u2} or y € {u;,u} for each xzy € . If wyuy € €, then all graphs are
the graphs S(i),0,13) shown in Figure 5, where 0 < I} < Iy, 1 < b and ly +lo+l3 =n -2
Otherwise all graphs are the graphs U(ty,t2,¢3) shown in Figure 5, where 0 < ¢; < 3, 1 <ty
and ¢y + f; +t3 =n — 3. By Lemmas 2 and 3, it is easy to get that

o(U(ty ta,ty)) = 2" 2 4ot 2% 1)

and
o(S(ly, Iy, la)) = 2% 4 21 4 2l

From the above argument, the lemma follows. O

Lemma 9. Let n > 10 and |V(G)| = n. Let G be the graph obtained from S(n;,ns) by adding
some edges of S(ry,n2). Then2"~2 < o(G) < 2" L ifand only if G € {An 2, Ana, Ans, A, Ang,
Ang, Buy Bro, Bua} U{S(Li o, 0 < Ly < g, L < gy + g +la=n -2}

Proof. Denote by €' the set of some edges in S(ny,n2) such that the graph G obtained from
S{ny,n2) by adding all edges in the set ' satisfy 2"2 < (@) < 2 L. By the construction of
S{ny,ma) (see Figure 1), we distinguish the following cases:

Case 1. Suppose vjvy € §. By Theorem 1 and Lemmas 2, 4 and 5,

alG) € 2P 2pom ot gn=d_gni=2

Note that n > 10, ny+no=n—2and 2 <n; <ny <n—4, We have iy = 2 and ng =n -4
(Otherwise 3 < my < np £ —5and n— 5 > n), and so o(G) < 277 2)If ' = {v 07}, then
o(G) = 2?4 3and G = B,, . From Case 3 of the proof in Lemma. 8, we have that if vjvg € @',
then G € {Bn_1,B-,-,,2,Bn‘3}.

Case 2. Suppose wiwy € . By Lemmas 2, 4 and 5,

(G TP g s g,

Note that n > 10, ny +no =n—2and 1 < n; < ng <n-—3. Wehaven, =1and ng=n-3.
(Otherwise 2 < 1y < ng < n — 4, it casy to see that ¢(G) < 2" 2)If ' = {wjws}, then
a(G) =224+ 2" £ 2and G = A, g. For A, 4, it follows, by a similar argument with that of
Lemma 7, that if wywy € (¥, then G € {An 4. A, A, Ang, Ango}-
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Case 3. Suppose vjuy € . By Lemmas 2, 4 and 5, we get that
o(C) L 27 E 4 oM o2 - 27,

Note that n > 10, ny +np = n—-2and 1 < ny < g < n— 3. We have that n; = 1 and
ny=n-3orn =2and ny =n -4 (Otherwise 3 < ny < ny < n—>5, it follows that n —5 > n;
and o(G) < 2°72) I @ = {vjwy}, then o(G) = 2772 + 2"~ £ 2 and G = U(0,1,n — 4) for
m=landns =n—-3orc(G) =2""?+4and G = A, for n; =2 and ny = n — 4. With
a similar argument of Lemma 7, for Ap 2 and U(0, 1,1 — 4), we have that if vyuy € £, then
Ge {A,,Ig, Andy Az, Anss B2, B, _;}

Case 4. z € {uj,up} or y € {uy,uz} for cach wy € Q. Then all graphs are the graphs
S(l. 12, 13)( sec Figure 5). By Lemna 8, we have

o (Sl lo,l3)) =272 + 2h 4 2,

From the above argument, the lemma holds. O

By Lemma 6 and a similar argument with that of Lemma 7, we have

Lemma 10. Let n > 10 and |V(G)| = n. Let G be the graph obtained from 5,, by adding
some edges of S,. Then 2"~2 < o(G) < 2" if and only if G € {Ang, Bua} U {S(0,i2,13)]1 <
lola+l3=n— 2} (m]

The proof of Theorem 2: Suppose that G is a connected graph of n vertices with
=2 < o(@) < 2°°1, where G is not a tree. Then G must be obtained from a tree T of
n vertices by adding some edges of T. By Lemma 5, we have that if o(T) < 272, then
o(G) < o(T) < 2772, For n > 10, all graphs T with (7)) > 2"~2 are given by Lemma 1 and
Theorem 1. Thus, the theorem follows from Lemmas 7 to 10. O
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